文档库 最新最全的文档下载
当前位置:文档库 › 硅酸锆粉体的合成研究

硅酸锆粉体的合成研究

硅酸锆粉体的合成研究
硅酸锆粉体的合成研究

纳米氧化锆粉体的合成与表征

纳米氧化锆粉体的合成与表征 李杰119024189 无111 1 引言 二氧化锆是制备特种陶瓷最重要的原料之一,由于其具有优良的机械、热学、电学、光学性质而在高温结构材料、高温光学元件、氧敏元件、燃料电池等方面有着广泛的应用,它是2l世纪最有发展前景的功能材料之一。而控制氧化锆前驱粒子的颗粒尺寸对制备高性能氧化锆陶瓷具有重要意义。 本研究采用水/环己烷/辛基苯基聚氧乙烯醚(Triton X-100)/正己醇四元油包水体系,通过反相微乳液法制备了纳米ZrO2粉体,用TEM,XRD等对所制备的纳米粉体进行了表征,研究了煅烧温度、pH值、陈化时间对ZrO2纳米粒子结构与性能的影响。结果表明,以单斜相为主的ZrO2纳米粉体,其晶粒尺寸可控制在20 nm左右;随着煅烧温度的提高,ZrO2的结晶程度逐渐提高;随着pH值的提高,少量四方相ZrO2全部转化为单斜相;随着陈化时间的增加,ZrO2颗粒尺寸变大。 2 结构性质 自然界的氧化锆矿物原料,主要有斜锆石和锆英石。纯氧化锆的分子量为123.22,理论密度是5.89g/cm3,熔点为2715℃。通常含有少量的氧化铪,难以分离,但是对氧化锆的性能没有明显的影响。氧化锆有三种晶体形态:单斜、四方、立方晶相。常温下氧化锆只以单斜相出现,加热到1100℃左右转变为四方相,加热到更高温度会转化为立方相。由于在单斜相向四方相转变的时候会产生较大的体积变化,冷却的时候又会向相反的方向发生较大的体积变化,容易造成产品的开裂,限制了纯氧化锆在高温领域的应用。但是添加稳定剂以后,四方相可以在常温下稳定,因此在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。 3 用途 3.1 ZrO2在特种陶瓷中的应用 由于高纯ZrO2具有优良的物理化学性质,当其与某些物质复合时,在不同条件下又具有对电、光、声、气和温度等的敏感特性,使其广泛用于电子陶瓷、功能陶瓷和结构陶瓷等高新技术领域。 3.1.1 电子陶瓷 ZrO2在电子陶瓷中的应用主要有压电元件(如发火元件、助听器、拾音器等),滤波器(用于电视机、收录机、共电式无线电收发机等),超声波振荡器(用于潜艇音纳、鱼群探测器和测深仪等),蜂鸣器(用于电子计算机输入功率鉴定信号机、曲调桌式电子计算机、数字显示手表及闹钟等)及高温导体等。

粉末冶金粉体常见的制备方法及综述1

粉末冶金粉体常见的制备方法及综述Powder metallurgy powder and preparation method of common 摘要:粉末冶金方法起源于公元前三千多年。制造铁的第一个方法实质上采用的就是粉末冶金方法。粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。目前,我国粉末冶金行业整体技术水平低下、工艺装备落后,与国外先进技术水平相比存在较大差距。本文介绍了粉末冶金粉体的制备方法,包括物理方法和化学方法,物理法包括机械粉碎法,化学法包括气相沉积法、雾化法和电解法,气相沉积法、雾化法和电解法目前在工业上已经得到了广泛的应用。 关键词:粉末冶金;粉体;气相沉积法,雾化法,电解法Abstract: the method of powder metallurgy originated in three thousand years . Manufacture of iron for the first method is essentially by powder metallurgy method. Powder metallurgy products, a wide range of applications, from the ordinary machinery manufacturing of precision instrument; from the hardware to the large machinery; from electronics to motor manufacturing; from the civilian industry to the military industry; from the general technology to sophisticated high technology, can see the figure of powder metallurgy

