文档库 最新最全的文档下载
当前位置:文档库 › 压力容器的强度计算]

压力容器的强度计算]

压力容器的强度计算

本章重点要讲解内容:

(1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则;

(2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差;

(3)掌握内压圆筒的厚度设计;

(4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。

(5)熟悉内压容器强度校核的思路和过程。

第一节设计参数的确定

1、我国压力容器标准与适用范围

我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。

JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。

2、容器直径(diameter of vessel)

考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。

表1 压力容器的公称直径(mm)

如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。

表2 无缝钢管制作筒体时容器的公称直径(mm)

3、设计压力(design pressure)

(1)相关的基本概念(除了特殊注明的,压力均指表压力)

?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。

①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压

试验的压力和卧置时不同;

②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶

部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。

③标准中的最大工作压力,最高工作压力和工作压力概念相同。

?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条

件,其值不低于工作压力。

①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa;

②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。

③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下,

可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附

录),超压泄放装置。)

?计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元

件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去

静压力。

①注意与GB150-1989 对设计压力规定的区别;

《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。

使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。

②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。

③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。

4、设计温度(Design temperature)

设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。

●设计温度不得低于元件金属在工作状态可能达到的最高温度;

●当设计温度在0℃以下时,不得高于元件金属可能达到的最低温度;

●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度;

5、许用应力(Maximum allowable stress values)

许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998 对钢板、锻件、紧固件均规定了材料的许用应力。

表3 钢制压力容器中使用的钢材安全系数

6、焊接接头系数(Joint efficiency )的影响

(1)焊接接头的影响

焊接接头是容器上比较薄弱的环节,较多事故的发生是由于焊接接头金属部分焊接影响区的破裂。一般情况下,焊接接头金属的强度和基本金属强度相等,甚至超过基本金属强度。但由于焊接接头热影响区有热应力存在,焊接接头金属晶粒粗大,以及焊接接头中心出现气孔和未焊透缺陷,仍会影响焊接接头强度,因而必须采用焊接接头强度系数,以补偿焊接时可能产生的强度消弱。焊接接头系数的大小取决于焊接接头型式、焊接工艺以及焊接接头探伤检验的严格程度等。

(2)焊接接头系数的选取:由接头形式和无损探伤的长度确定

●双面焊对接接头和相当于双面焊的全焊透对接接头:

100%无损探伤,φ =1.00; 局部无损探伤, φ =0.85;

●单面焊的对接接头,沿焊接接头根部全长具有紧贴基本金属的垫板:

100%无损探伤, φ =1.00; 局部无损探伤, φ =0.8;

●无法进行探伤的单面焊环向对接焊缝,无垫板: φ=0.6;

第二节 内压容器筒体与封头厚度的设计

1、内压圆筒(cylindrical shell )的厚度设计

(1)理论计算厚度δ(required thickness )

GB150-1998 定义:按各章公式计算得到的厚度,为能安全承受计算压力P C (必要时尚需计入其他载荷)。

内压圆筒壁内的基本应力是薄膜应力,由第三强度理论可知薄膜应力的强度条件为: t r ][3σσσθ≤= ,t r PD ][23σδσ≤=

(1) 式中: t ][σ--制造筒体钢板在设计温度下的许用应力;

考虑到焊接接头的影响,公式(1)中的许用应力应使用强度可能较低的焊接接头金属的许用应力,即把钢板的许用应力乘以焊缝系数。

φσδσt r PD ][23≤=,则有:i t PD 2[]δσφ

≥ 式中D 为中径,当壁厚没有确定时,则中径也是待定值,利用D=D i +δ则有:

c i t c

P D =2[]-P δσφ (2) 公式(2)一般被简化为:c i t P D =

2[]δσφ (3) (2)设计壁厚d δ(design thickness ) 计算壁厚δ与腐蚀余量C 2之和称为设计壁厚。可以将其理解为同时满足强度、刚度和使用寿命的最小厚度。

2d C δδ=+ (4)

C 2为腐蚀裕度 根据介质对选用材料腐蚀速度和设计使用寿命共同考虑。

C 2=k· a , mm ;

k —腐蚀速度(corrosion rate ),mm/a ; a —设计年限(desired life time )。

对碳素钢和低合金钢,C 2≥ 1mm ;对于不锈钢,当介质腐蚀性能极微时,取C 2=0。

(3)名义厚度d δ(normal thickness ) 设计厚度d δ加上钢板负偏差C 1后向上圆整至刚才标准规格的厚度,即标注在设计图样上的壳体厚度。

1n d C δδ=+?+ (5) C 1—钢板负偏差。任何名义厚度的钢板出厂时,都允许有一定的负偏差。钢板和钢管的负偏差按钢材标准的规定。当钢板负偏差不大于0.25mm ,且不超过名义厚度的6%时,负偏差可忽略不计。

(4) 有效厚度e δ

名义厚度n δ减去腐蚀裕量和钢材厚度负偏差,从性质上可以理解为真正可以承受介质压强的厚度,成为有效厚度。数值上可以看作是计算厚度加上向上钢材圆整量。 12e n C C δδ=-- (6) 厚度系数β:圆筒的有效厚度和计算厚度之比称为圆筒的厚度系数。

(5)最小厚度min δ

为满足制造、运输及安装时刚度要求,根据工程经验规定的不包括腐蚀裕量的最小壁厚。 ○

1碳素钢和低合金钢制造的容器,最小壁厚不小于3mm ; ○2高合金钢制容器,(如不锈钢制造的容器),最小壁厚不小于2mm 。

当筒体的计算厚度小于最小厚度,应取最小厚度作为计算厚度,这时筒体的名义厚度可以分为两种不同的情况分别计算。

(1) 当min 1->C δδ,n min 2=+C +,()δδ??可以等于零

(2) 当min 1-C δδ<时,必须考虑钢板负偏差,n min 21=+C +C +δδ?

