文档库 最新最全的文档下载
当前位置:文档库 › 立体几何点线面位置关系习题精选

立体几何点线面位置关系习题精选

立体几何点线面位置关系习题精选
立体几何点线面位置关系习题精选

同步练习

第I 卷(选择题)

1.已知,m n 是两条不同直线,,,αβγ是三个不同平面,则下列命题正确的是( ).

A 、若m ∥,n α∥α,则m ∥n

B 、若,αγβγ⊥⊥,则α∥β

C 、若n ∥,n α∥β,则α∥β

D 、若,m n αα⊥⊥,则m ∥n

2.已知,m n 是两条不同的直线,,,αβγ是三个不同的平面,

则下列命题中正确的是 ( )

A .//,//m n αα,则//m n

B .,m m αβ⊥⊥,则//αβ

C .//,//m n m α,则//n α

D .,αγβγ⊥⊥,则//αβ

3.已知m 、n 为两条不同的直线,α、β为两个不同的平面,下列命题中正确的是( )

A .若α∥β,m ∥α,则m ∥β

B .若α⊥β,m ⊥β,则m ⊥α

C .若m ⊥α,m ⊥β,则α∥β

D .若m ∥α,m ⊥n ,则n ⊥α

4.已知l ,m 是两条不同的直线,α是一个平面,

则下列命题正确的是( )

A .若l α⊥,m α?,则l m ⊥

B .若l m ⊥,m α?,则l α⊥

C .若l ∥α,m α?,则l ∥m

D .若l ∥α,m ∥α,则l ∥m

5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )

A .若l α⊥,l m //,则m α⊥

B .若l m ⊥,m α?,则l α⊥

C .若l α//,m α?,则l m //

D .若l α//,m α//,则l m //

6.设b a ,表示直线,γβα,,表示不同的平面,则下列命题中正确的是( )

A .若α⊥a 且b a ⊥,则α//b

B .若αγ⊥且βγ⊥,则βα//

C .若α//a 且β//a ,则βα//

D .若αγ//且βγ//,则βα//

7.关于空间两条直线a 、b 和平面α,下列命题正确的是( )

A .若//a b ,b α?,则//a α

B .若//a α,b α?,则//a b

C .若//a α,//b α,则//a b

D .若a α⊥,b α⊥,则//a b

8.给定空间中的直线l 及平面,条件“直线l 与平面 内无数条直线都垂直”是“直线l 与平面 垂直”的( )条件

A .充要

B .充分非必要

C .必要非充分

D .既非充分又非必要

9.设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中为真命题的个数( )

①若m α⊥,//m n ,//n β,则αβ⊥ ②若αβ⊥,m α?,m β⊥,则//m α ③若m β⊥,m α?,则αβ⊥ ④若αβ⊥,m α?,n β?,则m n ⊥

A .0个

B .1个

C .2个

D .3个

10.已知两个不同的平面αβ、和两个不重合的直线m 、n ,有下列四个命题:

①若//,m n m n αα⊥⊥,则;

②若,,//m m αβαβ⊥⊥则;

③若,//,,m m n n αβαβ⊥?⊥则;

④若//,//m n m n ααβ?=,则.

其中正确命题的个数是( )

A.0

B.1

C.2

D.3

11.已知,m n 为不同的直线,,αβ为不同的平面,则下列说法正确的是

A. ,////m n m n αα??

B. ,m n m n αα?⊥?⊥

C. ,,////m n m n αβαβ???

D. ,n n βααβ?⊥?⊥

12.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确..

的是 (A )若//,m n αβ⊥且αβ⊥,则m n ⊥ (B )若,m n αβ⊥⊥且m n ⊥,则αβ⊥

(C )若/,/n m αβ⊥且n β⊥,则//m α (D )若,m n αβ??且//m n ,则//αβ

13.对于空间的一条直线m 和两个平面,αβ,下列命题中的真命题是

A.若,,m m αβ则αβ

B. .若,,m m αβ则αβ⊥

C.若,,m m αβ⊥⊥则αβ

D. 若,,m m αβ⊥⊥则αβ⊥

14.设,,l m n 表示三条不同的直线,,αβ表示两个不同的平面,则下列说法正确的是( )

A .若l ∥m ,m α?,则l ∥α;

B .若,,,l m l n m n α⊥⊥?,则l α⊥;

C .若l ∥α,l ∥β,m αβ=,则l ∥m ;

D .若,,l m l m αβ??⊥,则αβ⊥.

15.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )

A.若,,,,a m a n m n αα

⊥⊥??,则a α⊥ B.若//,a b b α

?,则//a α C.若//,,,a b αβαγβγ==则//a b D.若,,//,//a b a b ββαα??,则//βα

第II 卷(非选择题)

二、解答题(本题共7道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,第7题0分,共0分)

在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,若E 、F 分别为PC 、BD 的中点.

(Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:平面PDC ⊥平面

PAD ;

B A

17.(本题10分)如图,ABCD 是正方形,O 是该正方形的中心,P 是平面ABCD

外一点,PO ⊥底面ABCD ,E 是PC 的中点.

求证:(1)PA ∥平面BDE

(2)BD ⊥平面PAC .

18.(本小题8分)如图在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且PA PD AD ==

,设E 、F 分别为PC 、BD 的中点. (1) 求证:EF //平面PAD ; (2) 求证:面PAB ⊥平面PDC ; (3) 求二面角B PD C --的正切值.

P

O

E

C D

B

A

C

B

A

D 1B 1A

1C

19.如图,底面是正三角形的直三棱柱111ABC A B C -中,D 是BC 的中点,12AA AB ==. (Ⅰ)求证:1//AC 平面1AB D ;

(Ⅱ)求点A 1 到平面1AB D 的距离.

20.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠= E 、F 分别是PB 、CD 的中点,且4PB PC PD ===.