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

保险粉工艺介绍

保险粉工艺简介 一、保险粉知识 二、总方框图 三、合成工艺(1) 四、干燥工艺(2) 五、中和工艺(3) 六、尾气工艺(4) 七、精馏工艺(5) 八、残液工艺(6) 九、冷冻工艺(7) 一、保险粉知识 1、产品名称 化学名:低亚硫酸钠、连二亚硫酸钠,因能使染好的布颜色褪去而使布能重新染色,故而俗称保险粉。 分子式:Na2S2O4,分子量174.1。 结构式:Na-O-S-S-O-Na ‖‖ O O 2、保险粉的主要物理参数 (1)存在状态:保险粉是低亚硫酸的钠盐,一般有二种存在状态:一是带有结晶水的二水盐Na2S2O4·2H2O,二是不带无结晶水保险粉Na2S2O4,二水盐升温脱水可以转化成无水盐。 (2)a.外观:流动性较强的白色结晶粉末 b.比重:真实比重为2.3~2.4g/cm3。假比重则因生产方法不同、粒度不一样有所区别,锌粉法一般为1.1~1.25, 粒度为150~200μ;甲酸钠法一般为0.85~1.1g/cm3,?粒度则为85~115μ。 c.溶解度:保险粉可溶于水,但不溶于甲醇。溶于水时会出现部分分解现象,其在水中的溶解度随温度升高而增大,但溶液中含有食盐、烧碱、醇等时,溶解度会显著下降。 3、化学性质 a.保险粉具有很强的还原性,常被氧化成亚硫酸钠和硫酸钠。 b.保险粉本身很不稳定,在一定条件下可导致分解: ?在空气中迅速氧化,反应式如下: 2Na2S2O4+2O2→2Na2SO4+?2SO2↑ ?在水溶液中有如下反应: 2Na2S2O4+H2O=Na2S2O3+2NaHSO3 ?而在潮湿的空气中可导致分解,其反应式为: 2Na2S2O4+O2+2H2O=4NaHSO3 ?在温度大于90℃时迅速分解: 2Na2S2O4=Na2S2O3+Na2S2O5 而温度高于250℃时则可着火自燃。 ?酸性介质中分解迅速:

燃烧法直接合成氧化铁纳米粉体

齐鲁工业大学 外文翻译 院系名称:材料科学与工程学生姓名:乔宁 专业班级:材化10-2 学号:201007021047 指导老师:夏国栋

燃烧法直接合成氧化铁纳米粉体:反应机理和性能 Kishori 德什潘德,亚历山大Mukasyan ,和Arvind 尔马 化学与生物分子工程系,分子工程材料中心、圣母大学、圣玛丽,印第安纳州46556,与化学工程学院、普渡大学、西拉斐特,印第安纳州47907 2100 接收于2004年3月23日 不同的氧化物溶液燃烧合成涉及自我持续的反应(如,金属硝酸盐) 的氧化剂和燃料(如甘氨酸、肼)之间。为三个主要的铁氧化阶段,即α -和γ-Fe2O3和Fe3O4,使用的燃烧方法和简单的前体,如铁硝酸盐和草酸盐,以及不同燃料的组合合成反应机制进行调查。第一次在文献中,基于所获得的基本知识、与井结晶结构和表面地区范围50?175 m2/g 的上述粉末生产同时避免额外的煅烧过程同时使用一种方法。它还显示利用复杂的燃料和氧化剂复杂是有吸引力的方法来控制产品组成和特性。 介绍 铁氧化物是许多科学和工业应用中最常用的金属氧化物。例如,R-Fe2O3(赤铁矿)被广泛用作颜料,以及用于醇的催化剂氧化来制备醛和酮,磁铁矿(Fe3O4)是在各种反应中的催化剂如合成氨,同时,γ-Fe2O3(磁赤铁矿)备受关注的多种用途,包括作为磁记录材料,在生物医学中的应用。基于上述需求,所需的相组成和高比表面积的粉末是必需的。目前,有氧化铁纳米粒子的合成的几种方法,包括热分解,热解,醇热,溶胶-凝胶法,水热过程(参见参考4-10)。然而,以前的方法没有报道过可以用于这些氧化物的直接合成法,在纯结晶状态,由一个单一的路线。 水(液)燃烧合成(CS)不同的氧化物,包括铁氧体,钙钛矿,和氧化锆(参见参考11-15)是个有吸引力的技术。它涉及到一个氧化剂(例如,金属硝酸盐)和燃料(例如,甘氨酸,肼)之间自我维持的反应。首先,反应物溶解于水,得到的溶液充分混合,达到反应介质的基本分子水平的均匀化。被加热到水的沸点和蒸发后,该溶液可以点燃或自燃的温度迅速升高(可达104°C/S)值为1500°C.同时为高,这自持反应初始混合物通常细结晶良好的粉体所需的组合物。铁氧化物此前一直燃烧法合成的使用相对罕见的和复杂的含有前体如铁 (n2h3coo)2(N2H4)和n2h5fe (n2h3-coo)3 H2O。上述金属肼羧酸盐热分解产生的主要γ-Fe2O3的平均粒径小于25纳米,具体的比表面积范围是40-75 m2/g 。 在目前的工作中,通过燃烧法合成三大氧化铁物相,比如R- 和γ-Fe2O3和 Fe3O4,是使用一个简单的结合体如硝酸铁和草酸以及不同的燃料的研究。基于所获得的知识和优化的合成参数(大气,燃料的氧化剂比,φ,稀释系统,等等),一个新的上述单相氧化物粉末一步范围在50-175平方米/ g的结晶结构和表面面积的合成开始发展。 如有疑问请联系:电话:(765)494—4075。传真:(765)494-0805。电子邮件:avarma@https://www.wendangku.net/doc/5a13135308.html,。 1) Cornell, R. M.; Schwertmann, U. The Iron Oxides. Structure, Properties, Reactions and Uses; VCH: Weinheim, 1996. (2) Zboril, R.; Mashlan, M.; Petridis, D. Chem. Mater. 2002, 14, 969.