表5 钢板的常用厚度表

表6 几种厚度之间的相互关系

2、内压球壳(sphere )的厚度设计

球壳的任意点处的薄膜应力均相同,且m σσθ=,根据薄膜应力第三强度条件: []4t r PD θσσσφδ

==≤ 采用内径表示:, 4[]4[]c i c i c P D P D mm P δδσφσφ

==-或者简化为 (7) 其他的厚度计算与筒体一样。

3、内压封头的厚度设计

(1)半球形封头(hemispherical head )

半球形封头的厚度采用球壳的壁厚设计公式进行计算。

图1 半球形封头示意图 图2 椭圆形封头示意图

(2)标准椭圆形封头(ellipsoidal head )

如图所示,由半个椭球和一段高为h 0的圆筒形筒节(称为直边)构成,封头曲面深度4

i D h =,直边高度与封头的公称直径有关。

对于标准椭圆封头,最大的薄膜应力位于椭球的顶部,大小和圆筒的环向应力完全相同,其厚度和圆筒形的计算一样。但是和下面的GB150-1998 规定的不太一样,主要是因为在简化是产生的,影响不大。

K 2[]0.5c i t c

p D p δσφ=- (8) K 为椭圆封头形状系数,??

????+=

2)2(261i i h D K 标准椭圆封头为K=1.0 2[]0.5c i t c

p D p δσφ=- 应当注意,承受内压时椭圆封头的赤道处为环向压缩应力,为了避免失稳,规定标准椭圆的计算厚度不得小于封头内径的0.15%。

(3)碟形封头

又称带折边球形封头,有三部分组成,以R i 为半径的球面壳体、半径为r 的圆弧为母线所构成的环状壳体(折边或过渡圆弧)。

● 球面半径R i 一般不大于筒体直径D i ;

● 折边半径r 在任何情况下不得小于球面半径的10%,其应大于三倍的封头厚度。

图3 碟形封头

碟形封头厚度的计算公式:

2[]0.5c i c

Mp R p δσφ=- (9) 式中:M —碟形封头形状系数

134M ?= ? 碟形封头的厚度如果太薄,则会出现内压下的弹性失稳,所以规定:

i e D M %15.0,34.1≥≤δ;

i e D M %3.0,34.1≥>δ

(4)球冠形封头(没有折边)

封头的结构,为了进一步降低凸形封头的高度,将碟形封头的过度圆弧和直边部分去掉,将球面部分直接焊接到圆柱壳体上,如下图所示。

图4 球冠形封头

1作容器的端封头; ○

2用作容器中两个相邻承压空间的中间封头。 封头的厚度(凹面受压时):

2[]c i t c

QP D P δσφ=- (10) Q 为系数主要和球形半径和筒体内径之比、压力和许用应力及焊缝系数有关,可以根据图表查得。

在任何情况下,与球冠形封头连接的圆筒厚度应不小于封头厚度。否则,应在封头与圆筒间设置加强段过渡连接。圆筒加强段的厚度应与封头等厚;端封头一侧或中间封头两侧的加强段长度L

均应不小于。

(5)内压锥形封头(cone head )

锥形封头和椭圆形、半球形封头相比强度较差。在工业生产中,但当操作介质含有固体颗粒或当介质粘度很大时,采用锥形封头有利于出料,亦有利于流体的均匀分布。此外,顶角较小的锥壳还可用来改变流体的流速,另外锥形壳体用来连接两个直径不等的圆筒,作变径段。因此,锥形封头仍得到广泛应用,一般锥形封头有三种形式:

图5 锥形封头示意图

1不带折边锥形封头的壁厚 锥形封头的最大薄膜应力位于锥体的大端:

11,4cos 2cos m PD PD θσσδαδα

=?=? 根据第一或第三强度理论,并以内径表示可得: 12[]cos 2[]cos c i c i c t t c c P D P D P P δσφασφα

=≈?-- (11) 由于无折边锥形封头与筒体的连接处曲率半径突变,所以存在着较大的边界应力,如果利用(11)计算的壁厚满足边界应力不得超过3倍时,则可以直接使用,否则需要增加连接处的壁厚,因此无折边封头的计算公式写为:

2[]c i c t c

QP D P δσφ=- (12)

图6 锥壳大端与圆筒连接处Q 值图

● Q 值随着[]c t c

P σφ的增大而减少,水平直线代表αcos 1=Q ; ● 采用加强的壁厚焊接比较繁琐、成本也较高,是否可以整体采用加强后计算的壁

厚,目前还没有定论;

