文档库 最新最全的文档下载
当前位置:文档库 › 自回归

自回归

自回归
自回归

自回归(AR )模型

理论模型

自回归(AutoRegressive, AR )模型又称为时间序列模型,数学表达式为

+?++?=1:()(1)...()()na AR y t a y t a y t na e t

其中,e(t)为均值为0,方差为某值的白噪声信号。

Matlab Toolbox

研究表明,采用Yule ‐Walker 方法可得到优化的AR 模型[1],故采用aryule 程序估计模型参数。

[m,refl] = ar(y,n,approach,window)

模型阶数的确定

有几种方法来确定。如Shin 提出基于SVD 的方法,而AIC 和FPE 方法是目前应用最广泛的方法。若计算出的AIC 较小,例如小于‐20,则该误差可能对应于损失函数的10‐10级别,则这时阶次可以看成是系统合适的阶次。

am = aic(model1,model2,...)

fp = fpe(Model1,Model2,Model3,...)

AR预测

yp = predict(m,y,k)

m表示预测模型;y为实际输出;k预测区间;yp为预测输出。

t k y t k

?????

y y y y t y t

(1),(2),...,(1),(,...,(

y t

)2),(1),()

当k

真值;默认情况下,k=1。

在计算AR模型预测时,k应取1,原因参照AR模型理论公式。

compare(y,m,k)

[yh,fit,x0] = compare(y,m,k)

Compare的预测原理与predict相同,但其对预测进行了比较。

||||1001||||y yh fit y μ??

?=×??????

AR 误差

e = pe(m,data)

pe 误差计算。采用yh=predict(m,data,1)进行预测,然后计算误差e=data ‐yh;

[e,r]= resid(m,data,mode,lags); resid(r)

resid 计算并检验误差。采用pe 计算误差;在无输出的情况下,绘出误差图,误差曲线应足够小,黄色区域为99%的置信区间,误差曲线在该区域内表明通过检验。

Matlab 练习

确定模型阶数

采用ASCE benchmark 模型120DOF ,选取y 方向的响应,共8个。首先,对响应数据进行标准化处理;其次,将标准化处理后的数据建立AR 模型;最后,确定合适的模型阶次,通过选取一系列阶数,分别计算对应的AIC 值,从图中可以看出,阶次80以后的AIC 值变化不大,因此,合适的阶次选择为80。

-3.6-3.55-3.5-3.45-3.4-3.35-3.3-3.25-3.2-3.15

-3.1AR order

A I C

AR 模型预测

1

1.05

1.1

1.15

1.2

1.25

-6-4-202468sensor 2. (1-step pred)

s e n s o r 2 (m /s 2

)

AR 误差计算

-2

-1

1

2

Time

m /s 2

e@sensor 2

05

10

152025

Correlation function of residuals. Output sensor 2

lag

附录MATLAB 代码

(1)

% AR model order

clc;clear;

addpath(genpath(pwd),1);

data = load('Case2Damage0_1_0.01_0.001_40_10_150_123_1.mat'); dofy = [2,4,6,8,10,12,14,16];

x = zscore(data.acc(:,dofy));

order = [10:10:130];

for i = 1:length(order)

for j =1:size(x,2)

m = ar(x(:,j),order(i),'yw');

am(i,j) = aic(m);

end

end

plot(order,am,'LineWidth',2,'Marker','*')

xlabel('AR order'),ylabel('AIC')

legend('sensor 2','sensor 4','sensor 6','sensor 8',...

'sensor 10','sensor 12','sensor 14','sensor 16')

(2)

clc;clear;

addpath(genpath(pwd),1);

data = load('Case2Damage0_1_0.01_0.001_40_10_150_123_1.mat'); dofy = [2;4;6;8;10;12;14;16];

order = 80;

ts = zscore(data.acc(:,dofy));

k = 1;

name = {'sensor 2','sensor 4','sensor 6','sensor 8',...

'sensor 10','sensor 12','sensor 14','sensor 16'};

Ounit = repmat({'m/s^2'},length(dofy),1);

ts = iddata(zscore(data.acc(:,dofy)),[],data.dt,...

'OutputName',name,'OutputUnit',Ounit,...

'Name','ASCE-benchmark 120DOF');

m = ar(ts(:,k),order,'yw');

compare(ts(:,k),m,'r-.',1,1000:1300);

(3)

resid(m,ts(:,k),'corr',25)

[e,r] = resid(m,ts(:,k),'corr',40);

resid(r)

plot(e(1000:1300))

参考文献

Matlab help

[1] DA SILVA S, DIAS J NIOR M, LOPES JUNIOR V. Damage detection in a benchmark structure using AR‐ARX models and statistical pattern recognition [J]. J Braz Soc Mech Sci Eng, 2007, 29(2): 174‐84.