保险粉工艺及设备

1.1.4建设项目的工艺流程和主要装置(设备)和设施的分布及其上下游生产装置的关系 本项目生产工艺与设立审查阶段一致。 1.1.4.1工艺流程简述 1、空分工艺 1)、工艺过程简介 本空分设备采用分子筛预吸附净化、气体轴承透平膨胀机制取装置所需的绝大部分冷量。整套机组包括:空气压缩系统、空气预冷系统、分子筛纯化系统、分馏塔系统、压氮系统、液氮储存输送系统、仪控系统、电控系统等。 (1)空气压缩 空气首先进入空气过滤器,在空气吸入过滤器中除去灰尘和其它颗粒杂质然后进入空压机,经过多级压缩后进入空气预冷系统,压缩机级间的热量被中间冷却器中的冷却水带走。空气经末级冷却器冷却后空气出压缩机温度约40℃。 (2)空气的冷却和纯化 空气出空压机后进入空气预冷机组,空气被空气预冷机组冷却到5~10℃,同时空气中的部分水分被分离出来。空气被冷却后进入到分子筛吸附器。 (3)分子筛纯化系统由两只分子筛吸附器组成,利用分子筛对水分及CO2和高吸附性的特点吸附空气中的水份、二氧化碳和一些碳氢化合物。两只分子筛吸附器一只工作,另一只被加热的污氮再生。

(4)空气出吸附器后,直接进入冷箱主换热器冷却后进入下塔。另外在主换热器中部抽取部分空气进入膨胀机,膨胀前先经过主换热器并被返流气冷却到膨胀前温度,经膨胀机膨胀后进入上塔参与精馏。 (5)下塔 清洁并被返流气体冷却的空气进入下塔后开始进行分离,进入下塔底部的空气穿过塔板并与塔板上的回流液进行热质交换,这样的结果是,在下塔上部得到纯氮气,在塔釜得到富氧液空。 下塔顶部绝大部分纯氮进入冷凝蒸发器的冷凝侧,在那里氮气通过上塔底部的液氧蒸发所放出热量,自身得到冷凝并做为下塔回流液。 还有一部分液氮经过过冷器的过冷被送往上塔顶部,作上塔顶部的回流液。在此处抽取少部分液氮进行储存。 从下塔的塔釜抽出的富氧液空经过过冷器的过冷,节流后送入上塔做回流液。 (6)上塔(规整填料塔) 氧产品最终在上塔精馏产生。 高纯度的氧气从上塔底部抽出经过冷器、主换热器中复热后出装置做为产品气送出。 纯氮气从上塔顶部抽出,首先在过冷器中被纯液氮和富氧液空复热,然后进入主换热器中复热后出装置。做为产品气。 污氮气从上塔上部抽出,首先在过冷器中被纯液氮和富氧液空复

化学法制备粉体材料及表征

化学法制备粉体材料及表征 此课程是材料学院设置的综合实验课。通过本实验课的学习与实践,使学生了解和掌握化学法制备(氧化物、碳化物、氮化物、金属和合金)粉体的基本原理、基本方法和相应的工艺流程,并掌握粉体材料常规的表征手段;培养学生的实际动手操作能力,独立思考问题、解决问题的能力;同时为学生提供一个科研实践的平台,为其毕业设计和将来走上工作岗位做好准备。 一、实验目的 1.掌握化学法制备粉体材料的原理并了解各种具体的制备方法。 2.熟练掌握固相热分解法和均匀沉淀法制备粉体材料的原理与工艺流程。 3.掌握粉体材料的各种表征方法。 4.对粉体的粒度分布与物相组成进行熟练的测试与分析 培养学生的实际动手操作能力和自主设计实验的能力,为毕业论文设计作好理论基础和相应的实验准备。 二、实验要求 要求学每个学生能独立查阅文献资料,小组讨论,确定实验方案,并将实验方案提前一天给任课老师审阅;所有的实验必须在我们已有的设备条件和时间条件下完成;实验方案中对每一个工艺必须给出具体的工艺参数,如反应物浓度、温度、反应时间等。该实验更要求学生发挥自己的主观能动性,自主设计,自主完成实验全过程。实验完成后认真分析实验结果,撰写实验报告。 三、实验所需仪器设备 本实验所需的主要仪器设备有:电子天平,坩埚,烧杯,角匙,恒温水浴锅,电动搅拌器,高温炉,激光粒度分布仪,X射线衍射仪等。 四、实验原理 粉体的化学合成: 从物质的原子、离子或分子入手,经过化学反应形成晶核以产生晶粒,并使晶粒在控制之下长大到其尺寸达到要求的大小。按照物质的原始状态分类,可将粉体的化学合成方法分为气相法、液相法和固相法。 化学合成粉体的特点: 优点:能得到极微细的颗粒,且颗粒尺寸比较均匀,颗粒的纯度高;

