文档库 最新最全的文档下载
当前位置:文档库 › 一代数学大师谷超豪

一代数学大师谷超豪

一代数学大师谷超豪
一代数学大师谷超豪

谷超豪(1926.5.15~2012.06.24),数学家,复旦大学教授,中国科学院院士。历任复旦大学副校长、中国科学技术大学校长。2010年1月11日,谷超豪获得2009年度国家最高科学技术奖。2012年6月24日1时8分在上海逝世,享年87岁。

他是个数学迷,与数学结下不解之缘,数学和诗一样让他喜欢;他是著名教育家,从教60多年培养了9位院士。此外,他跟夫人胡和生也堪称传奇,她也是一位数学家,同样曾师从数学家苏步青,又同样成为中国科学院院士。我国著名数学家、教育家谷超豪先生,在这个浮躁的时代是当之无愧的大师。2012年6月24日1时8分他在上海华东医院逝世,享年87岁。

60多年,从微分几何到偏微分方程,再从偏微分方程到数学物理,谷超豪在深奥和抽象的数学世界里遨游,在纯粹数学和应用数学两个领域都获得了富有开创性、在国际上处于领先地位的成果。很多人觉得搞数学很枯燥,他却说:“数学世界充满了精神的创造,只要深入其中就会发现奥妙无穷。”

传奇

师从苏步青和陈建功

谷超豪先生1926年5月15日出生于浙江温州。在有关传记里,记录了他早年积极参加民族解放斗争的经历,1940年,初中三年级、时年14岁的谷超豪就加入中国共产党。

1943年他考入浙江大学龙泉分校。在大学期间,他也是一位“不安分”分子,积极参加进步学生运动,以1000多票的最高票数,当选为学生会主要负责人之一。在当时的浙江大学曾经流传这样一句话“科学+民主=谷超豪”。此时他跟同学组织了“求是学社”,以优异的成绩和追求真理的行动,赢得了师长的信任和同学们的尊敬。

在大学里,谷超豪是个忙人,除了如饥似渴地学习,他还参加革命活动。1946年,他师从著名数学家苏步青教授,开始了研究数学的历程。因为才华出众,他被破例允许同时参加两位名家的课程——苏步青教授主持的微分几何专题讨论和陈建功教授主持的函数论与傅里叶分析专题讨论。在学习过程中,谷超豪表现出了惊人的观察力,在几何及分析两方面打下了扎实的功底。

从1948年到1956年,谷超豪先后在浙江大学和复旦大学任教,在苏步青的指导下开始了数学研究生涯,在k展空间、仿射联络空间及芬斯拉空间等方面进行了一系列深入的研究工作。在此期间,他依然保持了对数学领域的观察,发表了多篇论文,展现出数学方面创造性的才能,迅速成为苏步青领导的中国微分几何学派的学术骨干。

苏步青先生曾对谷超豪说:“你只有一点没有超过老师,就是没有培养出像谷超豪似的学生来。”苏步青说这句话时的背景和语气,现已无从考证。不过,谷超豪把这当作勉励自己好好培养学生的警句。也许正因如此,往后的岁月里有9位两院院士是由他培养出来,他将此戏称为是向苏先生“交账”。

谷超豪曾先后在中国科技大学、复旦大学担任校长,始终在数学领域奋斗。鉴于他在数学领域取得的成绩,2009年,紫金山天文台以他的名字命名一颗小行星。随后,他也迎来了一连串的荣誉,但对谷先生来说,最念念不忘的依然是数学。

数学

95%时间计算数学

微分几何、偏微分方程、数学物理被视为谷超豪学术成果的“金三角”。法兰西科学院院士肖盖曾这样形容他的工作风格:“独特、高雅、深入、多变。”而这位早已成名的科学家,不断尝试跨领域研究的创新,“做学问就像下棋,要有大眼界,只经营一小块地盘,容易失去大局。”谷超豪曾这样告诫学生。若没有人生的“大胸怀”是很难成为大师的。

从浙江大学毕业担任苏步青教授的助教,到在院系调整时转入复旦大学,谷超豪做了近

60年教师,一直都是坚持科研与教学相结合的典范。他长期为本科生开数学基础课,也开设过许多专门课程,严谨的治学态度逐渐渗透到复旦数学所的每一个角落。他的学生印象深刻的是,要通过他的研究生答辩,最关键的是论文必须具备“原创性”。在这种高标准、严要求的精神熏陶下,几十年来,谷超豪为国家输送了包括科学院院士、工程院院士在内的众多高级数学人才,尽管如此,迄今也没有学生超过谷先生的成就。

在杨振宁教授的眼中,谷超豪的研究是“站在高山上往下看,看到了全局”。在数学领域的研究,谷超豪有三次转型,三次令人瞩目的经历。对此,谷超豪的学生洪家兴院士打了个比方说:“他带队找到一条通往金矿的路后,就把金矿让给跟随他的年轻人去继续开掘,自己则带另一批年轻人去寻找另一个金矿。谷先生最近两年最为上心的一件事情,就是建立南方(上海)数学研究中心,为的就是让更多青年人迅速成长,培养出更多数学学科杰出人才。”