线性回归方程的求法(需要给每个人发)

耿老师总结的高考统计部分的两个重要公式的具体如何应用 第一公式:线性回归方程为???y bx a =+的求法: (1) 先求变量x 的平均值,既1231()n x x x x x n = +++???+ (2) 求变量y 的平均值,既1231()n y y y y y n =+++???+ (3) 求变量x 的系数?b ,有两个方法 法112 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=??-+-++-?? (需理解并会代入数据) 法21 2 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆) []1122222212...,...n n n x y x y x y nx y x x x nx ++-?=??+++-??(这个公式需要自己记忆,稍微简单些) (4) 求常数?a ,既??a y bx =- 最后写出写出回归方程???y bx a =+。可以改写为:??y bx a =-(?y y 与不做区分) 例.已知,x y 之间的一组数据: 求y 与x 的回归方程: 解:(1)先求变量x 的平均值,既1(0123) 1.54x = +++= (2)求变量y 的平均值,既1(1357)44 y =+++= (3)求变量x 的系数?b ,有两个方法

法1?b = []11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=??-+-+-+-??--+--+--+--==??-+-+-+-?? 法2?b =[][]11222222222212...011325374 1.5457 ...0123n n n x y x y x y nx y x x x nx ++-??+?+?+?-??==????+++-+++???? (4)求常数?a ,既525??4 1.577a y bx =-=-?= 最后写出写出回归方程525???77 y bx a x =+=+ 第二公式:独立性检验 两个分类变量的独立性检验: 注意:数据a 具有两个属性1x ,1y 。数 据b 具有两个属性1x ,2y 。数据c 具有两个属性2x ,2y 数据d 具有两个属性2x ,2y 而且列出表格是最重要。解题步骤如下 第一步:提出假设检验问题 (一般假设两个变量不相关) 第二步:列出上述表格 第三步:计算检验的指标 2 2 ()()()()()n ad bc K a b c d a c b d -=++++ 第四步:查表得出结论 例如你计算出2K =9大于表格中7.879,则查表可得结论:两个变量之间不相关概率为0.005,或者可以肯定的说两个变量相关的概率为0.995.或095.50 例如你计算出2K =6大于表格中5.024,则查表可得结论:两个变量之间不相关概率为0.025,或者可以肯定的说两个变量相关的概率为0.995.或097.50 上述结论都是概率性总结。切记事实结论。只是大概行描述。具体发生情况要和实际联系!! !!

简单回归分析计算例

【例9-3】-【例9-8】 简单回归分析计算举例 利用例9-1的表9-1中已给出我国历年城镇居民人均消费支出和人均可支配收入的数据, (1)估计我国城镇居民的边际消费倾向和基础消费水平。 (2)计算我国城镇居民消费函数的总体方差S2和回归估计标准差S。 (3)对我国城镇居民边际消费倾向进行置信度为95%的区间估计。 (4)计算样本回归方程的决定系数。 (5)以5%的显著水平检验可支配收入是否对消费支出有显著影响;对Ho :β2=0.7,H1:β2<0.7进行检验。 (6)假定已知某居民家庭的年人均可支配收入为8千元,要求利用例9-3中拟合的样本回归方程与有关数据,计算该居民家庭置信度为95%的年人均消费支出的预测区间。 解: (1)教材中的【例9-3】 Yt =β1+β2Xt +u t 将表9-1中合计栏的有关数据代入(9.19)和(9.20)式,可得: 2?β =2129.0091402.57614 97.228129.009 1039.68314) -(-???=0.6724 1 ?β=97.228÷14-0.6724×129.009÷14=0. 7489 样本回归方程为: t Y ?=0.7489+0.6724Xt 上式中:0.6724是边际消费倾向,表示人均可支配收入每增加1千元,人均消费支出会增加0.6724千元;0.7489是基本消费水平,即与收入无关最基本的人均消费为0.7489千元。 (2)教材中的【例9-4】 将例9-1中给出的有关数据和以上得到的回归系数估计值代入(9.23)式,得: ∑2 t e =771.9598-0.7489×97.228-0. 6724×1039.683=0.0808 将以上结果代入(9.21)式,可得: S2=0.0808/(14-2)=0.006732 进而有: S=0.006732=0.082047 (3)教材中的【例9-5】 将前面已求得的有关数据代入(9.34)式,可得: 2 ?βS =0.082047÷14/129.0091402.5762)(-=0.0056 查t分布表可知:显著水平为5%,自由度为12的t分布双侧临界值是2.1788,前 面已求得0.6724?2 =β,将其代入(9.32)式,可得: 0560.01788.20.67240560.01788.26724.02?+≤≤?-β 即:0.68460.66022≤≤β (4)教材中的【例9-6】 r2=1 - SST SSE = 1- 96.7252 0.0808 = 0.9992 上式中的SST是利用表9-1中给出的数据按下式计算的: SST=∑2t Y -(∑Yt )2/n =771.9598-(97.228)2÷14=96.7252