高聚物合成工艺课后题答案

1生产单体的原料路线有哪几种?试比较它们的优缺点? 答:①石油路线:目前最主要的单体原料路线②煤炭路线:乙炔,电石生产需大量电能,经济上不合理,由于我国历史原因和资源情况,乙炔仍是高分子合成的工业的重要原料。③可再生资源路线,原料不充足,成本高,但充分利用自然资源,变废为宝的基础上,小量生产某些单体出发点还是可取的。 2、如何有C4馏分制取1,3丁二烯? ①用C4馏分分离出来的丁烯进行氧化脱氢制取②将裂解气分离得到的C4馏分用PM下进行萃取蒸馏抽提制取。 第三章本体聚合 1、简述高压聚乙烯工艺流程 答:精制的乙烯进入一次压缩(一级);来自低压分离的循环乙烯与相对分子量调节剂混合后,进入一次压缩机入口,压缩至250MPa,然后与来自高压分离器循环乙烯混合后进行二级压缩;冷却单体进入聚合反应器,引发剂溶液用高压泵送入进料口或直接进入气相聚合;然后高压分离、低压分离挤出切粒,未反应单体分离循环使用。 2、高压PE有哪两种主要工艺路线?各有什么特点? 管式反应器进行、反应釜中进行两条主要工艺路线 管式反应器反应中:物料在管内呈柱塞状流动,无返混现象,反应温度沿反应管长度而变化,得高压聚乙烯分子量分布较宽,耐高压。无搅拌系统,长链分枝少。生产能力取决于反应管参数。 釜式反应器:物料可充分混合,反应温度均匀,还可分区操作。耐高压不如管式,反应能力可在较大范围内变化,反应易控制。PE分布窄,长链分枝多。3、高压PE合成反应条件比较苛刻,具体条件如何?为什么采用这样的工艺条件? 反应温度设在150℃~330℃,原因有二:①乙烯无任何取代基,分子结构对称,纯乙烯在350℃以上爆炸性分解,从安全角度,避免因某些特殊不可预知的因素造成温度上升,引发事故,故使T<330℃②PE熔点为130℃,当T<130℃时造成大量PE凝固,堵塞管道,同样造成反应难以进行,造成事故,故最低温度不低于130℃,一般温度大于150℃。 反应在低压下进行,原因:乙烯常压下位气体,分子间距离远,不易反应,压缩后,分子间距离显著缩短,极大增加了自由基与单体分子之间碰撞几率,易反应,在100~300MPa下,C2H4接近液态烃,近似不可压缩状态,其次T上升,需压力也增加,才能使PE与单体形成均相状态,保持反应顺利进行。 转化率15~30%:明显低于其他单体本体聚合,f造成大量乙烯需要循环使用。—CH高,热容小,f提高1%,温度上升12~13℃,如果反应热不能与时移除,极易造成温度急剧上升,从而造成爆炸发生,故一般提高f困难,另外提高f,

氧化铝粉体制备

氧化铝粉体的合成与表征 1.国内外研究现状及其基本情况 氧化铝是一种具有多种形态的金属氧化物,主要晶型包括最常见的有a和y 型,晶型的转变主要取决于温度。氢氧化铝或水合氧化铝加热到800摄氏度左右转化为y型氧化铝,1200摄氏度时转化为a型氧化铝。因氧化铝特殊的结构和性质特点,使其在电子、化工、航空航天等领域得到广泛的应用。随着高科技的发展,社会对新材料越来越重视,国内外工作者对新材料的开发与应用给予了极大的关注,各种具有特殊功能的材料也得到人们的重视。其中,各种物质的超细化被人们认为是材料开发研究的基础。所谓超细粉体通常是指尺度介于分子,原子和宏观物体之间,粒度在(1-100)nm范围内的微粒]。 高纯超细氧化铝粉体是纯度在99.99%以上的超微细粉体材料,是二十一世纪新材料中产量最大、产值最高、用途最广的尖端材料之一,高纯氧化铝粉体因其纯度高,粒径小,显示出了常规材料所不具有的光、电、磁、热和机械特性,因而它作为一种新型功能材料广泛应用于光学、化工及特种陶瓷等多个领域[6]。 国外关于氧化铝的研究工作开展得比较早,技术也较先进。以下是一些具有代表性的研究成果:在气相法中,美国的Chen Y J用气相法制备出粒径为30—— 50nm的无团聚氧化铝纳米粒子;用气相热解法以三甲基铝Al(CH 3) 3 和N 2 0为原料, 加入C 2H 4 作为反应敏化剂,采用C0 2 激光(C 2 H 4 在C0 2 激光发射波长处有共振吸收)加 热进行反应,然后1200——1400℃下进行热处理成功地合成了粒径为15——20nm 的A1 20 3 粒子;日本专利用蒸发冷凝法,以氧化铝陶瓷(纯度为99.99%)作为蒸发源, 放在一个压力为0。01 Pa的真空器中,通入0 2, CO或C0 2 ,使压力保持在15Pa左 右,用C0 2 激光照射氧化铝陶瓷使之蒸发,蒸发出的氧化铝在气体中迅速冷却得到超细高纯氧化铝。在液相法中,Felde B用溶胶——凝胶法,以异丁醇铝为前驱体,加入乙酰丙酮和硝酸铵,经水解、沉化形成凝胶,再经干燥、锻烧得到粒 径为50nm的α-A1 20 3 粒子;法国的Eponthieu利用硝酸铝、二甲苯、tween80组成 微乳液体系,制得了40——50nm的氧化铝粒子。 我国氧化铝的研究是从90年代开始的,当时主要集中在中科院和高等院校,在1990——2000年10年中,中国打破西方国家对中国的封锁。己建立了多种物理、化学方法制备纳米材料。关于纳米氧化铝的研究也有一定的进展。王宏志等用络 合物——凝胶法在Al (NO 3) 3 溶液中加入丙烯酰胺单体N, N,一亚甲基丙烯酰胺 网络剂,在80℃聚合获得凝胶,经过干燥、锻烧得10nm的a-A1 20 3 粉体。周曦亚采 用均匀沉淀法,以硝酸铝和脲为原料制的氢氧化铝凝胶,在用低表面张力的乙醇 为脱水剂得到40nm以下的γ- A1 20 3 粒子;周恩绚等采用相转移分离法,在高速搅 拌下,将硫酸铝铵溶液迅速加入到碳酸氢铵溶液中生成溶胶,再加表面活性剂 Span和有机溶剂二甲苯,可知的粒径为20——30nm的a-A1 20 3 粒子。冯丽娟等以溶 液蒸发法(超临界法)研究了无机盐——有机溶剂(水和硝酸铝——乙醇)体系中超细氧化铝的制备,所得产品为短纤维状微晶,其长轴为90nm,短轴为5nm。 目前,氧化铝的制备主要停留在探索试验阶段,也进行了一些探索性的工业化水平的生产,但大多数制备方法得到的纳米氧化铝粒径分布较宽,并且制备过程重复性差。还有很多基础性的工作需要投入大量的人力、物力来完成。 2.氧化铝粉体的结构性质及应用