“这也是他们这一代科学家的特点:永远把国家的需要放在自己的发展之前。”有学者如此评价。

2009年,谷超豪专门给胡锦涛总书记写信,希望建立南方数学研究中心。在信中,他这样写道:“数学是一种文化,是人类文明的重要组成部分……”

谷超豪对数学的痴迷到让人惊叹的地步,他曾为母校温州中学90周年校庆作了首诗抒发对数学之爱:“人言数无味,我道味无穷。良师多启发,珍本富精蕴。解题岂一法,寻思求百通。幸得桑梓教,终生为动容。”

对谷超豪来说,数学是他日常生活的重要组成部分,达到“95%时间计算数学”。谷超豪和夫人胡和生两人在结婚时就曾约定,家务从简,将日常生活做成一道减法题。住着12平米的简陋屋子,夫妇俩却请了一个钟点工。这位钟点工在谷家一做就是45年,两家保持了长相来往的朋友关系。直到80多岁,谷老每天依然工作8小时以上,一支笔、一张白纸,孜孜不倦地破解难题。

诗歌

带来无穷的想象空间

鲜为人知的是,谷超豪不仅是数学家,也是一位诗人。“在我的生活里,数学是和诗一样让我喜欢的东西,诗可以用简单的语言表达非常复杂的内容,用具体的语言表现深刻的感情和志向,数学也是这样,能给人带来无穷的想象空间。”在那个空间里,谷超豪营造出了一个迥异于现实的完美世界。

科学家与诗人的理想是求真寻美。诗和科学上的公式、定律,都是从纷繁复杂的社会、自然现象中凝练出来,体现了高度的智慧性和美的简洁性。在几十年如一日的数学研究中,谷超豪经常凭借自己深厚的文学功底,将数字化枯燥为神奇的无穷乐趣用诗意的语言表达出来。1986年,他乘船去浙江舟山讲学时,曾写过一首诗:“昨辞匡庐今蓬莱,浪拍船舷夜不眠。曲面全凸形难变,线素双曲群可迁。晴空灿烂霞掩日,碧海苍茫水映天。人生几何学几何,不学庄生殆无边。”其中第二句讲的就是微分几何中的两个著名定理。

诗歌在他的科学研究中是不可或缺的部分,他有时上课也会即兴赋诗教学,还曾作诗“学海茫茫欲何之,惜阴岂止少年时。秉烛求索不觉晚,折得奇花三两枝”,以作为对自己的要求和希望。

俄罗斯教材《代数引论》的启迪

俄罗斯教材《代数学引论》的启迪(初稿) 庄瓦金 (漳州师范学院,福建,363000) 二十年前,北京大学三位教授根据1982年斯普林格出版社的英文版翻译了莫斯科大学A.И.柯斯特利金院士的《代数学引论》[1,2],使得国内同行们对俄罗斯高水平的代数教材有所认识。但鉴于中国国情,至今还没看到该书对中国大学本科代数教学有实质的影响。而今,在中国数学会、中国工业与应用数学学会、国家自然科学基金委员会的关注下,数学天元基金资助、高等教育出版社出版了庆祝莫斯科大学成立250周年而推出的一批优秀数学教材的中译本,其中有 A.И.柯斯特利金的《代数学引论》(第二、三版)三卷本[3~5](以下简称《引论》)。笔者看后,很受启发,现根据这几年来对高等代数研究的基础[17~23],对《引论》作些思索,为提升中国大学本科代数教学水平奉献余力。 一《引论》的特色 稍读[3~5],笔者认为,A.И.柯斯特利金之著有以下四大特色。 1 继承性 [1]的英文版译者指出:A.И.柯斯特利金“发展了莫斯科大学的代数课”,这从《引论》著者经历就可以看出。A.И.柯斯特利金1959年获莫斯科大学数理科学博士学位,1972年任莫斯科大学高等代数教研室主任,1976年升为教授,同年当选为苏联科学院通讯院士,1977-1980任莫斯科大学数学系主任,1991年起为莫斯科大学学术委员会成员,他的《引论》理所当然地继承了А.Г.库洛什等老一辈代数学家的代数教材,这还从[3~5]的补充文献也得到进一步证实。 在注意《引论》继承自己前辈工作之时,我们注意到《引论》三卷本与N.Jacobson的《抽象代数学》三卷本[6]在分卷上的相似性,这也多少说明[3~5]继承了国际上代数教材的遗产,使得这三卷本能够更好地贯串一条主线。因此,《引论》的继承性不仅是莫斯科大学的,而且也包涵了全世界各著名大学的。 值得一提的是,[3~5]的俄文版,第二卷2004年出版,第三卷2001年出版,估计第一卷也是2001年出版,也就是说:这三卷本是在著者去世之后出版的。记得Φ.Ρ.甘特马赫尔的《矩阵论》俄文第二版也是在著者去世后出版的。看来,这里说的继承性是莫斯科学派集体继承性,这是多么伟大的继承性,它体现了俄罗斯数学家的优良品格。 2 整体性 《引论》的特色不仅在于教材的系统性,更在于教材的整体性。首先是代数科学的整体性,中国的高等代数与抽象代数两门课程,在[3~5]中则整合为一,使整个代数教材的水平提高了一个层次,让学生尽早接触抽象代数思想,推进了学生对代数结构的理解。这显然对于学生的整个数学学习大有好处。其次是数学课程的整体性,《引论》第一卷的前言一开头就写到:“人们很早就感到有必要把代数、线性代数和几何放到一个统一的教程中。而教科书《代数学引论》自出版后的22年来可以看作是这种统一处理的初步考试。”因此,《引论》突出了代数与几何的统一;同时也注意了与分析的联系,特别是注意到了线性代数的两大后继课程:计算数学与泛函分析,这不仅在教材中有交代,而且在基本术语上相一致,如“线性变换”称为“线性算子”。再次是数学语言的整体性,在[1]中,著者就注