● 教材中采用此图目的是不用进行判断,与GB150-1998存在差异,实际设计时严格

按照GB150-1998。

● 在任何情况下,加强段的厚度不得小于相连接的锥壳厚度。锥壳加强段的长度L 1

应不小于 圆筒加强段的长度L

应不小于 ○

2 折边锥壳 分为锥壳大端有折边以及锥壳大端、小端均有折边两种。此处只讲解大端部分,小端的计算方法详见GB150-1998的第7部分。

大端的壁厚应同时计算过渡段厚度和与其相连接的锥壳厚度,取二者大值。

过渡部分的壁厚:2[]0.5c i c

KP D P δσφ=-; (13) D i — 连接筒体内直径; K — 过渡部分形状系数。K 系数由表4所示。

表8 系数K 值

过渡段与相连接处的锥壳厚度:[]0.5c i t c

fP D P δσφ=- (14) f —锥形封头形状系数,()121cos /2cos i

r f D αα-=-,其值列于表5。 ● 教材中,认为折边部分与锥体部分厚度相同时,折边内的压力总是小于锥体部分

的压力,所以只对大端进行计算,然后取折边和大端等厚度,所以只给出了一个

计算公式,而且其系数由于公式的改变是GB150-1998的两倍,有点欠妥。

● 学生可以采用二者之一的公式,但是必须注意公式和系数的准确性。

表9 系数f 值

(6)平板封头(circular flat heads )

圆形平板作为封头承受压力时,处于受弯的不利状态,而且造成筒体在边界处产

生较大的边界应力,所以一般不使用平板封头。但是压力容器的人孔、手孔等为平板。

在实际工程中,可把圆形平盖简化为受均匀分布横向载荷的圆平板,最大弯曲应

力公式为:

2

max 2PD K σδ=

应用第一强度理论,结合实际工程经验,其设计公式为:

B D δ= (15) 式中:K —结构系数,从相关的表中查取;

c D --计算直径,一般为筒体内直径;

B δ--平板的计算厚度。

第三节 压力试验与在用压力容器的强度校核

1、压力试验(hydrostatic test pressure )

容器制造时,钢板经过了弯卷、焊接、拼装等工序以后,会存在以下的问题:

● 是否能够承受规定的工作压力?是否会发生过大变形?

● 在规定的工作压力作用下,焊缝等处是否会发生局部渗漏?

因此需要进行压力试验,试验的项目和要求应在图样中注明。

压力试验可以选用液压和气压。由于气压试验的危害性大,故一般都采用液压试验,只有不易做液压试验的容器才采用气压试验。

(1)液压试验 试验介质,一般用水,试验压力为:t t P ]

[][25P .1σσ= (16) t ][σ—设计温度下材料的许用应力,MPa ;

][σ—试验温度下材料的许用应力,MPa 。

液压试验方法:液压试验时,压力应缓慢上升,达到规定试验压力时,保持30分钟,然后将压力降至规定试验压力的80%,并保持足够长时间以便对所有焊缝和连接部位进行检查。实验结果以无渗漏和无可见的残余变形为合格。

(2)气压实验

不适合做液压实验的容器,例如由于工艺要求,容器内不允许有微量残留液体,或由于结构原因,不能充满液体的容器,才允许用气压实验。凡采用气压实验的容器其焊缝需进行100%的无损探伤,且应增加实验场所的安全措施,并在有关安全部门的监督下进行。

试验介质,○

1干燥气体或者○2洁净的空气、氮气、惰性气体。 试验压力为:t t P ][][15P

.1σσ= (17)

气压试验方法:试验时压力应缓慢上升,至规定试验压力0.1P ,且不超过0.05MPa ,保压5分钟,检查焊接接头部位。若存在泄漏,修复,重新进行水压实验。合格后,方可重新进行气压实验。

2、强度校核的思路

(1)许用应力校核 即根据有效厚度计算出容器在校核压力下的计算应力,判断其是否小于材料的许用应力。

t ][σσ≤

在用容器在校核压力P ch (P W ,P k or P )作用下的计算应力为:

e

i ch D KP δσ2= (18) 式中:K —形状系数,其值根据受压元件形状确定,对于圆柱形筒体和标准椭圆形封头,K=1.0;对于球壳与半球壳封头,K=0.5;碟形封头,K=M α;无折边封头锥形封头,K=Q ;折边锥形封头,K=0f 。

e δ筒体或者封头的有效厚度,对于新容器筒体:21C C n e --=δδ

对于使用多年的容器:λδδn C e ?-=2min

式中:λ--实测的年腐蚀率,㎜/a ;min C δ--受压元件的实测最小厚度;n —检验周期。

(2)在用容器最大允许工作压力

i

t ][2][D KP P ch e φσδ= (19) 但是在工程实际中,应该严格按照GB150-1998或者JB4732-1995进行校核。

例题1:有一圆筒计量罐,内装浓度为99%的液氨,筒体内径mm D i 2200=,筒高3200㎜,一端采用标准椭圆封头,一端采用半球形封头,操作温度不超过50℃。罐顶装有安全阀,安全阀的开启压力Mp a P 2.2=,材料选用16MnR ,在t =50℃时的机械性能Mpa Mpa b s 500,330==σσ。氨对材料的腐蚀速度/1.0mm K a <年,若设计寿命为15年,不计液体静压力,试计算:

(1) 钢材16MnR 在操作条件下的许用应力[σ]t ?

(2) 筒体的壁厚1c S ?

(3) 椭圆封头的壁厚2c S ?

(4) 半球形封头的壁厚1c S ?