纳米粉体的制备方法

纳米粉体的制备方法 一、纳米粉体应具备的特性 1、化学成分配比准确:尽量符合化学计量,避免烧结出现液相或阻碍烧结; 2、纯度高:出现液相或影响电性能; 3、成分分布均匀:尤其微量掺杂; 4、粒度要细,尺寸分布范围要窄;结构均匀,密度高; 5、无团聚体:软团聚,硬团聚。 二、制备方法分类 化学法 化学法是指通过适当的化学反应,从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法、化学气相冷凝法、溶胶一凝胶法、水热法、沉淀法、冷冻干燥法等。 化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。 化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。 化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物,使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。 物理法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度.然后用物理气相沉积法在其表面上抗积一层膜,经过热处理,即可得到纳米颗粒的阵列。这些方法我们统称为物理凝聚法,物理凝聚法主要分为: (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到或更高的真空度,然后注人少量的惰性气体或性2N、3NH等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气休的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1,Nb-Si等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备技术。物理法的特点是:操作简单,成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。 物理化学方法

材料合成与制备_复习资料(有答案)

第一章溶胶-凝胶法 名词解释 1. 胶体(Colloid):胶体是一种分散相粒径很小的分散体系,分散相粒子的质量可以忽略不计,粒子之间的相互作用主要是短程作用力。 2. 溶胶:溶胶是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。分散粒子是固体或者大分子颗粒,分散粒子的尺寸为1nm-100nm,这些固体颗粒一般由10^3个-10^9个原子组成。 3. 凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般为1%-3%。 4. 多孔材料:是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。 一、填空题 1.溶胶通常分为亲液型和憎液型型两类。 2.材料制备方法主要有物理方法和化学方法。 3.化学方法制备材料的优点是可以从分子尺度控制材料的合成。 4.由于界面原子的自由能比内部原子高,因此溶胶是热力学不稳定 体系,若无其它条件限制,胶粒倾向于自发凝聚,达到低比表面状 态。 5.溶胶稳定机制中增加粒子间能垒通常用的三个基本途径是使胶粒带表面电荷、利用空间位阻效应、利用溶剂化效应。

6.溶胶的凝胶化过程包括脱水凝胶化和碱性凝胶化两类。 7.溶胶-凝胶制备材料工艺的机制大体可分为三种类型传统胶体型、无机聚合物型、络合物型。 8.搅拌器的种类有电力搅拌器和磁力搅拌器。 9.溶胶凝胶法中固化处理分为干燥和热处理。 10.对于金属无机盐的水溶液,前驱体的水解行为还会受到金属离子半径的大小、电负性和配位数等多种因素的影响。 二、简答题 溶胶-凝胶制备陶瓷粉体材料的优点? 制备工艺简单,无需昂贵的设备;对多元组分体系,溶胶-凝胶法可大大增加其化学均匀性;反应过程易控制,可以调控凝胶的微观结构;材料可掺杂的范围较宽(包括掺杂量及种类),化学计量准确,易于改性;产物纯度高,烧结温度低等。 第二章水热溶剂热法 名词解释 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(如有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成、易氧化、易水解或对水敏感的材料。 3、超临界流体:是指温度及压力都处于临界温度或临界压力之上的流