(1)求证:PA ABCD ⊥平面;

(2)求证://EF 平面PAD ;

(3)求二面角A PB C --的余弦值

.

21.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形, PD =DC ,E ,F 分别是AB ,PB 的中点.

(Ⅰ)求证://EF 平面PAD ;

(Ⅱ)求证:EF CD ⊥;

(Ⅲ)设PD=AD=a, 求三棱锥B-EFC 的体积

.

B A

22.(本小题满分10分)

如图,在四棱锥ABCD P -中,底面ABCD 是矩形,

PA ⊥平面ABCD ,AB AP =, E ,F 分别是PB ,PC 的中点.

(Ⅰ)证明:EF ∥平面PAD ; (Ⅱ)求证:PC AE ⊥.

三、解答题(本题共3道小题,每小题10分,共30分)

四、填空题(本题共4道小题,每小题0分,共0分)

α,β,给出下列三个命题:

①若m∥α,n∥α,则m∥n;

②若m∥α,n⊥α,则n⊥m;

③若m⊥α,m∥β,则α⊥β.

其中真命题序号是______

24.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列正确命题的序号是

__________。

(1)若m ∥α,n ∥α,则m ∥n ; (2)若,m m n α⊥⊥则//n α;

(3)若m α⊥,n β⊥且m n ⊥,则αβ⊥;(4)若β?m ,βα//,则α//m 。 25.10. 设c b ,表示两条直线,βα,表示两个平面,现给出下列命题:

① 若,//b c αα?,则//b c ; ② 若,//b b c α?,则//c α;

③ 若//,c ααβ⊥,则c β⊥; ④ 若//,c c αβ⊥,则αβ⊥.

其中真命题是 ▲ .(写出所有真命题的序号)

26.设m ,n 是两条不同直线,βα,是两个不同的平面,给出下列四个命题:

①若n m n m //,//,则αα?; ②βαβα⊥⊥⊥⊥则,,,n m n m ;

③若,//,//,//n m n m m αβαβ?=则且 ; ④若βαβα//,,则⊥

⊥m m 其中正确的命题是 ________.

试卷答案

1.D

2.B

3.C

4.A

5.A

6.D

7.D

8.C

9.D

10.D.

试题分析:对于①,因为α⊥m ,所以直线m 与平面α所成的角为0

90,又因为m ∥n ,所以直线n 与平面α所成的角也为090,即α⊥n 命题成立,故正确;

对于②,若α⊥m ,β⊥m ,则经过m 作平面γ,设a =?αγ,b =?βγ,又因为α?a ,β?b ,所以在平面γ内,a m ⊥,b n ⊥,所以直线a 、b 是平行直线.因为β?a ,β?b ,a ∥b ,所以a ∥β.经过m 作平面θ,设c =?αθ,d =?βθ,用同样的方法可以证出c ∥β.因为a 、c 是平面α内的相交直线,所以α∥β,故正确;

对于③,因为α⊥n ,m ∥n ,所以α⊥n .又因为β?n ,所以βα⊥,故正确; 对于④,因为m ∥β,n =?βα,当直线m 在平面β内时,m ∥n 成立,但题设中没有m 在平面β内这一条件,故不正确.综上所述,其中正确命题的个数是3个,应选D. 考点:平面的基本性质及推论.

11.

【知识点】空间中直线与平面之间的位置关系.G4 G5

【答案解析】D 解析:A 选项可能有n α?,B 选项也可能有n α?,C 选项两平面可能相交,故选D.

【思路点拨】分别根据线面平行和线面垂直的性质和定义进行判断即可.

12.

【答案解析】B 解析:A.直线,m n 成角大小不确定;B.把,m n 分别看成平面,αβ的法向量所在直线,则易得B 成立.所以选B.

【思路点拨】根据空间直线和平面位置关系的判断定理与性质定理进行判断.

13.

【答案解析】C 解析:若,,m m αβ则平面,αβ可能平行可能相交,所以A,B 是假命题;显然若,,m m αβ⊥⊥则αβ成立,故选C.

【思路点拨】根据线面平行的性质,线面垂直的性质得结论.

14.

【答案解析】C 解析:对于A ,直线l 还有可能在平面α内,所以错误,对于B ,若m ∥n ,则直线l 与平面α不一定垂直,所以错误,对于D ,若,,l m l m αβ??⊥,两面可以平行和相交,不一定垂直,所以错误,则选C.

【思路点拨】判断空间位置关系时,可用相关定理直接判断,也可用反例排除判断.

15.C

16.

(说明:证法不唯一,适当给分)证明:(1)取AD 中点G ,PD 中点H ,连接FG,GH,HE ,由题意:

11//,//,//,//22

FG AB HE CD AB CD FG HE ∴ //EFGH EF GH ∴∴四边形是平行四边形, --------4分

又,GH PAD EF PAD ??平面平面,EF //平面PAD --------6分

(2)平面PAD ⊥底面ABCD ,,PAD ABCD AD ?=平面平面

,CD AD CD ABCD ⊥?平面,∴CD PAD ⊥平面,--------10分

又CD PDC ?平面,∴平面PDC ⊥平面PAD --------12分

证明:(1)连接EO ,∵ 四边形ABCD 为正方形,

∴ O 为AC 的中点.

∵ E 是PC 的中点,∴ OE 是△APC 的中位线.

∴ EO ∥PA .∵ EO ?平面BDE ,PA ?

平面,

∴ PA ∥平面BDE .

(2)∵ PO ⊥平面ABCD ,BD ?平面ABCD ,

∴ PO ⊥BD .

∵ 四边形ABCD 是正方形,

∴ AC ⊥BD .

∵ PO∩AC=O ,AC ?平面PAC ,PO ?平面PAC ,

∴ BD ⊥平面PAC .

18.