(5) 水压实验压力P T ?(30分)

解:(1)用应力MPa n b b

t 6.1663500][1===σσ,MPa n s s t 3.2066

.1330][2===σσ 取 [σ]t =166.6Mpa

(2)筒体壁厚S c1,筒体壁厚S c1按下式计算:

C P

D P S c

t i c c +-=φσ][21 式中:P =2.2Mpa ;,D i =2200mm ;[σ]t =166.6Mpa 。

由于工作介质为99%的液氯,属于中毒性介质,

3321076.262.32.242.2m MPa m MPa V P ?>?=???=?π

,划分为3类容器。

筒体拼版与筒节焊接采用双面对接焊,100%无损探伤,取焊缝系数1=φ 钢板的负偏差取:C 1=0.8㎜;腐蚀裕度取:mm C 5.1151.02=?=

mm S C 9.163.22

.216.166222002.21=+-???=,取1C S =18㎜ (3)椭圆封头2C S

椭圆封头壁厚2C S 按下式计算:C P D P S C

t i C C +-=

5.0][22φσ 式中符号意义及数值同(2),解得: mm S C 87.163.22

.25.016.166222002.22=+?-???=,取2C S =18㎜ (4)半球形3C S ,半球形封头壁厚3C S 按下式计算:

C P

D P S C

t i C C +-=φσ][43 式中符号意义及数值同(2),解得:mm S C 586.93.22.216.166422002.23=+-???=

取3C S =10㎜

(5)水压实验压力P T :MPa P P T 75.225.1==

【思考题】

(1) 确定有效厚度时应注意什么问题?

(2) 厚度系数的含义、取值和用途是什么?

压力容器强度校核公式

压力容器强度校核 筒体壁厚校核公式 软件模板 计算公式:' 22[]c i t c P D C P δσφ=+-筒校核 备注: c P :校核压力 i D :容器最大内径 []t σ:设计温度下的许用应力 φ :焊缝系数 若双面焊全焊头对接接头 100%无损检测,φ= 局部无损检测, φ= 若为单面焊对接接头 100%无损检测,φ= 局部无损检测, φ= ' 2C :下一周期均匀腐蚀量 δ筒校核:筒体校核壁厚 最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用。 封头壁厚校核公式 1.椭圆形封头软件模板 计算公式:' 22[]0.5c i t c P D C P δσφ=+-封校核 备注: c P :校核压力 i D :容器最大内径 [ ]t σ:设计温度下的许

用应力 φ :焊缝系数: 若双面焊全焊头对接接头 100%无损检测,φ= 局部无损检测, φ= 若为单面焊对接接头 100%无损检测,φ= 局部无损检测, φ= ' 2C :下一周期均匀腐蚀量 δ筒校核:筒体校核壁厚 最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用 2.球形封头软件模板 计算公式:' 24[]c i t c P D C P δσφ=+-封校核 备注: c P :校核压力 i D :容器最大内径 [ ]t σ:设计温度下的许用应力 φ :焊缝系数: 若双面焊全焊头对接接头 100%无损检测,φ= 局部无损检测, φ= 若为单面焊对接接头 100%无损检测,φ= 局部无损检测, φ=

'2C :下一周期均匀腐蚀量 δ筒校核:筒体校核壁厚 最后判定公式:若δ筒校核≤δ筒实测,继续使用,否则停用

最新压力容器的强度计算

压力容器的强度计算

第11章压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。(5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel)

考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm) 3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立 进行水压试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许 多塔器顶部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。

压力容器的强度计算

第11章压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150 - 98钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器一分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准 则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。

3、设计压力(design pressure (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P W :在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置 时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure )。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa的内压容器,设计压力取为0.1Mpa ; ②当容器上装有超压泄放装置时,应按超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B (标准的附 录),超压泄放装置。) 计算压力P C是GB150-1998新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温 度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应 力计算时设计到的材料物理性能参数。 ?设计温度不得低于元件金属在工作状态可能达到的最高温度; ?当设计温度在0C以下时,不得高于元件金属可能达到的最低温度; ?当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998对钢板、锻件、紧固件均规定了材料的许用应力。 表3钢制压力容器中使用的钢材安全系数 帝训戒讲计盘雇下 的划帶点设计■盧FS4沖万小时祈闿的 iitftiUfS 下坨W H小时U4 + * 1的蒔空權展tr: 169 表2无缝钢管制作筒体时容器的公称直径(mm)

压力容器强度计算(20210201112022)

压力容器强度计算 第一节设计参数的确定 1我国压力容器标准与适用范围 我国现执行GB150 - 98钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则, 应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器一分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的 ASME标准思路相似。 2、容器直径(diameter of vessel 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2无缝钢管制作筒体时容器的公称直径(mm) 3、设计压力(design pressure (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际 最高工作压力(the maximum allowable working pressure )。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下,可能达到的最高金属温 度确定。(详细内容,参考GB150-1998,附录B (标准的附录),超压泄放装置。)