美沙拉嗪合成工艺研究方法

美沙拉嗪合成工艺研究 美沙拉嗪 美沙拉嗪 中文名 称 Mesalazine 英文文 号 中文别 5-氨基水杨酸 名 5-Aminosalicylic Acid 英文别 名 分子式C7H7NO3 用途美沙拉嗪可以抑制引起炎症的前列腺素的合成和炎性介质白三烯的形成,从而对肠粘膜的炎症起显著抑制 作用。 进入实验室注意事项: 1、学生做实验前,应进行实验预习,指导老师须先向学生讲清操作规程和注意事项。学生做实验时,必须严格按规程进行操作,尤其是使用酒精灯、电炉等,更要注意安全。 2、对于能产生有毒气体的实验操作,必须在通风橱中进行。绝对禁止用口偿药品,带防毒面具。

3、实验剩余的剧毒、易燃、易爆等危险品,要及时送交实验室管理员妥善保管。对于有毒废液,应集中处置。 4、实验室内严禁吸烟、严禁就餐。 5. 纸屑、棉花、火柴梗等固体废物,以及具有强腐蚀性、强毒性的废液,应投入废液缸(桶)里。 6、实验课结束后,学生一律不允许滞留在实验室,严禁学生将实验室仪器、药品带出实验室。 7、实验结束后,值日的学生必须关闭实验室的电源、水源、气源和门窗等,经指导老师检查同意后方可离开实验室。注意: 1.水杨酸切勿入眼,否则立即用大量水冲洗。 2.硝酸取用时需带手套、口罩。 3.亚硝酸钠切勿口服。 已有合成路线: 1. 2.

3.水杨酸溶于氢氧化钠,在搅拌下慢慢加人重氮盐溶液, 进行偶合反应,加入50g氢氧化钠升温至60℃ , 加入130g保险粉, 加毕在80℃反应3h冷却, 静置分层回收上层对氨基苯乙醚油状物, 分取下层反应液, 用盐酸调至PH=4,冰箱放置过夜, 过滤, 水洗后得,美沙拉嗪粗品。再精制。 4.以邻氯苯甲酸为起始原料,经硝化、水解、还原反应后,制得美沙拉嗪。 5.苯胺经重氮化,偶合,还原制得美沙拉嗪。 我们组选择这种合成路线:水杨酸作原料

剥色工艺

常用剥色及回修技术 1.常用染料的剥色 1.1活性染料的剥色 染缸剥色工艺示例: 色疵布→卷轴→热水2道→烧碱2道(20克/升) →剥色8道(保险粉15克/升,60℃)热水4道→冷水2道上卷→出布 工艺示例: 1.2酸性染料的剥色 1.2.1尼龙剥色工艺示例: 36Bé NaOH: 1%-3%(3-10g/l); 平平加O: 15%-20%; 合成洗涤剂: 5%-8%; 浴比: 1:25-1:30; 温度: 98℃; 时间: 20-30min(至全部脱色为止)。 全部剥色后逐渐降温,充分水洗至净,再用0.5mL/L醋酸,30℃,10min充分中和残留在尼龙上的碱,再用清水洗净。 1.2.2间歇剥色工艺示例: 平平加O: 2-4克/升; 36Bé NaOH: 12-15毫升/升; 保险粉: 5-6克/升; 温度: 70-80℃, 时间:30-60分钟, 浴比:1:30-40。 1.3分散染料的剥色 在聚酯上进行分散染料的剥色通常采用下列方法: 次氯酸钠和蚁酸、在100℃和pH3.5下处理来完成的。最佳结果是通 过方法一处理、接着再通过方法二处理。处理后尽可能套染黑色。 2.常用整理剂的剥除 2.1硅油及柔软剂的剥除 一般柔软剂可用洗涤剂清洗的方法去除,有时也采用纯碱加洗涤剂的方法;有些柔软剂须采用蚁酸加表面活性剂的方法去除。去除的方法及工艺条件须经小样试验。 硅油较难去除,但用特殊的表面活性剂,在强碱性条件下,采用沸煮的方法可去除大多数硅油。当然这些都须经小样试验。 2.2树脂整理剂的剥除 树脂整理剂一般采用轧酸蒸洗的方法去除,其典型工艺是: 浸轧酸液(盐酸浓度为1.6克/升)→堆置(85℃10分钟)→热水洗→冷水洗→烘干。 用此工艺在卷染机上可剥去织物上的树脂。 3.色光修正原理及技术