(Ⅰ)证明:ABCD 为平行四边形

连结AC BD F =,F 为AC 中点,

E 为PC 中点∴在CPA ?中E

F //PA

且PA ?平面PAD ,EF ?平面PAD ∴PAD EF 平面// ………2分

(Ⅱ)证明:因为面PAD ⊥面ABCD 平面PAD 面ABCD AD =

ABCD 为正方形,CD AD ⊥,CD ?平面ABCD

所以CD ⊥平面PAD ∴CD PA ⊥

又2PA PD AD ==

,所以PAD ?是等腰直角三角形, 且2

PAD π

∠= 即PA PD ⊥ CD PD D =,且CD 、PD ?面ABCD

PA ⊥面PDC

又PA ?面PAB 面PAB ⊥面PDC ………5分

P

O E

C D

B

A

B A

(Ⅲ)设PD 的中点为M ,连结EM ,MF ,

则EM PD ⊥由(Ⅱ)知EF ⊥面PDC ,

EF PD ⊥,PD ⊥面

EFM ,PD MF ⊥,

EMF ∠是二面角B PD C --的平面角

Rt FEM ?中,12

4EF PA ==

1122

EM CD a ==

4tan 122

EF EMF EM a ∠=== 故所求二面角的正切值为2 ………8分 19.证明:(Ⅰ)连接1A B 交1AB

于O ,连接OD ,在1

BAC ?中,O 为1BA 中点,D 为BC 中点

1

//OD AC ∴ 11

1,OD AB D AC AB D ??面面 11//AC AB D ∴平面

1DH BB ∴⊥

11DH A B BA ∴⊥面 且3sin 30DH AD =?= 1111A AB D D AA B V V --=

即11233h =

解得h =解法二:由①可知11//AC AB D 平面 ∴点1A 到平面1AB D 的距离等于点C 到平面1AB D 的距离…………8分

1AD B ?为Rt ?

1ADB S ?∴=

12ADC ABC S S ??==分 设点C 到面1AB D 的距离为h

11C AB D B ADC V V --=

即11233h =?

解得h =略

20.

(1)证明 取BC 的中点,M 连结,.AM PM

,60AB BC ABC =∠=,ABM ∴?为正三角形,

.AM BC ∴⊥

又 ,,PB PC PM BC =∴⊥,AM PM M =

BC ∴⊥平面PAM ,

PA ?平面PAM ,同理可证 ,PA CD ⊥

又,BC CD C PA =∴⊥平面.ABCD …4分.

D

(2)取PA 的中点N ,连结,.EN ND

,,//,PE EB PN NA EN AB ==∴且1.2EN AB =又//,FD AB 且1,2

FD AB = //EN DF ∴,∴四边形ENDF 是平行四边形,//,EF ND ∴而EF ?平面,PAD ND ?平面,//PAD EF ∴平面.PAD …………………8分

(3)取AB 的中点,G 过G 作GH PB ⊥于点,H 连结,.HC GC

则,CG AB ⊥又,,CG PA PA AB A CG ⊥=∴⊥平面.PAB ,HC PB ∴⊥ GHC ∴∠

是二面角A PB C --的平面角.

在Rt PAB ?中,2,4,AB PB PA ==∴=

又Rt BHG ?∽Rt BAP ?,,HG

BG HG PA PB ∴=∴

=. 在Rt HGC ?

中,可求得GC HC =∴=cos

GHC ∴∠=, 故二面角A PB C --………………12分. (注:若(2)、(3)用向量法解题,证线面平行时应说明EF ?平面PAD 内,否则扣1分;求二面角的余弦值时,若得负值,亦扣1分.)

21.解:(Ⅰ)证明:∵E ,F 分别是AB ,PB 的中点, ∴//EF AP .又∵EF ?平面PAD ,AP ?平面PAD ,∴//EF 平面PAD . (

Ⅱ)证明:∵四边形ABCD 为正方形, ∴AD CD ^.又∵PD ^平面ABCD ,

∴PD CD ^,且A D

P D =.∴CD ^平面PAD , 又∵PA ?平面PAD ,∴CD ^PA .又∵//EF AP ,∴EF CD ⊥.

(Ⅲ)连接,AC DB 相交于O ,连接OF ,

则OF ⊥面ABCD ,则OF 为三棱锥F EBC -的高,

1122OF PD a ==,2

1112224EBC a S EB BC a a =?创= ∴B EFC F EBC V V --==

211113322224EBC a a S OF a a ?鬃鬃=. 略

22.

(Ⅰ)证明:

E ,

F 分别是PB ,PC 的中点

BC EF //∴ ……………2分 AD BC //

AD EF //∴

?EF 平面PAD ,?AD 平面PAD ∴EF ∥平面PAD ……………4分 (Ⅱ) 证明:

AB AP = ,E 是PB 的中点

PB AE ⊥∴ ……………6分 PA ⊥平面ABCD

BC PA ⊥∴

BC AB ⊥ 且A AB PA =

⊥∴BC 平面PAB ……………8分

?AE 平面PAB

BC AE ⊥∴

B B

C PB =

⊥∴AE 平面PBC

PC AE ⊥∴ ……………10分

23.(2) 、(3)

24.(3)、(4);

25.④

26.②④

立体几何——点线面位置关系

点线面的位置关系 (1)四个公理 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈ ? ∈且。 公理2:过不在一条直线上的三点,有且只有一个平面。 三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面 ② 经过两条相交直线,有且只有一个平面 ③ 经过两条平行直线,有且只有一个平面 它给出了确定一个平面的依据。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。 符号语言:,,P P l P l αβα β∈∈?=∈且。 公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。 符号语言://,////a l b l a b ?且。 (2)空间中直线与直线之间的位置关系 1.概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。 已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或直角)叫异面直线,a b 所成的夹角。 (易知:夹角范围090θ<≤?) 公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。 符号语言://,////a l b l a b ?且。 定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。(注意:会画两个角互补的图形) 2.位置关系:???? ??? ?相交直线:同一平面内,有且只有一个公共点; 共面直线平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点 (3)空间中直线与平面之间的位置关系