高等数学 复旦大学出版社 课后习题答案

1. 解: (1)相等. 因为两函数的定义域相同,都是实数集R ; x =知两函数的对应法则也相同;所以两函数相等. (2)相等. 因为两函数的定义域相同,都是实数集R ,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等. (3)不相等. 因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R ,两函数的定义域不同,所以两函数不相等. 2. 解: (1)要使函数有意义,必须 400x x -≥?? ≠? 即 40x x ≤?? ≠? 所以函数的定义域是(,0)(0,4]-∞U . (2)要使函数有意义,必须 30lg(1)010x x x +≥?? -≠??->? 即 301x x x ≥-?? ≠??

教师职业道德模拟考试试题参考答案

2017年高校教师任职资格培训 教师职业道德考试模拟试题参考答案 一、单选题(1分×20) 1.教师职业道德区别于其他职业道德的显著标志就是(A) A.为人师表 B.清正廉洁 C.敬业爱业 D.团结协作 2.教师( A )是指教师对教育劳动中客观存在的道德关系以及处理这些关系的原则、规范的认识。 A.职业道德认识 B.职业道德情感 C. 职业道德意志 D. 职业道德行为 3.托尔斯泰说:“如果一个教师把热爱事业和热爱学生结合起来,他就是一个完美的教师”。这意味着教师要(A) A.关心学生、了解学生 B.尊重学生、信任学生 C.严格要求学生,对学生一视同仁 D.把热爱事业与热爱学生结合起来 4.孔夫子所说的的"其身正,不令而行;其身不正,虽令不从",从教师的角度来说可以理解为(D) A.走路身体一定要端正 B.自己做好了,不要教育学生,学生自然会学好 C.对学生下命令一定要正确 D.教师自己以身作则,一言一行都会对学生产生巨大的影响 5.( B )是社会主义道德的根本原则。 A. 人道主义 B. 集体主义 C. 爱国主义 D. 民主、平等 6.师德的灵魂是(A)

A.关爱学生 B.提高修养 C.加强反思 D.提高业务水平 7.尊重学生的个别差异,教师应努力做到( B ) A.对学生一视同仁,一样要求 B.辨证地看待学生的优缺点,不绝对化 C.引导学生相互间进行横向的比较与学习 D.不同的学生犯了同样的错误,不考虑动机与原因就进行处理 8.教师在履行教育义务的活动中,最主要、最基本的道德责任是( B )A. 依法执教 B. 教书育人 C. 爱岗敬业 D. 团结协作 9.思考教师职业道德的逻辑起点是( D ) A.时代变化与变革 B.西方发达国家的师德规范 C.中华民族的优秀师德 D.人的发展与社会发展之间的矛盾 10.提升教师职业道德修养的根本途径是(A) A.理论联系实际,知行统一 B.加强学习,提高理论素质 C.注重内省慎独 D.确立可行目标 11.教师职业道德评价的根据是( A ) A.动机和效果和统一 B.社会舆论 C.职业良心 D.善恶观念 12.下列不属于教师与同事关系的类型的一项是( D ) A.自重型 B.亲和型 C.排斥型 D.顺从型

代数学引论(聂灵沼_丁石孙版)第一章习题答案(可编辑修改word版)

第一章代数基本概念 1.如果群 G 中,对任意元素 a,b 有(ab)2=a2b2,则 G 为交换群. 证明: 对任意 a,bG,由结合律我们可得到 (ab)2=a(ba)b, a2b2=a(ab)b 再由已知条件以及消去律得到 ba=ab, 由此可见群 G 为交换群. 2.如果群 G 中,每个元素 a 都适合 a2=e, 则 G 为交换群. 证明: [方法 1] 对任意 a,bG, ba=bae=ba(ab)2=ba(ab)(ab) =ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此 G 为交换群. [方法 2] 对任意 a,bG, a2b2=e=(ab)2, 由上一题的结论可知 G 为交换群. 3.设 G 是一非空的有限集合,其中定义了一个乘法 ab,适合条件: (1)a(bc)=(ab)c; (2)由 ab=ac 推出 a=c; 1