压力容器强度计算公式及说明

压力容器壁厚计算及说明 一、压力容器的概念 同时满足以下三个条件的为压力容器,否则为常压容器。 1、最高工作压力P :9.8×104Pa ≤P ≤9.8×106Pa ,不包括液体静压力; 2、容积V ≥25L ,且P ×V ≥1960×104L Pa; 3、介质:气体,液化气体或最高工作温度高于标准沸点的液体。 二、强度计算公式 1、受内压的薄壁圆筒 当K=1.1~1.2,压力容器筒体可按薄壁圆筒进行强度计算,认为筒体为二向应力状态,且各受力面应力均匀分布,径向应力σr =0,环向应力σt =PD/4s ,σz = PD/2s ,最大主应力σ1=PD/2s ,根据第一强度理论,筒体壁厚理论计算公式, δ理= P PD -σ][2 考虑实际因素, δ=P PD φ-σ][2+C 式中,δ—圆筒的壁厚(包括壁厚附加量),㎜; D — 圆筒内径,㎜; P — 设计压力,㎜; [σ] — 材料的许用拉应力,值为σs /n ,MPa ; φ— 焊缝系数,0.6~1.0; C — 壁厚附加量,㎜。 2、受内压P 的厚壁圆筒 ①K >1.2,压力容器筒体按厚壁容器进行强度计算,筒体处于三向应力状态,且各受力面应力非均匀分布(轴向应力除外)。 径向应力σr =--1(2 22a b Pa 22 r b ) 环向应力σθ=+-1(222a b Pa 22 r b ) 轴向应力σz =2 22 a b Pa - 式中,a —筒体内半径,㎜;b —筒体外半径,㎜; ②承受内压的厚壁圆筒应力最大的危险点在内壁,内壁处三个主应力分别为: σ1=σθ=P K K 1 122-+ σ2=σz =P K 11 2-

压力容器的强度计算

第章压力容器的强度计算 本章重点要讲解内容: ()理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; ()掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; ()掌握内压圆筒的厚度设计; ()掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 ()熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 、我国压力容器标准与适用范围 我国现执行-“钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的标准思路相似。 、容器直径() 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表压力容器的公称直径() 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表无缝钢管制作筒体时容器的公称直径()

、设计压力() ()相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试 验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力()。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于的内压容器,设计压力取为; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下,可 能达到的最高金属温度确定。(详细内容,参考,附录(标准的附录),超压泄 放装置。) ?计算压力是新增加的内容,是指在相应设计温度下,用以确定元件厚度的压 力,其中包括液柱静压力,当静压力值小于%的设计压力时,可略去静压力。 ①注意与对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 、设计温度() 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。 ●设计温度不得低于元件金属在工作状态可能达到的最高温度; ●当设计温度在℃以下时,不得高于元件金属可能达到的最低温度; ●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 、许用应力( ) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,对钢板、锻件、紧固件均规定了材料的许用应力。 表钢制压力容器中使用的钢材安全系数

压力容器的强度计算].doc

压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel) 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm)

3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压 试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附 录),超压泄放装置。) ?计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989 对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature) 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。 ●设计温度不得低于元件金属在工作状态可能达到的最高温度; ●当设计温度在0℃以下时,不得高于元件金属可能达到的最低温度; ●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998 对钢板、锻件、紧固件均规定了材料的许用应力。 表3 钢制压力容器中使用的钢材安全系数

压力容器考试题库带答案

《压力容器设计考核题》 姓名:分数: 一、填空题(每空1分,共40分) 1.设计盛装液化石油的储罐容器,使用法兰连接的第一个法兰密封面,应采用 高颈对焊法兰,金属缠绕垫片(带外环 )和高强度螺栓组合。 2.气密性试验应在液压试验合格后进行。对设计图样要求做气压试验的 压力容器,是否需再做气密性试验,应在设计图样上规定。 3.压力容器的壳体,封头,膨胀节,开孔补强,设备法兰,球罐的球壳板,换热器的管板和换热管, M36(含M36)以上的设备主螺栓,公称直径大于等于 250mm的接管和管法兰等均作为主要受压元件。 4.压力容器设计单位不准在外单位设计的图样上加盖压力容器设计资格印章; 5.用于制造压力容器壳体的钛材应在退火状态下使用。 6.压力容器投用后,首次内外部检验周期一般为 3 年 7.GB150.1-2011使用于设计压力不大于 35 Mpa的压力容器的 设计,制造,检验与验收。 8.计算压力是指在相应设计温度下用以确定元件厚度的压力。 9.设计温度指容器在正常工作情况下,设定的元件的元件金属温度。在任 何情况下,元件金属的表面温度,不得超过钢材的允许使用温度。10.只设置一个安全阀的压力容器,根据压力高低依次排列:设计压力、工作压力、 最高工作压力、开启压力、试验压力: (1) 工作压力 (2) 最高工作压力 (3) 开启压力 (4) 设计压力 (5) 试验压力。 11.两个不同垫片,他们的形状和尺寸均相同且都能满足密封要求,则选用m(垫 片系数)值小的垫片较好。 12.在法兰设计计算中比压力y是考虑预紧状态下需要的最小螺栓截 面计算时使用,垫片系数m是考虑操作状态下需要的最小螺栓截面

ASME压力容器强度计算软件.

ASME 压力容器强度计算软件 一.运行环境 1、中文Windows 操作系统和Word2000字处理软件。 2.CPU为586以上的PC计算机,喷墨或激光打印机,鼠标。 二.软件计算内容 A,元件类 1.内压筒体、封头; 2.外压筒体、封头; 3.圆锥体; 4.平盖; 5.管颈厚度及开孔补强; 6.法兰; 7.浮头法兰;8.U型管式、浮头式管板;9.固定管板及TEMA膨胀节;10.换热管壁厚;11.换热器分程隔板厚度;12.设备的最低设计金属温度;13.夹套与容器间封闭件;14.EJMA膨胀节。 B.设备类 1.卧式容器; 2.立式设备 四.材料库 软件材料库包含ASME规范的所有材料,用户只需使用鼠标点取材料名称,软件将快速查出有关机械性能。对于非ASME规范材料,用户可在相应窗口栏位直接输入材料名称及有关机械性能或在材料库中增加材料性能。 五.数据的输入、修改、输出特点 1.在数据输入方面:数据输入界面以中文提示与图形示意结合的方式;双击数据输入界面可将用户所输入的数据打印输出,以供校对。 2.在数据存储与修改方面:同种元件或设备以记录方式存储在相应的数据文件中,用户对已输入的数据可根据图号进行查询、删除、修改等操作。 3.在计算结果输出方面:形成图表格式的英文计算结果,并以Word文档文件输出。 六.软件安装