空间中点线面的位置关系练习题

1、下列有关平面的说法正确的是( ) A 一个平面长是10cm ,宽是5cm B 一个平面厚为1厘米 C 平面是无限延展的 D 一个平面一定是平行四边形 2、已知点A 和直线a 及平面α,则: ①αα???∈A a a A , ② αα∈??∈A a a A , ③αα????A a a A , ④αα???∈A a a A , 其中说法正确的个数是( ) A.0 B.1 C.2 D.3 3、下列图形不一定是平面图形的是( ) A 三角形 B 四边形 C 圆 D 梯形 4、三个平面将空间可分为互不相通的几部分( ) A.4、6、7 B.3、4、6、7 C.4、6、7、8 D.4、6、8 5、共点的三条直线可确定几个平面 ( ) A.1 B.2 C.3 D.1或3 6、正方体ABCD-A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、1B 1C 1的中点, 则,正方体的过P 、Q 、R 的截面图形是( ) A 三角形 B 四边形 C 五边形 D 六边形 7、三个平面两两相交,交线的条数可能有———————————————— 8、不共线的四点可以确定——————————————————个平面。 9、下列说法①若一条直线和一个平面有公共点,则这条直线在这个平面内②过两条相交直线的平面有且只有一个③若两个平面有三个公共点,则两个平面重合④两个平面相交有且只有一条交线⑤过不共线三点有且只有一个平面,其中正确的有——————————— 10、空间两条互相平行的直线指的是( ) A.在空间没有公共点的两条直线 B.分别在两个平面内的两条直线 C.分别在两个不同的平面内且没有公共点的两条直线 D.在同一平面内且没有公共点的两条直线 11、分别和两条异面直线都相交的两条直线一定是( ) A 异面直线 B 相交直线 C 不平行直线 D 不相交直线 12、正方体ABCD-A 1B 1C 1D 1中,与直线BD 异面且成600角的面对角线有( )条。 A 4 B 3 C 2 D 1 13、设A 、B 、C 、D 是空间四个不同的点,下列说法中不正确的是( ) A.若AC 和BD 共面,则AD 与BC 共面 B.若AC 和BD 是异面直线,则AD 与BC 是异面直线 C.若AB =AC ,DB =DC ,则AD =BC D.若AB =BC =CD =DA ,则四边形ABCD 不一定是菱形 14、空间四边形SABC 中,各边及对角线长都相等,若E 、F 分别为SC 、AB 的中点, 那么异面直线EF 与SA 所成的角为( ) A 300 B 450 C 600 D 900 15、和两条平行直线中的一条是异面直线的直线,与另一条直线的位置关系是———————————————————— 16、设c b a 、、表示直线,给出四个论断:①b a ⊥②c c ⊥③c a ⊥④c a //,以其中任意两个为条件,另外的某一个为结论,写出你认为正确的一个命题—————————————————— 17、ABCDEF 是正六边形,P 是它所在平面外一点,连接PA 、PB 、PC 、PD 、PE 、PF 后与正六边形的六条边所在直线共十二条直线中,异面直线共有——————————对。 18、点E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,且BD =AC ,则四边形EFGH 是————————————。 A Q B 1 R C B D P A 1 C 1 D 1 ? ? ? S C A B E F

立体几何之点线面之间位置关系

C B A l 3 l 2 l 1 第六讲 立体几何之点线面之间的位置关系 考试要求: 1、 熟练掌握点、线、面的概念; 2、 掌握点、线、面的位置关系,以及判定和证明过程; 3、 掌握点、线、面垂直、平行的性质 知识网络: 知识要点: 1、公理 (1)公理 1:对直线 a 和平面α,若点 A 、B ∈a , A 、B ∈α,则 (2)公理 2:若两个平面α、β有一个公共点P ,则α、β有且只有一条过点P 的公共直线 a (3)公理 3: 不共线的三点可确定一个平面 推论:① 一条直线和其外一点可确定一个平面 ②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面 (4)公理 4:平行于同一条直线的两条直线平行 等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等. 2、空间两条不重合的直线有三种位置关系:相交、平行、异面 3、异面直线所成角θ的范围是 00<θ≤900 例1、已知直线1l 、2l 和3l 两两相交,且三线不共点. 求证:直线1l 、2l 和3l 在同一平面上. 空间图形的关系 空间基本关系与公理 平行关系 垂直关系 公理 点、线、面的位置关系 判定 性质 应用 应用 性质 判定

例2、三个平面将空间分成k个部分,求k的可能取值. 分析: 可以根据三个平面的位置情况分类讨论,按条件可将三个平面位置情况分为5种: (1)三个平面相互平行 (2)两个平面相互平行且与第三个平面相交 (3)三个平面两两相交且交线重合 (4)三个平面两两相交且交线平行 (5)三个平面两两相交且交线共点 例3、已知棱长为a的正方体中,M、N分别为CD、AD中点。 求证:四边形是梯形。 例4、如图,A是平面BCD外的一点,G H分别是, ABC ACD ??的重心, 求证:// GH BD. 例5、如图,已知不共面的直线,, a b c相交于O点,, M P是直线a上的两点,,N Q分别是,b c上的一点求证:MN和PQ是异面直线 例6、已知正方体ABCD-A 1B 1 C 1 D 1 的棱长为a,则棱A 1 B 1 N M H G D C B A α c b a Q P N M O A1 C1 D1