粉体材料的合成与制备

《材料合成与制备》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:材料的合成与制备 所属专业:材料化学 课程性质:专业必修课 学分:2学分(36学时) (二)课程简介、目标与任务、先修课与后续相关课程; 课程简介: 材料的合成与制备课程是介绍现代材料制备技术的原理、方法与技能的课程,是材料化学专业一门重要的专业必修课程。 目标与任务:通过本课程的学习,使学生掌握材料制备过程中涉及的材料显微组织演化的基本概念和基本规律;掌握材料合成与制备的基本途径、方法和技能;掌握目前几种常见新材料制备方法的发展、原理、及制备工艺;培养学生树立以获取特定材料组成与结构为目的材料科学研究核心思想,培养学生发现、分析和解决问题的基本能力,培养创新意识,为今后的材料科学相关生产实践和科学研究打下坚实的基础。 先修相关课程: 无机化学、有机化学、物理化学、材料科学基础 (三)教材与主要参考书 教材:自编讲义 主要参考书: 1. 朱世富,材料制备科学与技术,高等教育出版社,2006 2. 许春香,材料制备新技术,化学工业出版社,2010 3. 李爱东,先进材料合成与制备技术,科学出版社,2013

二、课程内容与安排 第一章引言 1.1 材料科学的内涵 1.2 材料科学各组元的关系 (一)教学方法与学时分配 讲授,2学时。 (二)内容及基本要求 主要内容:材料科学学科的产生、发展、内涵;材料科学与工程学科的四个基本组元:材料的合成与制备、材料的组成与结构、材料的性质与性能、材料的使用效能;材料科学四组元的相互关系。 【掌握】:材料科学学科的内涵、材料科学学科的四组元、四组元间的相互关系。 【了解】:几个材料合成与制备导致不同组成与结构并最终决定性质与性能的科研实例。 【难点】:树立以获取特定材料组成与结构为核心的学科思想。 第二章材料合成与制备主要途径概述 2.1 基于液相-固相转变的材料制备 2.3 基于固相-固相转变的材料制备 2.4 基于气相-固相转变的材料制备 (一)教学方法与学时分配 讲授,2学时。 (二)内容及基本要求 主要内容:材料科学学科的产生、发展、内涵;材料科学与工程学科的四个基本组元:材料的合成与制备、材料的组成与结构、材料的性质与性能、材料的使用效能;材料科学四组元的相互关系。 【了解】:材料合成与制备的三种主要途径。 【难点】:三种主要途径选择与取舍的依据。

保险粉的合成工艺研究

毕业论文 保险粉的合成工艺研究 学生姓名: 专业: 班级: 学号: 指导教师: 完成日期:

摘要: 总结了保险粉的性质及用途、合成的反应方程式、反应条件、对原材料的质量要求及工艺控制指标,对醇水比进工艺计算,提出了保险粉合成的控制要点、异常情况的处理措施及影响保险粉单产的因素。 关键词: 保险粉;连二亚硫酸钠;还原剂

目录 1前言 (1) 1.1保险粉性质及用途 (1) 1.2 保险粉发展形势 (1) 2 产品合成工艺介绍 (1) 2.1保险粉的合成原理 (1) 2.2.实验所需原料及实验仪器 (2) 2.2.1原料 (2) 2.2.2实验仪器 (2) 3 合成工艺设计方案 (2) 3.1 合成工艺流程 (2) 3.1.1反应方程式 (2) 3.1.2反应条件 (2) 3.2原材料质量要求与物料配比 (3) 3.2.1原材料质量要求 (3) 3.2.2物料配比 (3) 3.3醇的来源 (4) 3.3.1醇水比计算 (4) 4实验结果分析 (4) 4.1实验控制要点 (4) 4.2保险粉单产影响因素 (5) 5结论 (5) 6参考文献 (6)