(3)由 ac=bc 推出 a=b; 证明 G 在该乘法下成一群. 证明:[方法 1] 设 G={a1,a2,…,a n},k 是1,2,…,n中某一个数字,由(2)可知若ij(I,j=1,2,…,n),有 再由乘法的封闭性可知a k a i a k a j<1> a i a k a j a k<2> G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n} <3> G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k} <4> 由<1>和<3>知对任意 a t G, 存在 a m G,使得 a k a m=a t. 由<2>和<4>知对任意 a t G, 存在 a s G,使得 a s a k=a t. 由下一题的结论可知 G 在该乘法下成一群. 下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。 [方法 2] 为了证明 G 在给定的乘法运算下成一群,只要证明 G 内存在幺元(单位元),并且证明G 内每一个元素都可逆即可. 为了叙述方便可设 G={a1,a2,…,a n}. (Ⅰ) 证明 G 内存在幺元. <1> 存在 a t G,使得 a1a t=a1.(这一点的证明并不难,这里不给证明); <2> 证明 a1a t= a t a1; 因为 2

代数学引论第一章答案

1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群. 证明: 对任意a,b错误!未找到引用源。G,由结合律我们可得到 (ab)2=a(ba)b, a2b2=a(ab)b 再由已知条件以及消去律得到 ba=ab, 由此可见群G为交换群. 2.如果群G中,每个元素a都适合a2=e, 则G为交换群. 证明: [方法1] 对任意a,b错误!未找到引用源。G, ba=bae=ba(ab)2=ba(ab)(ab) =ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此G为交换群. [方法2] 对任意a,b错误!未找到引用源。G, a2b2=e=(ab)2, 由上一题的结论可知G为交换群. 3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件: (1)a(bc)=(ab)c; (2)由ab=ac推出b=c; (3)由ac=bc推出a=b; 证明G在该乘法下成一群. 证明:[方法1] 设G={a 1,a 2 ,…,a n },k是1,2,…,n中某一个数字,由(2)可知若i错误!未找到引用源。j(I,j=1,2,…,n),有 a k a i 错误!未找到引用源。a k a j ------------<1> a i a k 错误!未找到引用源。a j a k ------------<2> 再由乘法的封闭性可知 G={a 1,a 2 ,…,a n }={a k a 1 , a k a 2 ,…, a k a n }------------<3> G={a 1,a 2 ,…,a n }={a 1 a k , a 2 a k ,…, a n a k }------------<4> 由<1>和<3>知对任意a t 错误!未找到引用源。G, 存在a m 错误!未找到引用源。G,使得 a k a m =a t . 由<2>和<4>知对任意a t 错误!未找到引用源。G, 存在a s 错误!未找到引用源。G,使得 a s a k =a t . 由下一题的结论可知G在该乘法下成一群.

高等数学(复旦大学版)第十章_多元函数积分学(一)

第十章 多元函数积分学(Ⅰ) 一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学容: 一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域?σ 1, ?σ 2, ? ? ? , ?σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个?σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为?σ i 的平顶柱体的体积为 f (ξ i , η i ) ?σi (i =1, 2, ? ? ? , n ). 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 . 可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i n i f V σηξλ?==→∑),(lim 1 0. 其中λ是个小区域的直径中的最大值.

高等代数学习报告

竭诚为您提供优质文档/双击可除 高等代数学习报告 篇一:高等代数期末论文学习总结 高等代数学习总结 摘要:两学期的高等代数已经接近尾声了,高等代数作为数学专业的基础学科之 一。本文主要讲述本人两学期下来学习高等代数的一些知识总结和学习体会。关键词: 行列式矩阵二次型 正文: 《高等代数》是数学学科的一门传统课程。在当今世界的数学内部学科趋于统一性和数学在其他学科的广泛应用 性的今天,《高等代数》以其追求内容结构的清晰刻画和作为数学应用的基础,是大学数学各个专业的主干基础课程。它是数学在其它学科应用的必需基础课程,又是数学修养的核心课程。 高等代数是代数学发展到高级阶段的总称,它包括许多分支。它是在初等代数的基础上研究对象进一步的扩充,引

进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。通过学习后,我们知道,不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。 在学习之前,我一直认为高等代数就是把线性代数重学一遍,因为大一的时候线性代数学得不深,而且也没有学完。经过两学期的学习后,我发现,这两者之间区别还是挺大的。高等代数数学专业开设的专业课,更注重理论的分析,需要搞懂许多概念是怎么来的,而线性代数,只是一种运算工具,是供工科和部分医科专业开设的课程,只注重应用。 经过两学期的学习,我对高等代数里面的知识有了个初步的认识和接触,特别是代数的一些思想,也从中收获不少。下面就对两学期的学习做一个回顾和总结。行列式行列式是代数学中的一个基本概念,它不仅是讨论线性方程组理论的有力工具,而且还广泛的应用于数学及其他科学技术领域 定义:设A=(??????)为数域F上的n×n矩阵,规定A的行列式为

数学物理方程谷超豪版第二章课后答案

第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。 由假设,在任意时刻t 到t t ?+内流入截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为 x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??-- =??--=11 1124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??-- ????=????11 2 24ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=--??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ?? ? ??????+???? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的 水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则 Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放 热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ??? ? ??-=+??? ? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2 4. 设一均匀的导线处在周围为常数温度0u 的介质中,试证:在常电流作用下导线的温度满足微分方程 ()2201224.0ρω ρωρc r i u u c P k x u c k t u +--??=?? 其中i 及r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω表示横截面面积,而k 表示导线对于介质的热交换系数。 解:问题可视为有热源的杆的热传导问题。因此由原71页(1.7)及(1.8)式知方程取形式为