点线面位置关系例题与练习含答案

点、线、面的位置关系 ●知识梳理 (一).平面 公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理2:不共线的三点确定一个平面. ...推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面. 公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(二)空间图形的位置关系 1.空间直线的位置关系:相交,平行,异面 1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。 1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线; ????,900??;1.4异面直线所成的角:(1)范围:(2)作异面直线所成的角:平移法. 2.直线与平面的位置关系:包含,相交,平行 3.平面与平面的位置关系:平行,相交 (三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点. ?//a?a//b??②判定定理:③性质定理:???a?//ba??//?aa???????b???b? ?2.线面斜交:①直线与 平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面????,900??内射影的夹角。范围:????//???;面面平行:①定义: 3. ②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; ?????////?,b//,b?b,a?O,aa符号表述: ????//?,a?a?. 符号表述:判定2:垂直于同一条直线的两个平面互相平行.??//???//??????a//?ab//a?));(2

点线面位置关系练习题

点线面位置关系知识点总结 【空间中的平行问题】 (1)直线与平面平行的判定及其性质 ①线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 (线线平行→线面平行) ②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(线面平行→线线平行) (2)平面与平面平行的判定及其性质 两个平面平行的判定定理: ①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行) ②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行) ③垂直于同一条直线的两个平面平行 两个平面平行的性质定理: ①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行) ②如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行) 【空间中的垂直问题】 (1)线线、面面、线面垂直的定义 ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。 ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。 ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。 (2)垂直关系的判定和性质定理 ①线面垂直判定定理和性质定理 判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 ②面面垂直的判定定理和性质定理 判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。 【空间角问题】 (1)直线与直线所成的角 ①两平行直线所成的角:规定为 ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。 ③两条异面直线所成的角:过空间任意一点O ,分别作与两条异面直线a ,b 平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。 (2)直线和平面所成的角 ①平面的平行线与平面所成的角:规定为 0 ,a b ''0

点线面之间的位置关系基础练习练习题复习.doc

精品 文 档 点、线、面之间的位置关系及线面平行应用练习 1、 平面L =?βα,点βαα∈∈∈C B A ,,,且L C ∈,又R L AB =?,过 A 、 B 、 C 三点确定的平面记作γ,则γβ?是( ) A .直线AC B .直线B C C .直线CR D .以上都不对 2、空间不共线的四点,可以确定平面的个数是( ) A .0 B .1 C .1或4 D .无法确定 3、在三角形、四边形、梯形和圆中,一定是平面图形的有 个 4、正方体1111D C B A ABCD -中,P 、Q 分别为11,CC AA 的中点,则四边形PBQ D 1是( ) A .正方形 B .菱形 C .矩形 D .空间四边形 5、在空间四边形ABCD 中,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若AC=BD , 且BD AC ⊥,则四边形EFGH 为 6、下列命题正确的是( ) A . 若βα??b a ,,则直线b a ,为异面直线 B . 若βα??b a ,,则直线b a ,为异面直线 C . 若?=?b a ,则直线b a ,为异面直线 D . 不同在任何一个平面内的两条直线叫异面直线 7、在空间中:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有 公共点,则这两条直线是异面直线,以上两个命题中为真命题的是 8、过直线L 外两点作与直线L 平行的平面,可以作( ) A .1个 B .1个或无数个 C .0个或无数个 D .0个、1个或无数个 9、b a //,且a 与平面α相交,那么直线b 与平面α的位置关系是( ) A .必相交 B .有可能平行 C .相交或平行 D .相交或在平面内 10、直线与平面平行的条件是这条直线与平面内的( ) A .一条直线不相交 B .两条直线不相交 C .任意一条直线不相交 D .无数条直线不相交 11、如果两直线b a //,且//a 平面α,则b 与平面α的位置关系是( ) A .相交 B .α//b C .α?b D .α//b 或α?b 12、已知直线a 与直线b 垂直,a 平行于平面α,则b 与平面α的位置关系是( ) A .α//b B .α?b C .b 与平面α相交 D .以上都有可能 13、若直线a 与直线b 是异面直线,且//a 平面α,则b 与平面α的位置关系是( ) A .α//b B .b 与平面α相交 C .α?b D .不能确定 14、已知//a 平面α,直线α?b ,则直线a 与直线b 的关系是( ) A .相交 B .平行 C .异面 D .平行或异面

(精编)点线面之间的位置关系测试题)

点、直线、平面之间的位置关系 一、选择题 1. 若是平面外一点,则下列命题正确的是( ) ( A )过只能作一条直线与平面相交 ( B )过可作无数条直线与平面 垂直 (C )过只能作一条直线与平面平行 (D )过可作无数条直线与平面平行 2.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题 ① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题... 的序号是 ( ) A.①②③ B.①②④ C.②③④ D.①③④ 3.设正四棱锥S —ABCD 的侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成的角是 ( ) A .30° B .45° C .60° D .90° 4.如图所示,在正方形ABCD 中, E 、 F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF 中,必有 ( ) 5.下列说法正确的是( ) A .若直线平行于平面内的无数条直线,则 B .若直线在平面外,则 C .若直线,,则 D .若直线,,则直线就平行于平面内的无数条直线 6.在下列条件中,可判断平面与平面平行的是( ) A .、都垂直于平面 B .内存在不共线的三点到平面的距离相等 C .、是内两条直线,且, D .、是两条异面直线,且,,, 7.已知直线a ∥平面α,直线b ?α,则a 与b 的关系为( ) A .相交 B .平行 C .异面 D .平行或异面1.设M 表示平面,a 、b 表示直线,给出下列四个命题: ①M b M a b a ⊥????⊥// ②b a M b M a //????⊥⊥ ③????⊥⊥b a M a b ∥M ④????⊥b a M a //b ⊥M . 其中正确的命题是 ( ) A.①② B.①②③ C.②③④ D.①②④ 8.把正方形ABCD 沿对角线AC 折起,当点D 到平面ABC 的距离最大时, 直线BD 和平面ABC 所成角的大小为 ( ) A . 90 B . 60 C . 45 D . 30 第4题图