简单回归分析计算例

【例9-3】-【例9-8】简单回归分析计算举例 利用例9-1的表9-1中已给出我国历年城镇居民人均消费支出和人均可支配收入的数据,(1)估计我国城镇居民的边际消费倾向和基础消费水平。 (2)计算我国城镇居民消费函数的总体方差S2和回归估计标准差S。 (3)对我国城镇居民边际消费倾向进行置信度为95%的区间估计。(4)计算样本回归方程的决定系数。 (5)以5%的显著水平检验可支配收入是否对消费支出有显著影响;对Ho:β2=0.7,H1:β2<0.7进行检验。 (6)假定已知某居民家庭的年人均可支配收入为8千元,要求利用例9-3中拟合的样本回归方程与有关数据,计算该居民家庭置信度为95%的年人均消费支出的预测区间。 解:  (1)教材中的【例9-3】 Yt=β1+β2Xt+u t  将表9-1中合计栏的有关数据代入(9.19)和(9.20)式,可 得: ==0.6724 =97.228÷14-0.6724×129.009÷14=0. 7489 样本回归方程为: =0.7489+0.6724Xt 上式中:0.6724是边际消费倾向,表示人均可支配收入每增加1千元,人均消费支出会增加0.6724千元;0.7489是基本消费水平,即与收入无关最基本的人均消费为0.7489千元。 (2)教材中的【例9-4】 将例9-1中给出的有关数据和以上得到的回归系数估计值代入 (9.23)式,得: =771.9598-0.7489×97.228-0. 6724×1039.683=0.0808  将以上结果代入(9.21)式,可得:  S2=0.0808/(14-2)=0.006732 进而有:S==0.082047 (3)教材中的【例9-5】 将前面已求得的有关数据代入(9.34)式,可得: =0.082047÷=0.0056 查t分布表可知:显著水平为5%,自由度为12的t分布双侧临

你应该要掌握的7种回归分析方法

你应该要掌握的7种回归分析方法 标签:机器学习回归分析 2015-08-24 11:29 4749人阅读评论(0) 收藏举报 分类: 机器学习(5) 目录(?)[+]转载:原文链接:7 Types of Regression Techniques you should know!(译者/刘帝伟审校/刘翔宇、朱正贵责编/周建丁) 什么是回归分析? 回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。 回归分析是建模和分析数据的重要工具。在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 我们为什么使用回归分析? 如上所述,回归分析估计了两个或多个变量之间的关系。下面,让我们举一个简单的例子来理解它: 比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。现在,你有公司最新的数据,这些数据显示出销售额增长大约是经济增长的2.5倍。那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。 使用回归分析的好处良多。具体如下: 1.它表明自变量和因变量之间的显著关系;

2.它表明多个自变量对一个因变量的影响强度。 回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。 我们有多少种回归技术? 有各种各样的回归技术用于预测。这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。我们将在下面的部分详细讨论它们。 对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。但在你开始之前,先了解如下最常用的回归方法: 1. Linear Regression线性回归 它是最为人熟知的建模技术之一。线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。 用一个方程式来表示它,即Y=a+b*X + e,其中a表示截距,b表示直线的斜率,e是误差项。这个方程可以根据给定的预测变量(s)来预测目标变量的值。