用户应运行Setup安装,在安装过程中,必须使用指定缺省目录。 七.元件及设备具体功能与特点 1.内压、外压筒体与封头计算:本模块可根据用户需要按ASME标准的内径公式或外径公式进行内、外压设计或校核计算。 2.平盖计算:本模块根据ASME标准有关公式对螺栓连接平盖和整体焊接平盖行设计或校核计算。 3.圆锥体计算:本模块可对承受内压、外压、轴向外载荷的无折边锥体、一端有折边锥体、两端有折边锥体进行设计或校核计算。

pd55FloHeadFFG 压力容器强度计算书 PVElite版本

Table of Contents Cover Sheet (2) Title Page ............................................................................................................................... 错误!未定义书签。Warnings and Errors : (3) Input Echo : (4) XY Coordinate Calculations : (8) Flg Calc [Int P] : FLANGE (9) Internal Pressure Calculations : (14) External Pressure Calculations : (20) Element and Detail Weights : (24) Center of Gravity Calculation : (27) Stationary Tube, CASE ONE (28) Floating Tubesh, CASE ONE (38) Floating Head, CASE ONE (48) Vessel Design Summary : (54)

Cover Page 2 DESIGN CALCULATION In Accordance with British Standard PD 5500:2012 Edition Analysis Performed by : ZISHAN ENGINEERS (PVT.) LTD. Job File : D:\PVELITE 2012\EXAMPLES_BACKUP\PD55FLOHEADFFG.P Date of Analysis : Jun 9,2017 PV Elite 2014, January 2014

压力容器无量纲计算

综合题 、2000m 3丙烯球形储罐 该球罐2003年投入使用,今年首次全面检验时,在赤道带两支柱之间的一块球壳板上发现了一个380X30mm折皱,经过打磨消除后,形成一个长 420mm,宽80mm最深处6mm凹坑。在其周围未发现其它表面缺陷及隐藏缺陷,若不考虑介质的腐蚀和材质劣化,问该凹坑是否需要补焊?回答:1、是否可以根据无量纲参数G0值来判断,该凹坑是否需要补焊?首先判断该凹坑条件是否符合,进行无量纲参数G 0计算的凹坑条件。答:(1)如果在壁厚余量范围内,则该凹坑允许存在。否则,将凹坑按其外接矩形规则化为 2A、2B、C,计算无量纲参数,如果小于0.10,贝U凹坑在允许范围内。

总的比较结果结论:该凹坑条件适合进行无量钢参数GO计算 (2)计算无量纲常数: G o=C/T >A/」RT=6/42 X210/ 7842 M2=0.037<0.10 经无量钢计算不需要补焊

二、综合应用 某中压空气缓冲罐2004年制造,内径=1300mm壁厚14mm,出厂质量证明文件显示A、B类焊缝实际进行了24%射线检测,川级合格,不要求进行焊后热处理,今年在进行首次全面检验发现如下问题: (1 )、位于筒体上的空气进出口管内径为750mm,强度计算表明接管按照HG20582-1998《钢制化工容器强度计算规定》中的压力面积进行了强度计算,经对进出口接管与筒体连接的焊接接头进行磁粉检测未见缺陷显示,焊接接头超声波检测和开口附近壁厚未见异常。 (2)、本次检验中对制造过程未进行射线检测的射线焊接接头进行了部分 X射线检测,发现缺陷的底片评定如下表中片号“ H”代表环焊缝Z”代表纵焊缝探伤人员已按JB/T4730.2-2005进行评定 对发现的条状夹渣采用《TOFD衍射时差法超声检测》方法反复测试等到缺陷厚度方向的高度Z3-1位置长6mm,夹渣的自身高度小于1mm °Z3-2 位置长20mm夹渣自身高度为3mm,两处条状夹渣均无开裂扩展迹象。 如何针对上述所有情况如何按压力容器定期检验规则评定该容器的安全状况等级?并说明各种情况的安全状况等级的评定过程 需要考虑的情况及评级过程(不考虑“如果能采用有效方式确认缺陷是否活动,则表5表6中的缺陷长度容限值可以增加50%”情况)答:(1)因

压力容器强度校核公式

压力容器强度校核 筒体壁厚校核公式 软件模板 c P i D []t ' 2 C 筒校核计算公式:' 2 2[]c i t c P D C P 筒校核备注: c P :校核压力i D :容器最大内径[ ]t :设计温度下的许用应力:焊缝系数 若双面焊全焊头对接接头 100%无损检测,=1.00 局部无损检测,=0.85 若为单面焊对接接头 100%无损检测,=0.9 局部无损检测,=0.8 ' 2C :下一周期均匀腐蚀量筒校核:筒体校核壁厚最后判定公式:若筒校核≤筒实测,继续使用,否则停用。封头壁厚校核公式 1.椭圆形封头软件模板 c P i D []t ' 2 C 封校核计算公式:' 2 2[]0.5c i t c P D C P 封校核