关于高等代数与数学分析的学习体会

高等代数与数学分析的学习体会 摘要:作为数学系的学生,高等代数和数学分析,是我们一进大学就开始学习的两门最重要的课程。同时它们也是数学中最基础的两门课程,几乎所有的后学课程都要用到它们。在本文中,我就自己对这两门课程的基本内容,学习体会,以及这两门课程与后学课程的联系三个方面谈了一些自己的看法。 高等代数部分 基本内容: 在谈自己对高等代数的学习体会之前,我想先回顾一下高等代数的基本内容。我们大一所学习的高等代数,主要包括两部分:多项式代数和线性代数。 其中线性代数部分又可以分成:行列式,线性方程组,矩阵,二次型,线性空间,线性变换, —矩阵,欧几里得空间,双线性函数与辛空间等一些章节。而在这些章节中,又是以向量理论,线性方程理论和线性变换的相关理论为核心的。 如果和以前学过的初等代数相比,我觉得,高等代数在初等代数的基础上把研究对象作了进一步的扩充。它引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。 简单体会: 记得大一刚学习高等代数的时候,那时感觉自己真的学得云里雾里,因为那时感觉它实在是太抽象了而无法理解。但是通过不断地对它的学习,慢慢地开始有好转,开始感觉它不再那么陌生,并对它有了初步的认识。而当我学完抽象代数之后,我发现自己对高等代数的有了更好的理解。其实高等代数中的每个不同的章节,都是由一个集合再加上一套运算规则,进而构成的一个代数结构。 例如,第一章多项式,我们所有的讨论都是在某个数域P上的一元多项式环中进行。其中的某个数域P中的一元多项式全体,就相当于某个集合,在这个集合的基础上再加上关于多项式的运算规则,就构成了一个代数结构。 因为高等代数具有这种结构,所以在学习每种代数结构时,我们总会先学这个代数结构是建立在那个集合上以及它的运算规则是怎样定义的。因此,在高等代数学习中对每种代数

代数学引论(丁石孙)_第一章答案

代数学基础学习笔记
第一章 代数基本概念
习题解答与提示(P54)
1. 如果群 G 中,对任意元素 a,b 有(ab)2=a2b2,则 G 为交换群. 证明:
对任意 a,b G,由结合律我们可得到 (ab)2=a(ba)b, a2b2=a(ab)b
再由已知条件以及消去律得到 ba=ab,
由此可见群 G 为交换群.
2. 如果群 G 中,每个元素 a 都适合 a2=e, 则 G 为交换群. 证明: [方法 1]
对任意 a,b G, ba=bae=ba(ab)2=ba(ab)(ab)
=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此 G 为交换群. [方法 2]
对任意 a,b G, a2b2=e=(ab)2,
由上一题的结论可知 G 为交换群.
3. 设 G 是一非空的有限集合,其中定义了一个乘法 ab,适合条件: (1) a(bc)=(ab)c; (2) 由 ab=ac 推出 b=c; (3) 由 ac=bc 推出 a=b;
证明 G 在该乘法下成一群. 证明:[方法 1]
设 G={a1,a2,…,an},k 是 1,2,…,n 中某一个数字,由(2)可知若 i j(I,j=1,2,…,n),有 akai ak aj------------<1> aiak aj ak------------<2>
再由乘法的封闭性可知 G={a1,a2,…,an}={aka1, aka2,…, akan}------------<3>
1

高等代数教学大纲

中国海洋大学本科生课程大纲 课程属性:学科基础 课程性质:必修 一、课程介绍 1.课程描述: 高等代数是数学科学学院各专业的重要专业必修基础课,是学习其它数学课程的主要先修课之一。高等代数的内容主要包含两个模块:第一模块,方程和方程组的求解问题,主要内容有:多项式、行列式、线性方程组、矩阵、二次型;第二模块,线性空间相关理论,主要内容有:线性空间、线性变换、λ-矩阵、欧几里得空间。高等代数内容包含理工科所开设的线性代数的主要内容。 2.设计思路: 开设高等代数课程的目的是:一方面,使数学院本科生在中学所学初等代数的基础上继续学习更加高深的代数学知识,使其掌握系统的经典代数内容,为学习其它数学课程(如数值代数、近世代数、计算方法等等)提供坚实的代数基础知识;另一方面,通过本课程的学习,逐步培养学生的数值计算能力、逻辑分析能力和抽象思维能力,提高学生在数学思想、数学方法方面的修养。 19世纪以前的代数研究内容主要是解方程和方程组以及由此产生的相关理论,称为经典代数;19世纪以后的代数主要研究一些抽象代数结构,如群、环、域、模等,称为抽象代数或近世代数。高等代数课程的内容主要是经典代数内容,涵盖学习其它数学课程所要求的基本的代数基础知识。 - 2 -