立体几何点线面位置关系习题精选

同步练习 第I 卷(选择题) 1.已知,m n 是两条不同直线,,,αβγ是三个不同平面,则下列命题正确的是( ). A 、若m ∥,n α∥α,则m ∥n B 、若,αγβγ⊥⊥,则α∥β C 、若n ∥,n α∥β,则α∥β D 、若,m n αα⊥⊥,则m ∥n 2.已知,m n 是两条不同的直线,,,αβγ是三个不同的平面, 则下列命题中正确的是 ( ) A .//,//m n αα,则//m n B .,m m αβ⊥⊥,则//αβ C .//,//m n m α,则//n α D .,αγβγ⊥⊥,则//αβ 3.已知m 、n 为两条不同的直线,α、β为两个不同的平面,下列命题中正确的是( ) A .若α∥β,m ∥α,则m ∥β B .若α⊥β,m ⊥β,则m ⊥α C .若m ⊥α,m ⊥β,则α∥β D .若m ∥α,m ⊥n ,则n ⊥α 4.已知l ,m 是两条不同的直线,α是一个平面, 则下列命题正确的是( ) A .若l α⊥,m α?,则l m ⊥ B .若l m ⊥,m α?,则l α⊥ C .若l ∥α,m α?,则l ∥m D .若l ∥α,m ∥α,则l ∥m 5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l α⊥,l m //,则m α⊥ B .若l m ⊥,m α?,则l α⊥ C .若l α//,m α?,则l m // D .若l α//,m α//,则l m // 6.设b a ,表示直线,γβα,,表示不同的平面,则下列命题中正确的是( ) A .若α⊥a 且b a ⊥,则α//b B .若αγ⊥且βγ⊥,则βα// C .若α//a 且β//a ,则βα// D .若αγ//且βγ//,则βα// 7.关于空间两条直线a 、b 和平面α,下列命题正确的是( ) A .若//a b ,b α?,则//a α B .若//a α,b α?,则//a b C .若//a α,//b α,则//a b D .若a α⊥,b α⊥,则//a b 8.给定空间中的直线l 及平面,条件“直线l 与平面 内无数条直线都垂直”是“直线l 与平面 垂直”的( )条件 A .充要 B .充分非必要 C .必要非充分 D .既非充分又非必要 9.设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中为真命题的个数( ) ①若m α⊥,//m n ,//n β,则αβ⊥ ②若αβ⊥,m α?,m β⊥,则//m α ③若m β⊥,m α?,则αβ⊥ ④若αβ⊥,m α?,n β?,则m n ⊥ A .0个 B .1个 C .2个 D .3个

点线面位置关系(知识点加典型例题)

2.1空间中点、直线、平面之间的位置关系 2.1空间点、直线、平面之间的位置关系 1、教学重点和难点 重点:空间直线、平面的位置关系。 难点:三种语言(文字语言、图形语言、符号语言)的转换 2、三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α ,A ∈α ,B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 推论:① 一条直线和其外一点可确定一个平面 ②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该 点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 (4)公理 4:平行于同一条直线的两条直线平行 等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么L A · α C · B · A · α P · α L β

2、空间两条不重合的直线有三种位置关系:相交、平行、异面 3、异面直线所成角θ的范围是 00<θ≤900 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0,); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 共面直线 =>a ∥c 2

专题08 立体几何第二十讲 空间点线面的位置关系(原卷版)

专题08立体几何 第二十讲空间点线面的位置关系 2019年 1.(2019全国III文8)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD, M是线段ED的中点,则 A.BM=EN,且直线BM、EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM、EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 2.(2019全国1文19)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点. (1)证明:MN∥平C1DE; (2)求点C到平面C1DE的距离. 3.(2019全国II文7)设α,β为两个平面,则α∥β的充要条件是 A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面

4.(2019北京文13)已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α. 以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 5.(2019江苏16)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E . 6.(2019全国II 文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1. (1)证明:BE ⊥平面EB 1C 1; (2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.

点线面位置关系例题与练习(含答案)

点、线、面的位置关系 ● 知识梳理 (一).平面 公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理2:不共线... 的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面. 公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系 1.空间直线的位置关系:相交,平行,异面 1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。 1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。 1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线; 1.4异面直线所成的角:(1)范围:(]0,90θ∈??;(2)作异面直线所成的角:平移法. 2.直线与平面的位置关系: 包含,相交,平行 3.平面与平面的位置关系:平行,相交 (三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点. ②判定定理:////a b a a b αα α???????? ③性质定理:////a a a b b αβαβ??????=?

2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。范围:[]0,90θ∈?? 3.面面平行:①定义://αβαβ=??; ②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b a b O a b ααααβ?=? 判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥?. ③面面平行的性质:(1)////a a αββα????? ; (2)////a a b b αβαγβγ? ? =???=? (四)垂直关系(包括线面垂直,面面垂直) 1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 符号表述:若任意,a α?都有l a ⊥,且l α?,则l α⊥. ②判定:,a b a b O l l l a l b ααα?? ?=? ???⊥??⊥? ⊥?? ③性质:(1) ,l a l a αα⊥??⊥; (2),//a b a b αα⊥⊥?; 3.2面面斜交①二面角:(1)定义:【如图】,OB l OA l AOB l αβ⊥⊥?∠-是二面角-的平面角 范围:[0,180]AOB ∠∈?? ②作二面角的平面角的方法:(1)定义法;(2)三垂线法(常用);(3)垂面法. 3.3面面垂直(1)定义:若二面角l αβ--的平面角为90?,则αβ⊥; (2)判定定理: a a ααββ?? ?⊥?⊥?