备注: c P :校核压力i D :容器最大内径[]t :设计温度下的许用应力:焊缝系数: 若双面焊全焊头对接接头 100%无损检测,=1.00 局部无损检测,=0.85 若为单面焊对接接头 100%无损检测,=0.9 局部无损检测,=0.8 ' 2C :下一周期均匀腐蚀量筒校核:筒体校核壁厚最后判定公式:若筒校核≤筒实测,继续使用,否则停用 2.球形封头软件模板 c P i D []t ' 2 C 封校核 计算公式:' 2 4[]c i t c P D C P 封校核备注: c P :校核压力i D :容器最大内径[]t :设计温度下的许用应力:焊缝系数: 若双面焊全焊头对接接头 100%无损检测,=1.00 局部无损检测,=0.85 若为单面焊对接接头 100%无损检测,=0.9

局部无损检测, =0.8 ' 2C :下一周期均匀腐蚀量筒校核:筒体校核壁厚最后判定公式:若筒校核≤筒实测,继续使用,否则停用

2018 RQ-1压力容器基础知识习题

2018 RQ-1压力容器基础知识习题 一、单选题【本题型共50道题】 1.按照TSG21-2016固定式压力容器安全技术监察规程,中压容器的设计压力p范围为()。 A.1.6MPa ≤ p <10MPa B.1.6MPa <p ≤10MPa C.0.1MPa ≤ p <1.6MPa D.10MPa ≤ p <100MPa 正确答案:[A] 用户答案:[A] 得分:1.90 2.图片所示的气瓶为()。 A.焊接气瓶 B.无缝气瓶 C.缠绕气瓶 D.深冷气瓶 正确答案:[B] 用户答案:[B] 得分:1.90 3.一台新制造的固定式压力容器,进行壁厚实际测定时得到的壁厚值应不小于()。

A.计算厚度 B.设计厚度 C.名义厚度 D.有效厚度 正确答案:[B] 用户答案:[D] 得分:0.00 4.按照TSG21-2016固定式压力容器安全技术监察规程,夹套式压力容器的分类原则是()。 A.按照内容器进行类别划分 B.按照夹套进行类别划分 C.内容器和夹套单独进行类别划分,然后取最低类别为整台设备的类别。 D.内容器和夹套单独进行类别划分,然后取最高类别为整台设备的类别。 正确答案:[D] 用户答案:[D] 得分:1.90 5.在设计压力容器时,GB150和JB4732之间的关系为:()。 A.可以混用,以经济指标为准则 B.完全不能混用 C.当主体采用GB150进行设计,一些特殊结构没有给出计算方法时,可以采用JB4732进行设计 D.当主体采用GB150进行设计,一些特殊结构没有给出计算方法时,可以采用JB4732进行设计, 但材料许用应力应当按照JB4732选取 正确答案:[C] 用户答案:[D] 得分:0.00 6.爆破片的作用是()。 A.防止容器内部超压造成损坏,并能够防止无限制排放

GIS压力容器的强度计算

第一章任务书 第一节毕业设计的主要内容 本次设计为110kV壳体设计,共分为任务书、计算书、说明书三部分,同时还附有12张图纸加以说明。主要是加工工艺和流程。 第二节毕业设计应完成的成果 说明书:如何产品加工出来。 计算书:壳体的壁厚和强度计算。 图纸:GIS壳体的总装图纸和分解图。 第三节应掌握的知识与技能 1、学习和掌握GIS是的用处基本方法。 2、GIS壳体在发电站地位、作用和运行方式等应有清晰的概念。 3、熟悉三通壳体工作原理和性能,及其运行使用中应注意的事项。 4、熟悉三通壳体总装图纸,掌握此产品加工程序。 第二章说明书 第一节概述 一、设计依据 1、上海中发 2、252KV三通壳体委托书。 3、机械设计手册(机械加工一部分) 二、设计范围 1、壳体的强度及厚度设计 1、将三通壳体制造设计 2、三通壳体加工 3、三通壳体的油漆 第二节系统概述 压力容器的强度计算 (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; 第三节设计参数的确定 1、参照国压力容器标准与适用范围 参照我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel)

压力容器材料厚度计算

3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压 试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附 录),超压泄放装置。) ?计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989 对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature) 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。 ●设计温度不得低于元件金属在工作状态可能达到的最高温度; ●当设计温度在0℃以下时,不得高于元件金属可能达到的最低温度; ●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998 对钢板、锻件、紧固件均规定了材料的许用应力。 表3 钢制压力容器中使用的钢材安全系数

压力容器的强度计算精选文档

压力容器的强度计算精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

第11章压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。(5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel)

考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm) 3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立 进行水压试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许 多塔器顶部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为 设计载荷条件,其值不低于工作压力。 ①对最大工作压力小于的内压容器,设计压力取为; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作 条件下,可能达到的最高金属温度确定。(详细内容,参考GB150- 1998,附录B(标准的附录),超压泄放装置。)