高等代数的内容基本按照经典代数的发展编排的,主要有两条主线:第一,方程和方程组求解问题,第二,线性空间相关理论。第一条主线的主要内容有:多项式理论——对应高次方程,其求解需要降次,需研究多项式的因式分解;行列式理论——求解线性方程组的主要工具之一;线性方程组理论——解的判定与求法;矩阵理论——解线性方程组时用到的矩阵运算与性质;二次型理论——二次齐次方程的化简与对称矩阵。第二条主线的主要内容多是解析几何中内容的推广,主要有:线性空间——几何空间的推广与抽象;线性变换——线性空间中点的运动的描述;λ-矩阵——证明线性变换的矩阵与其标准形相似;欧几里得空间——带有长度、夹角与距离等度量性质的线性空间,是几何空间的推广。 3.课程与其他课程的关系: 先修课程:无; 并行课程:数学分析、空间解析几何; 后置课程:近世代数。高等代数与近世代数内容恰好实现对接,完整体现了代数学的基本内容,联系密切。 二、课程目标 本课程目标是:一方面使学生系统地掌握经典代数的内容,包括多项式、线性方程组、矩阵、二次型、线性空间、线性变换、欧几里得空间等,为学习其它数学课程打下坚实的代数知识基础;另一方面,通过本课程的学习,培养学生的数值计算能力、逻辑分析能力和抽象思维能力,提高学生运用数学思想、数学方法分析问题、解决问题的能力。 到课程结束时,学生应达到以下几方面要求: (1)知识掌握良好。会判断多项式的可约性,能计算两多项式的最大公因式;会计算行列式;会判定线性方程组是否可解,掌握线性方程组解的结构;熟练掌握矩阵的各种运算;可将二次型化为标准形;掌握线性空间基底理论以及子空间的运算;会写线性变换的矩阵,会判定矩阵是否对角化、准对角化,并能求出其相应对角形与准 - 2 -

代数学引论(聂灵沼-丁石孙版)第一章习题答案

代数学引论(聂灵沼-丁石孙版)第一章习题答案

第一章代数基本概念 1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群. 证明: 对任意a,bG,由结合律我们可得到 (ab)2=a(ba)b, a2b2=a(ab)b 再由已知条件以及消去律得到 ba=ab, 由此可见群G为交换群. 2.如果群G中,每个元素a都适合a2=e, 则G为交换群. 证明: [方法1] 对任意a,bG, ba=bae=ba(ab)2=ba(ab)(ab) =ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab

再由乘法的封闭性可知 G={a 1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3> G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4> 由<1>和<3>知对任意a t G, 存在a m G,使得 a k a m=a t. 由<2>和<4>知对任意a t G, 存在a s G,使得 a s a k=a t. 由下一题的结论可知G在该乘法下成一群. 下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。 [方法2] 为了证明G在给定的乘法运算下成一群,只要证明G内存在幺元(单位元),并且证明G内每一个元素都可逆即可.

为了叙述方便可设G={a1,a2,…,a n}. (Ⅰ) 证明G内存在幺元. <1> 存在a t G,使得a1a t=a1.(这一点的证明并不难,这里不给证明); <2> 证明a1a t= a t a1; 因为 a1(a t a1)a t=(a1a t) (a1a t)=(a1)2 a1(a1a t)a t=(a1a1)a t=a1(a1a t)= (a1)2, 故此 a1(a t a1)a t= a1(a1a t)a t. 由条件(1),(2)可得到 a1a t= a t a1. <3> 证明a t就是G的幺元; 对任意a k G, a1(a t a k) =(a1a t)a k=a1a k 由条件(2)可知 a t a k=a k.

关于高等代数学习的感想

关于高等代数学习的感想 数学是一门需要耐心与细心的学科,很多同学一提到数学就觉得头疼。的确,数学繁复的证明,难记的公式,复杂的计算让很多同学望而生畏,正因为如此,一旦经过自己的努力解出一道数学题,那种兴奋的感觉是难以形容的。我想,数学的魅力就在于此吧。 大一下学期,我们开设了高等代数这门课程。高等代数主要是对多项式、行列式、矩阵、线性空间、线性变换等进行学习。记得高等代数第一节课时,我就对高代复杂且枯燥的证明失去信心,看着密密麻麻的证明和叙述,我完全没有看下去的兴趣。高代老师段辉明看出了我们的困惑,她耐心地引导我们,尽量使ppt内容简洁易懂,活跃课堂气氛,使同学们在幽默轻松的环境下学习。渐渐地,高代的课堂上充满了欢乐,同学们对高代的兴趣也逐渐提升,大家的学习成绩自然也提高了不少。 经过对高代一学期的学习,我总结出以下的学习技巧:1、按部就班。数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。2、强调理解。概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。3、基本训练。学习数学是不能缺少训练的,平时多做一些难度适中的练习,但要避免陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。4、标出重点。平常看题看课本的时候,