立体几何——点线面的位置关系

点线面的位置关系 (1)四个公理 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈ ? ∈且。 公理2:过不在一条直线上的三点,有且只有一个平面。 三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面 ② 经过两条相交直线,有且只有一个平面 ③ 经过两条平行直线,有且只有一个平面 它给出了确定一个平面的依据。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。 符号语言:,,P P l P l αβα β∈∈?=∈且。 公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。 符号语言://,////a l b l a b ?且。 (2)空间中直线与直线之间的位置关系 1.概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。 已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把 a '与 b '所成的角(或直角)叫异面直线,a b 所成的夹角。(易知:夹角范围 090θ<≤?) 公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。 符号语言://,////a l b l a b ?且。 定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。(注意:会画两个角互补的图形) 2.位置关系:???? ??? ?相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点 (3)空间中直线与平面之间的位置关系

点线面之间的位置关系的知识点汇总

点线面之间的位置关系的知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

高中空间点线面之间位置关系知识点总结 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥b 。 2 公理4:平行于 c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; D C B A α L A · α C · B · A · α P · α L β 共面=>a ∥2

空间立体几何点线面判断与证明

常州知典教育一对一教案 学生: 年级: 学科:数学授课时间: 月日授课老师:赵鹏飞课题空间立体几何点线面判断与证明 教学目标(通过本节课学生需掌握的知识点及达到程度) 掌握空间立体几何中的点线面之间的关系,平行,相交,垂直,异面,重合等等,以及证明面面垂直,面面平行等方法与步骤,了解关于几何体中一些基本的计算与比值。 本节课考点 及单元测试 中所占分值 比例 15% 学生薄弱点,需重点讲解内容证明时对判断的方法出现错误思维,导致证明失分,使用性质时没有给出应有的条件导致扣分,计算的失误使得自己失分。 课前检查上次作业完成情况: 优□良□中□差□建议: 教学过程﹃讲义部分﹄ 考向1空间中点、线、面位置关系的判断 1.平面的基本性质的应用 (1)公理1:证明“点在面内”或“线在面内”. (2)公理2及三个推论:证明两个平面重合,用来确定一个平面或证明“点线共面”. (3)公理3:确定两个面的交线,尤其就是画截面图或补体时用到,证明“三点共线”“三线共点”. 要证明“点共线”可将线瞧作两个平面的交线,只要证明这些点都就是这两个平面的公共点,根据公理3可知这些点在交线上,因此共线. 2.空间中点、线、面之间的位置关系 直线与直线直线与平面平面与平面平行关系

相交关系 独有关系 (1)已知m,n表示两条不同直线,α表示平面,下列说法正确的就是() A.若m∥α,n∥α,则m∥n B.若m⊥α,n?α,则m⊥n C.若m⊥α,m⊥n,则n∥α D.若m∥α,m⊥n,则n⊥α (2)下列命题正确的就是() A.若两条直线与同一个平面所成的角相等,则这两条直线平行 B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 D.若两个平面都垂直于第三个平面,则这两个平面平行 【解析】(1)对于选项A,m与n还可以相交或异面; 对于选项C,还可以就是n?α; 对于选项D,还可以就是n∥α或n?α或n与α相交. (2)对于命题A,这两条直线可以相交或为异面直线, ∴A错误;对于命题B,这两个平面可以相交,∴B错误;对于命题D,这两个平面还可能相交,∴D错误;而由线面平行的性质定理可证C正确.故选C、【答案】(1)B(2)C 【点拨】解题(1)根据空间线面、面面、线线平行的判定与性质、垂直的判定与性质逐个进行判断,注意空间位置关系的各种可能情况.解题(2)时要注意充分利用正方体(或长方体)模型辅助空间想象. 解决空间位置关系问题的方法 (1)解决空间中点、线、面位置关系的问题,首先要明确空间位置关系的定义,然后通过转化的方法,把空间中位置关系的问题转化为平面问题解决.

点线面位置关系(知识点加典型例题)

2.1空间中点、直线、平面之间的位置关系 2.1空间点、直线、平面之间的位置关系 1、教学重点和难点 重点:空间直线、平面的位置关系。 难点:三种语言(文字语言、图形语言、符号语言)的转换 2、三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α ,A∈α ,B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 推论:① 一条直线和其外一点可确定一个平面 ②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点 的公共直线。 符号表示为:P∈α∩β =>α∩β=L,且P ∈L 公理3作用:判定两个平面是否相交的依据 (4)公理 4:平行于同一条直线的两条直线平行 等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等. 2、空间两条不重合的直线有三种位置关系:相交、平行、异面 L A · α C · B · A · α P · α L β

3、异面直线所成角θ的范围是 00 <θ≤900 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b的相互位置来确定,与O的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0,); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 共面直线 =>a ∥c 2

【练习】高中数学空间中点线面的位置关系练习题

空间中点线面的位置关系练习题 1、下列有关平面的说法正确的是( ) A 一个平面长是10cm ,宽是5cm B 一个平面厚为1厘米 C 平面是无限延展的 D 一个平面一定是平行四边形 2、已知点A 和直线a 及平面α,则: ①αα???∈A a a A , ② αα∈??∈A a a A , ③αα????A a a A , ④αα???∈A a a A , 其中说法正确的个数是( ) A.0 B.1 C.2 D.3 3、下列图形不一定是平面图形的是( ) A 三角形 B 四边形 C 圆 D 梯形 4、三个平面将空间可分为互不相通的几部分( ) A.4、6、7 B.3、4、6、7 C.4、6、7、8 D.4、6、8 5、共点的三条直线可确定几个平面 ( ) A.1 B.2 C.3 D.1或3 6、正方体ABCD-A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、 AD 、1B 1C 1的中点,则,正方体的过P 、Q 、R 的截面图形是 ( ) A 三角形 B 四边形 C 五边形 D 六边形 7、三个平面两两相交,交线的条数可能有———————————————— 8、不共线的四点可以确定——————————————————个平面。 9、下列说法①若一条直线和一个平面有公共点,则这条直线在这个平面内②过两条相交直线A Q B 1 R C B D P A 1 C 1 D 1 ? ? ?