1 前言 1.1保险粉性质及用途 保险粉 ,化学名为连二亚硫酸钠 ,是一种白色结晶粉末 , 以二水合物形式存在 , 分子式为Na2 S2O4 ·2H2O,无气味或略带二氧化硫气味。保险粉广泛用于纺织工业的还原性染色、还原清洗、印花和脱色及用作丝、毛、尼龙等织物的漂白。在印染工业中用作还原剂时,它能保证印染质量 ,使纺织品色泽鲜艳 ,不致被空气中的氧所氧化 ,因而称为保险粉。保险粉在食品工业中用于糖汁、饴糖等食品的漂白 ,另可用作医药工业、合成染料的原料 ,还可用于铜板印刷及分析试剂等。保险粉具有极强的还原性 ,遇氧化剂、少量水或吸收潮湿空气能发热 ,引起燃烧甚至爆炸 ,属四类自燃物品 ,遇水放出有毒的二氧化硫。 1.2 保险粉的发展形势 近几年我国保险粉行业发展速度较快,受益于保险粉行业生产技术不断提高以及下游需求市场不断扩大,保险粉行业在国内和国际市场上发展形势都十分看好。虽然受金融危机影响使得保险粉行业近两年发展速度略有减缓,但随着我国国民经济的快速发展以及国际金融危机的逐渐消退,我国保险粉行业重新迎来良好的发展机遇。进入2010年我国保险粉行业面临新的发展形势,由于新进入企业不断增多,上游原材料价格持续上涨,导致行业利润降低,因此我国保险粉行业市场竞争也日趋激烈。面对这一现状,保险粉行业业内企业要积极应对,注重培养创新能力,不断提高自身生产技术,加强企业竞争优势,于此同时保险粉行业内企业还应全面把握该行业的市场运行态势,不断学习该行业最新生产技术,了解该行业国家政策法规走向,掌握同行业竞争对手的发展动态,只有如此才能使企业充分了解该行业的发展动态及自身在行业中所处地位,并制定正确的发展策略以使企业在残酷的市场竞争中取得领先优势。 2 产品合成工艺介绍 2.1保险粉合成原理 保险粉的生产 ,一种重要的方法是以焦亚硫酸钠的二氧化硫 -甲醇悬浮液 (简称 AME)、稀甲酸钠溶液 (简称 )、浓甲酸钠溶液、二氧化硫AE -甲醇溶液为原料进行制备。反应介质为 80% (质量分数 )左右的甲醇水溶液 ,该反应介质既能溶解作为反应原料的无机盐 ,使合成反应顺利进行 ,同时又能最大限度地减少保险粉遇水而发生的分解 ,最大限度地提高保险粉的收率。保险粉遇水的分解产物为亚硫酸氢钠和硫代硫酸钠 ,硫代硫酸钠又是该分解反应的促进剂 ,能促使保险粉进一步分解 ,因此须采用环氧乙烷来控制反应体系中硫代

粉体的合成制备方法

粉体的合成制备方法发展状况 如今,粉体的合成制备经过多年的发展,制备合成方法已经变得各种各样按理论也可分为物理和化学方法等纳米粒子的制备方法很多,可分为物理方法和化学方法。 1.物理方法 (1)真空冷凝法用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 2)物理粉碎法通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备。 按照反应物的相可分为三类气相合成法,固相合成法和液相合成法。 一、气相合成法 (1)电阻加热法是通过电阻加热来实现气相粉体制备的方法,典型工艺如蒸

保险粉

化学品安全技术说明书 化学品中文名:连二亚硫酸钠; 保险粉;低亚硫酸钠 化学品英文名:sodium hyposulfite; sodium dithionite 企业名称: 生产企业地址: 邮编: 传真: 企业应急电话: 电子邮件地址: 技术说明书编码: √纯品混合物 有害物成分浓度CAS No. 连二亚硫酸钠7775-14-6 危险性类别:第4.2类自燃物品 侵入途径:吸入、食入 健康危害:本品有致敏性,具有刺激性。 环境危害:对环境有害。 燃爆危险:自燃物品。遇水剧烈反应,可引起燃烧。 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。如有不适感,就医。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:饮足量温水,催吐。就医。 危险特性:强还原剂。250℃ 时能自燃。加热或接触明火能燃烧。暴露在空气中会被氧化而变质。遇水、酸类或与有机物、氧化剂接触,都可放出大量热而引起 剧烈燃烧,并放出有毒和易燃的二氧化硫。

有害燃烧产物:硫化物。 灭火方法:用干粉、二氧化碳、砂土灭火。 灭火注意事项及措施:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。 应急行动:严禁用水处理。隔离泄漏污染区,限制出入。消除所有点火源。建议应急处理人员戴防尘口罩,穿防毒、防静电服。禁止接触或跨越泄漏物。保持泄 漏物干燥。用干燥的砂土或其它不燃材料覆盖泄漏物,然后用塑料布覆盖, 减少飞散、避免雨淋。用洁净的无火花工具收集泄漏物,置于一盖子较松的 塑料容器中,待处置。 操作注意事项:密闭操作,局部排风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,戴安全防护眼镜,穿化学防护 服,戴乳胶手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风 系统和设备。远离易燃、可燃物。避免产生粉尘。避免与氧化剂、酸类接触。 尤其要注意避免与水接触。搬运时要轻装轻卸,防止包装及容器损坏。配备 相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害 物。 储存注意事项:储存于阴凉、通风的库房。包装要求密封,不可与空气接触。应与氧化剂、酸类、易(可)燃物分开存放,切忌混储。采用防爆型照明、通风设 施。禁止使用易产生火花的机械设备和工具。储区应备有合适的材料收容泄 漏物。 接触限值: MAC(mg/m3): 未制定标准PC-TWA(mg/m3): 未制定标准 PC-STEL(mg/m3): 未制定标准TLV-C(mg/m3): 未制定标准 TLV-TWA(mg/m3): TLV-STEL(mg/m3): 监测方法:火焰原子吸收光谱法。 工程控制:密闭操作,局部排风。 呼吸系统防护:可能接触其粉尘时,应该佩戴过滤式防尘呼吸器。必要时配戴空气呼吸器。 眼睛防护:戴安全防护眼镜。 身体防护:穿化学防护服。 手防护:戴橡胶手套。 其他防护:工作现场禁止吸烟、进食和饮水。工作完毕,淋浴更衣。注意个人清洁卫生。

相关文档