碰到有好的解题方法或重点内容,可以用鲜艳的彩笔划出来,以便以后复习时能一目了然。5、学会做笔记。做笔记是一种与动手相结合的学习行为,有助于对知识的理解和记忆,是一种必须掌握的技能。学习笔记主要有课堂笔记、读书笔记和复习笔记等,课堂笔记应注意结合教材进行记录,不能全抄全录老师的板书。读书笔记应注意做好圈点勾批,所谓"不动笔墨不读书"。复习笔记应注意做好知识的归纳整理,理清知识结构和联系。还需要指出的是,不论哪种笔记都要做好疑难问题的记录,便于集中处理。做好课堂笔记是学好高等代数必不可少的环节,它为下一步复习提供资料。做课堂笔记是有技巧的,要记那些书本里没有的东西、具有概括性的和一些技巧性的解题方法、常见的题型,这为你以后考试复习提供很好的资料。6、要学好高等代数最基本的就是要做好课前预习,做好课堂笔记及讲究解题的方法、做好课后的复习。这三个步骤是学好高等代数的重要环节。做好课前预习是学好高等代数的重要环节,它为做好后面两个步骤打下基础。我们应对各个章节有一个总的系统的认识,从结构上去把握它,在头脑中初步形成知识体系的框架,对它所包含的内容做一个总体及全面的了解,然后逐步细化、深化,由浅入深,由易到难,这样我们才能把握全局,运筹帷幄,分清主次,使学习有的放矢,对老师要讲的内容,都能知道知识点的意义,从而能使听课收到更好的效果。课后及时复习可以巩固你所学的内容,使你对所学内容进一步了解。7、做好及时复习。在你学完某节内容的当天就得回去看所学的内容,结合书本知识和课堂笔记对所学的内容进行深一步的研究,及时找出不能

高等数学复旦大学出版社习题答案七

习题七 1. 在空间直角坐标系中,定出下列各点的位置: A(1,2,3); B(-2,3,4); C(2,-3,-4); D(3,4,0); E(0,4,3); F(3,0,0). 解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限; 点D在xOy面上;点E在yOz面上;点F在x轴上. 2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢? 答: 在xOy面上的点,z=0; 在yOz面上的点,x=0; 在zOx面上的点,y=0. 3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢? 答:x轴上的点,y=z=0; y轴上的点,x=z=0; z轴上的点,x=y=0. 4. 求下列各对点之间的距离: (1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4); (3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3). 解:(1)s= (2) s== (3) s== (4) s== 5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离. 解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5). 故 02 s= x s== y s== 5 z s==. 6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则 222222 (4)1(7)35(2) z z -++-=++-- 解得 14 9 z=

即所求点为M (0,0, 149 ). 7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图 7-1 图7-1 9. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解: 232(2)3(3) 2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c 10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =c ,BC =a 表示向量1D A ,2D A ,3D A 和4D A . 解:1115D A BA BD =-=-- c a 222 5D A BA BD =-=--c a 333 5D A BA BD =-=--c a 444 .5 D A BA BD =-=--c a 11. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影. 解:设M 的投影为M ',则 1 Pr j cos604 2.2 u OM OM =?=?= 12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标. 解:设此向量的起点A 的坐标A (x , y , z ),则 {4,4,7}{2,1,7}AB x y z =-=----

高等代数研究学习心得

浅谈高等代数研究的学习 如果将整个数学比作一棵参天大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干就是“数学分析、高等代数、空间几何”。这个粗浅的比喻,形象地说明这“三门”课程在数学中的地位和作用。高等代数是数学中主干部分,其在科学技术中应用非常广泛,无处不在。 例如:二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。 那什么是高等代数,它和初等代数又有什么联系呢? 初等代数从最简单的一元一次方程开始,初等代数课本一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步,多项式代数。 高等代数又是怎样发展起来的呢? 在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而二次以上方程发展成为多项式理论。前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。作为大学课程的高等代数,只研究它们的基础。高次方程组(即非线性方程组)发展成为一门比较现代的数学理论-代数几何。 线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意,而且写了成千篇关于这两个课题的文章。向量的概念,从数学的观点来看不过是有序三元数组的一个集合,然而它以力或速度作为直接的物理意义,并且数学上用它能立刻写出物理上所说的事情。向量用于梯度,散度,旋度就更有说服力。同样,行列式和矩阵如导数一样(虽然‘dy/dx’在数学上不过是一个符号,表示包括‘Δy/Δx’的极限的长式