的平面有且只有一个③若两个平面有三个公共点,则两个平面重合④两个平面相交有且只有一条交线⑤过不共线三点有且只有一个平面,其中正确的有——————————— 10、空间两条互相平行的直线指的是( ) A.在空间没有公共点的两条直线 B.分别在两个平面内的两条直线 C.分别在两个不同的平面内且没有公共点的两条直线 D.在同一平面内且没有公共点的两条直线 11、分别和两条异面直线都相交的两条直线一定是( ) A 异面直线 B 相交直线 C 不平行直线 D 不相交直线 12、正方体ABCD-A 1B 1C 1D 1中,与直线BD 异面且成600角的面对角线有( )条。 A 4 B 3 C 2 D 1 13、设A 、B 、C 、D 是空间四个不同的点,下列说法中不正确的是( ) A.若AC 和BD 共面,则AD 与BC 共面 B.若AC 和BD 是异面直线,则AD 与BC 是异面直线 C.若AB =AC ,DB =DC ,则AD =BC D.若AB =BC =CD =DA ,则四边形ABCD 不一定是菱形 14、空间四边形SABC 中,各边及对角线长都相等,若E 、 F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角 为( ) A 300 B 450 C 600 D 900 15、和两条平行直线中的一条是异面直线的直线,与另一条直线的位置关系是———————————————————— 16、设c b a 、、表示直线,给出四个论断:①b a ⊥②c c ⊥③c a ⊥④c a //,以其中任意两个为条件,另外的某一个为结论,写出你认为正确的一个命题—————————————————— S C A B E F

点线面关系练习题(有答案)

//a b 点线面位置关系总复习 知识梳理 一、直线与平面平行 1.判定方法 (1)定义法:直线与平面无公共点。 (2)判定定理: (3)其他方法://a αββ ? 2.性质定理://a a b αβαβ??= 二、平面与平面平行 1.判定方法 (1)定义法:两平面无公共点。 (2)判定定理:////a b a b a b P β β α α ???= //αβ (3)其他方法:a a αβ⊥⊥ //αβ; ////a γβγ //αβ 2.性质定理://a b αβ γαγβ?=?= 三、直线与平面垂直 (1)定义:如果一条直线与一个平面的所有直线都垂直,则这条直线和这个平面垂直。 (2)判定方法 ① 用定义. //a b

//a b ② 判定定理:a b a c b c A b c αα⊥⊥?=?? a α⊥ ③ 推论://a a b α⊥ b α⊥ (3)性质 ① a b αα⊥? a b ⊥ ②a b αα⊥⊥ 四、平面与平面垂直 (1)定义:两个平面相交,如果它们所成的二面角是直线二面角,就说这两个平面互相垂直。 (2)判定定理 a a αβ ?⊥ αβ⊥ (3)性质 ①性质定理l a a l αβ αβα ⊥?=?⊥ αβ⊥ ② l P PA A αβ αβα β⊥?=∈⊥垂足为 A l ∈ 3 l P PA αβ αβα β ⊥?=∈⊥ PA α? “转化思想” 面面平行 线面平行 线线平行 面面垂直 线面垂直 线线垂直

●求二面角 1.找出垂直于棱的平面与二面角的两个面相交的两条交线,它们所成的角就是二面角的平面角. 2.在二面角的棱上任取一点O,在两半平面分别作射线OA⊥l,OB⊥l,则∠AOB叫做二面角的平面角 例1.如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC,且分别交AC于D,交SC于E,又SA=AB,SB=BC,求以BD为棱,以BDE和BDC为面的二面角的度数。 ●求线面夹角 定义:斜线和它在平面的射影的夹角叫做斜线和平面所成的角(或斜线和平面的夹角) 方法:作直线上任意一点到面的垂线,与线面交点相连,利用直角三角形有关知识求得三角形其中一角就是该线与平面的夹角。 例1:在棱长都为1的正三棱锥S-ABC中,侧棱SA与底面ABC所成的角是________. 例2:在正方体ABCD-A1B1C1D1中, ①BC1与平面AB1所成的角的大小是___________; ②BD1与平面AB1所成的角的大小是___________; ③CC1与平面BC1D所成的角的大小是___________; ④BC1与平面A1BCD1所成的角的大小是___________; ⑤BD1与平面BC1D所成的角的大小是___________; 例3:已知空间一点O出发的三条射线OA、OB、OC两两夹角为60°,试求OA与平面BOC所成的角的大小.

立体几何的点线面的关系

立体几何的点线面的关系 [键入文字] 课题教学目标立体几何的点线面的关系证明题目的方法教学内容立体几何热身训练:1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c 的位置关系是. 2.给出下列命题:①若平面?内的直线a与平面?内的直线b为异面直线,直线c是?与?的交线,那么直线c至多与a、b中的一条相交;②若直线a与b为异面直线,直线b与c平行,则直线a与c异面;③一定存在平面?和异面直线a、b同时平行. 其中正确命题的序号是. 3.已知a,b 是异面直线,直线c∥直线a,则c与b的位置关系. ①一定是异面直线③不可能是平行直线②一定是相交直线④不可能是相交直线 4.若P是两条异面直线l、m外的任意一点,则说法错误的有. ①过点P有且仅有一条直

线与l、m都平行②过点P有且仅有一条直线与l、m都垂直③过点P有且仅有一条直线与l、m都相交④过点P有且仅有一条直线与l、m都异面 5.在正方体ABCD—A1B1C1D1中,E、F分别为棱AA1、CC1的中点,则在空间中与三条直线A1D1、EF、CD都相交的直线有条. 6.正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为. 7.如图所示,在三棱锥C—ABD 中,E、F分别是AC和BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角是. 8.已知a、b为不垂直的异面直线,?是一个平面,则a、b在?上的射影可能是①两条平行直线;③同一条直线;②两条互相垂直的直线; ④一条直线及其外一点. 则在上面的结论中,正确结论的编号是. 9.下列命题中,正确命题的个数是. ①若直线l上有无数个点不在平面?内,则l∥?;②若直线l与平面?平行,则l与平面?内的

相关文档
相关文档 最新文档