(完整版)第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计 一、判断题 1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。(F) 2.随机扰动项和残差项是一回事。(F ) 3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。(F ) 4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。 ( F ) 5.如果观测值i X 近似相等,也不会影响回归系数的估计量。 ( F ) 二、单项选择题 1.设样本回归模型为i 01i i ??Y =X +e ββ+,则普通最小二乘法确定的i ?β的公式中,错误的是( D )。 A . ()() () i i 1 2 i X X Y -Y ?X X β--∑∑= B .() i i i i 12 2i i n X Y -X Y ? n X -X β∑∑∑∑∑= C .i i 122i X Y -nXY ?X -nX β∑∑= D .i i i i 12x n X Y -X Y ?βσ∑∑∑= 2.以Y 表示实际观测值,?Y 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。 A .i i ?Y Y 0∑(-)= B .2 i i ?Y Y 0∑ (-)= C .i i ?Y Y ∑(-)=最小 D .2 i i ?Y Y ∑ (-)=最小 3.设Y 表示实际观测值,?Y 表示OLS 估计回归值,则下列哪项成立( D )。 A .?Y Y = B .?Y Y = C .?Y Y = D .?Y Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。 A .X Y (,) B . ?X Y (,) C .?X Y (,) D .X Y (,) 5.以Y 表示实际观测值,?Y 表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01i ???Y X ββ+=满足( A )。 A .i i ?Y Y 0∑(-)= B .2 i i Y Y 0∑ (-)= C . 2 i i ?Y Y 0∑ (-)= D .2i i ?Y Y 0∑ (-)= 6.按经典假设,线性回归模型中的解释变量应是非随机变量,且( A )。 i u i e

空间统计-空间自相关分析

空间自相关分析 1.1 自相关分析 空间自相关分析是指邻近空间区域单位上某变量的同一属性值之间的相关程度,主要用空间自相关系数进行度量并检验区域单位的这一属性值在空间区域上是否具有高高相邻、低低相邻或者高低间错分布,即有无聚集性。若相邻区域间同一属性值表现出相同或相似的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域也高(低),则称为空间正相关;若相邻区域间同一属性值表现出不同的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域低(高),则称为空间负相关;若相邻区域间同一属性值不表现任何依赖关系,即呈随机分布,则称为空间不相关。 空间自相关分析分为全局空间自相关分析和局部空间自相关分析,全局自相关分析是从整个研究区域内探测变量在空间分布上的聚集性;局域空间自相关分析是从特定局部区域内探测变量在空间分布上的聚集性,并能够得出具体的聚集类型及聚集区域位置,常用的方法有Moran's I 、Gear's C 、Getis 、Morans 散点图等。 1.1.1 全局空间自相关分析 全局空间自相关分析主要用Moran's I 系数来反映属性变量在整个研究区域范围内的空间聚集程度。首先,全局Moran's I 统计法假定研究对象之间不存在任何空间相关性,然后通过Z-score 得分检验来验证假设是否成立。 Moran's I 系数公式如下: 11 2 11 1 ()()I ()()n n ij i j i j n n n ij i i j i n w x x x x w x x =====--= -∑∑∑∑∑(式 错误!文档中没有指定样式的文字。-1) 其中,n 表示研究对象空间的区域数;i x 表示第i 个区域内的属性值,j x 表示第j 个区域内的属性值,x 表示所研究区域的属性值的平均值;ij w 表示空间权重矩阵,一般为对称矩阵。 Moran's I 的Z-score 得分检验为:

简单线性回归分析思考与练习参考答案

第10章 简单线性回归分析 思考与练习参考答案 一、最佳选择题 1.如果两样本的相关系数21r r =,样本量21n n =,那么( D )。 A. 回归系数21b b = B .回归系数12b b < C. 回归系数21b b > D .t 统计量11r b t t = E. 以上均错 2.如果相关系数r =1,则一定有( C )。 A .总SS =残差SS B .残差SS =回归 SS C .总SS =回归SS D .总SS >回归SS E. 回归MS =残差MS 3.记ρ为总体相关系数,r 为样本相关系数,b 为样本回归系数,下列( D )正确。 A .ρ=0时,r =0 B .|r |>0时,b >0 C .r >0时,b <0 D .r <0时,b <0 E. |r |=1时,b =1 4.如果相关系数r =0,则一定有( D )。 A .简单线性回归的截距等于0 B .简单线性回归的截距等于Y 或X C .简单线性回归的残差SS 等于0 D .简单线性回归的残差SS 等于SS 总 E .简单线性回归的总SS 等于0 5.用最小二乘法确定直线回归方程的含义是( B )。 A .各观测点距直线的纵向距离相等 B .各观测点距直线的纵向距离平方和最小 C .各观测点距直线的垂直距离相等 D .各观测点距直线的垂直距离平方和最小 E .各观测点距直线的纵向距离等于零 二、思考题 1.简述简单线性回归分析的基本步骤。 答:① 绘制散点图,考察是否有线性趋势及可疑的异常点;② 估计回归系数;③ 对总体回归系数或回归方程进行假设检验;④ 列出回归方程,绘制回归直线;⑤ 统计应用。 2.简述线性回归分析与线性相关的区别与联系。