招教考试试卷和答案分析

教师招聘考试考前演练试卷 (附答案解析) 单选 1.社会主义道德建设的核心是(C) A爱国主义B集体主义C为人民服务D社会主义荣辱观 2.( B )是我们党的思想路线,也是马列主义、毛泽东思想和邓小平理论的精髓。A.一个中心,两个基本点B.解放思想、实事求是 C.坚持四项基本原则D.发展生产力 3.“要尽量多的要求一个人,也要尽可能多地尊重一个人”是下列哪位教育家提出的() A.赞可夫 B.马卡连柯 C.苏霍姆林斯基 D.加里宁 4.少年期学生所处的年龄阶段是( C ) A.6~11岁 B.7~12岁 C. 11、12~14、15岁 D.12、13~15岁 5.学生是人,是教育的对象,因而他们( D ) A.消极被动的接受教育 B.对外界的教育影响有选择性 C.毫无顾忌地接受教育 D.能动地接受教育 6.与“天宫一号”两度完成“太空之吻”的“神舟八号”飞船,于2011年11月17日顺利回“家”,天宫一号与神舟八号空间交会对接任务获得圆满成功,这标志着我国(D )A载人航天技术已经完全成熟B实现了由航天大国向航天强国的转变 C实现了载人航天工程“三步走”的发展战略D为今后建造载人空间站奠定了坚实的技术基础 7.教师根据学科课程标准要求,指导学生运用所学知识从事一定的工作或操作,将书本知识运用于实践这种方法是指( b ) A.试验法 B.实习作业法 C.参观法 D.实践活动法 8.2012年1月14日,中共中央、国务院在北京举行国家科学技术奖励大会。获得2011年度国家最高科学技术奖的是、两位院士。( B) A.孙家栋谷超豪 B.谢家麟吴良鏞 C.师昌绪王振义 D.闵恩泽吴征镒 9.通过介绍学习内容要点和有关背景材料,说明学习的意义,从而使学生产生学习情趣,进入学习情境的教学行为方式是( C ) A.尝试导入 B.演示导入 C.序言导入 D.故事导入 10.说课是一种科研活动,它的本质是(b )

代数学引论近世代数第一章答案-精品文档

第一章代数基本概念 习题解答与提示(P54) 1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群. 证明: 对任意a,b G,由结合律我们可得到 (ab)2=a(ba)b, a2b2=a(ab)b 再由已知条件以及消去律得到 ba=ab, 由此可见群G为交换群. 2.如果群G中,每个元素a都适合a2=e, 则G为交换群. 证明: [方法1] 对任意a,b G, ba=bae=ba(ab)2=ba(ab)(ab) =ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此G为交换群. [方法2] 对任意a,b G, a2b2=e=(ab)2, 由上一题的结论可知G为交换群.

3. 设G 是一非空的有限集合,其中定义了一个乘法ab,适合条件: (1) a(bc)=(ab)c; (2) 由ab=ac 推出a=c; (3) 由ac=bc 推出a=b; 证明G 在该乘法下成一群. 证明:[方法1] 设G={a 1,a 2,…,a n },k 是1,2,…,n 中某一个数字,由(2)可知若i j(I,j=1,2,…,n),有 a k a i a k a j ------------<1> a i a k a j a k ------------<2> 再由乘法的封闭性可知 G={a 1,a 2,…,a n }={a k a 1, a k a 2,…, a k a n }------------<3> G={a 1,a 2,…,a n }={a 1a k , a 2a k ,…, a n a k }------------<4> 由<1>和<3>知对任意a t G, 存在a m G,使得 a k a m =a t . 由<2>和<4>知对任意a t G, 存在a s G,使得 a s a k =a t . 由下一题的结论可知G 在该乘法下成一群. 下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。 [方法2] 为了证明G 在给定的乘法运算下成一群,只要证明G 内存在幺元(单位元),并且证明G 内每一个元素都可逆即可.

高等数学(复旦大学版)第十章-多元函数积分学(一)

第十章多元函数积分学(Ⅰ) f x在区间[a,b]上的定积分,并且已经建立 一元函数积分学中,曾经用和式的极限来定义一元函数() 了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学内容: 一、二重积分的概念 1曲顶柱体的体积 设有一立体它的底是xOy面上的闭区域D它的侧面是以D的边界曲线为准线而母线平行于z轴的柱面它的顶是曲面z f(x y)这里f(x y)0且在D上连续这种立体叫做曲顶柱体现在我们来讨论如何计算曲顶柱体的体积 首先用一组曲线网把D分成n个小区域 1 2n分别以这些小闭区域的边界曲线为准线作母线平行于z轴的柱面这些柱面把原来的曲顶柱体分为n个细曲顶柱体在每个i中任取一点(i i)以f (i i)为高而底为i的平顶柱体的体积为

f ( i i ) i (i 1 2 n ) 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 可以认为是整个曲顶柱体体积的近似值 为求得曲顶柱体体积的精确值 将分割加密 只需取极限 即 i i i n i f V σηξλ?==→∑),(lim 1 其中是个小区域的直径中的最大值 2 平面薄片的质量 设有一平面薄片占有xOy 面上的闭区域D 它在点(x y )处的面密度为(x y ) 这里 (x y )0且在D 上连续 现在要计算该薄片的质量M 用一组曲线网把D 分成n 个小区域 1 2 n 把各小块的质量近似地 看作均匀薄片的质量 ( i i ) i 各小块质量的和作为平面薄片的质量的近似值 i i i n i M σηξρ?≈=∑),(1 将分割加细 取极限 得到平面薄片的质量 i i i n i M σηξρλ?==→∑),(lim 1 其中是个小区域的直径中的最大值 定义 设f (x y )是有界闭区域D 上的有界函数 将闭区域D 任意分成n 个小闭区域 1 2 n 其中 i 表示第i 个小区域 也表示它的面积 在每个 i 上任取一点( i i ) 作和 i i i n i f σηξ?=∑),(1 如果当各小闭区域的直径中的最大值趋于零时 这和的极限总存在 则称此极限为函数f (x y )在 闭区域D 上的二重积分 记作 σ d y x f D ??),( 即

相关文档
相关文档 最新文档