压力容器常压容器钢板壁厚计算选择和标准公式

压力容器、常压容器钢板壁厚计算选择和标准公式 容器标准: 《GB 150-2011 压力容器》 《NB/T 47003.1-2009 钢制焊接常压容器》 钢材标准: 《GB 713-2008 锅炉和压力容器用钢板》--GB 150碳素钢和低合金钢的钢板标准 牌号Q245R、Q345R、Q370R、18MnMoNbR、13MnNiMoR、15CrMoR、14Cr1MoR、12Cr2Mo1R、12Cr1MoVR 《GB/T 3274-2007 碳素结构钢和低合金结构钢热轧厚钢板和钢带》--GB150 Q235B钢板标准 《GB 24511-2009 承压设备用不锈钢钢板及钢带》--GB150高合金钢的钢板标准 《GB/T 4237-2007 不锈钢热轧钢板和钢带》--NB/T 47003高合金钢板标准,化学成分、力学性能 《GB/T 3280-2007 不锈钢冷轧钢板和钢带》 《GB/T 20878-2007 不锈钢和耐热钢牌号及化学成分》 《GB/T 699-1999 优质碳素结构钢》 牌号08F、10F、15F、08、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、15Mn、20Mn、25Mn、30Mn、35Mn、40Mn、45Mn、50Mn、60Mn、65Mn、70Mn 《GB/T 700-2006 碳素结构钢》--牌号Q195、Q215、Q235、Q275 《GB/T 709-2006 热轧钢板和钢带的尺寸、外形、重量级允许偏差》 不锈钢牌号对照表 《GB 150-2011 压力容器》

圆筒直径: 钢板卷焊的筒体,规定内径为公称直径。 其值从300~6000mm,DN1000以内50mm进一档,DN1000~6000mm以100mm进一档。 钢板厚度: 《GB 150-2011 压力容器》,Q235B钢板厚度,用于容器壳体时≤16mm,用于其他受压元件时≤30mm。《NB/T 47003.1-2009 钢制焊接常压容器》 不包括腐蚀裕量的圆筒最小厚度:对碳素钢及低合金钢为3 mm;对高合金钢为2 mm。 Q235A,Q235B,Q235C:钢板厚度,用于容器壳体时≤40mm(与大气连通的不受限制) 1、平面支承的底板,当壁板厚度小于10mm 时,底板厚度不小于6mm;当壁板厚度为10mm~20mm 时,底板厚度不小于8mm。 2、在平基础上全平面支撑的底板,底板最小厚度常用4mm~6mm(或与壁板等厚),同时考虑腐蚀裕量来确定底板的名义厚度。 钢板厚度=计算厚度+C1负偏差+C2腐蚀裕量 考虑刚度要求的最小壁厚: 碳素钢和低合金钢,内径≤3800mm,最小壁厚为内径的0.002倍,且不小于3 mm,腐蚀裕量另加。 内径>3800mm时,按运输和现场安装条件确定。 常用钢板厚度:(mm) 2、3、4、5、6、8、10、12、14、16、18、20、22、25、28、30... 焊接系数: a)双面焊和相当于双面焊的全焊透对接: 1)全部无损检测,φ=1.0 2)局部无损检测,φ=0.85 3)不做无损检测,φ=0.7《NB/T 47003 钢制焊接常压容器》 b)单面焊对接,沿根部全长有紧贴的垫板: 1)全部无损检测,φ=0.9 2)局部无损检测,φ=0.8 3)不做无损检测,φ=0.65《NB/T 47003 钢制焊接常压容器》 腐蚀裕量: a)橡胶、玻璃钢衬里及涂层设备:0 b)材质为碳素钢的其它水处理设备:≥1m m c)材质为不锈钢的其它水处理设备:0 筒体、封头的腐蚀裕量 钢板负偏差:

压力容器常用标准

压力容器常用法规标准目录 规程、规范 1、国务院[2003]第373号《特种设备安全监察条例》 2、质技监局锅发[1999]154号《压力容器安全技术监察规 程》 3、国质检锅[2008]R1001 《压力容器压力管道设计许可规则》 4、国质检锅[2002]109号《锅炉压力容器压力管道焊工考 试与管理规则》 5、国质检锅[2003]第207号《锅炉压力容器使用登记管理 方法》 6、国质检锅[2003]194号《锅炉压力容器制造许可工作程 序》 《锅炉压力容器制造许可条件》 《锅炉压力容器安全性能监督 检验规则》 7、国质监局第22号令《锅炉压力容器制造监督管理办法》 8、国质检锅[2003]248号《特种设备无损检测人员考核与 监督管理规则》 二、设计、制造 1、GB/T131-93 机械制图表面粗糙度符号、代号及其注法 2、GB150-1998 钢制压力容器 3、GB151-1999 管壳式换热器 4、GB/T191-2000 包装储运指示标志 5、GB/T221-2000 钢铁产品牌号表示方法 6、GB/T324-1988 焊缝符号表示法 7、GB567-1999 爆破片与爆破装置 8、GB/T1804-2000 一般公差、末注公差的线性和角度尺寸的公差 9、GB/T3098.2-2000 紧固件机械性能螺母、粗牙螺纹 10、GB/T3098.1-2000 紧固件机械性能螺栓、螺钉和螺柱 11、GB/T3103.1-2002 紧固件公差螺栓、螺钉、螺柱和螺母 12、GB/T5779.3-2000 紧固件表面缺陷螺栓螺钉和螺柱特殊要求 13、GB/T9019-2001 压力容器公称直径 14、GB12337-1998 钢制球形储罐 15、GB16749-1997 压力容器波形膨胀节 16、GB/T17395-1998 无缝钢管尺寸外形重量及允许偏差 17、JB/T74-94 管路法兰技术条件 18、JB/T81-94 凸面板式平焊钢制管法兰 19、JB/T86.1-94 凸面钢制管法兰盖 20、JB/T4700~4707-2000压力容器法兰 21、JB/T4710-2005 钢制塔式容器 22、JB/T4711-2003 压力容器涂敷与运输包装 23、JB/T4712.1-2007 鞍式支座

相关文档
相关文档 最新文档