常见非线性回归模型

常见非线性回归模型 1.简非线性模型简介 非线性回归模型在经济学研究中有着广泛的应用。有一些非线性回归模型可以通 过直接代换或间接代换转化为线性回归模型,但也有一些非线性回归模型却无 法通过代换转化为线性回归模型。 柯布—道格拉斯生产函数模型 y AKL 其中L和K分别是劳力投入和资金投入, y是产出。由于误差项是可加的, 从而也不能通过代换转化为线性回归模型。 对于联立方程模型,只要其中有一个方程是不能通过代换转化为线性,那么这个联立方程模型就是非线性的。 单方程非线性回归模型的一般形式为 y f(x1,x2, ,xk; 1, 2, , p) 2.可化为线性回归的曲线回归 在实际问题当中,有许多回归模型的被解释变量y与解释变量x之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为

线性关系,利用线性回归求解未知参数,并作回归诊断。如下列模型。 (1)y 0 1e x (2)y 0 1x2x2p x p (3)y ae bx (4)y=alnx+b 对于(1)式,只需令x e x即可化为y对x是线性的形式y01x,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。 对于(2)式,可以令x1=x,x2=x2,?,x p=x p,于是得到y关于x1,x2,?, x p 的线性表达式y 0 1x12x2 pxp 对与(3)式,对等式两边同时去自然数对数,得lnylnabx ,令 y lny, 0 lna, 1 b,于是得到y关于x的一元线性回归模型: y 0 1x。 乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为yt本身是异方差的,而lnyt是等方差的。加性误差项模型认为yt是等 方差的。从统计性质看两者的差异,前者淡化了y t值大的项(近期数据)的作用, 强化了y t值小的项(早期数据)的作用,对早起数据拟合得效果较好,而后者则 对近期数据拟合得效果较好。 影响模型拟合效果的统计性质主要是异方差、自相关和共线性这三个方面。 异方差可以同构选择乘性误差项模型和加性误差项模型解决,必要时还可以使用 加权最小二乘。

多元线性回归模型公式

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量 y 受k 个自变量x 1,x 2,...,x k 的影响,其n 组观测值为(y a ,x 1a ,x 2a ,...,x ka ), a 1,.2..,n 。那么,多元线性回归模型的结构形式为: y a 1x 1a 2x 2a ... k x ka a (3.2.11) 式中: 0,1 ,..., k 为待定参数; a 为随机变量。 如果b 0,b 1,...,b k 分别为 0,1, 2 ... , k 的拟合值,则回归方程为 ?=b 0 b 1x 1 b 2x 2 ... b k x k (3.2.12) 式中: b 0为常数; b 1,b 2,...,b k 称为偏回归系数。 偏回归系数b i (i1,2,...,k )的意义是,当其他自变量 x j (j i )都固定时,自变量 x i 每 变化一个单位而使因变 量 y 平均改变的数值。 根据最小二乘法原理, i (i 0,1,2,...,k )的估计值b i (i 0,1,2,...,k )应该使 n 2 n 2 Q y a y a y a b 0 b1x1a b2x2a ... bkxk a min (3.2.13) a 1 a1 有求极值的必要条件得 Q n 2 y a y a 0 b 0 a 1 (3.2.14) Q n 2 y a yaxja 0(j 1,2,...,k) b j a1 将方程组(3.2.14)式展开整理后得:

你应该要掌握的7种回归分析方法

. 种回归分析方法7你应该要掌握的标签:机器学习回归分析 2015-08-24 11:29 4749人阅读评论(0) 收藏举报 分类: (5)机器学习 目录(?)[+] :原文:7 Types of Regression Techniques you should know!(译者/帝伟审校/翔宇、周建丁)责编/朱正贵 什么是回归分析? 回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。 回归分析是建模和分析数据的重要工具。在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 我们为什么使用回归分析? 如上所述,回归分析估计了两个或多个变量之间的关系。下面,让我们举一个简单的例子来理解它: 文档Word . 比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。现在,你有公司最新的数

据,这些数据显示出销售额增长大约是经济增长的2.5倍。那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。 使用回归分析的好处良多。具体如下: 1.它表明自变量和因变量之间的显著关系; 它表明多个自变量对一个因变量的影响强度2.。 回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。 我们有多少种回归技术? 有各种各样的回归技术用于预测。这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。我们将在下面的部分详细讨论它们。 对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。但在你开始之前,先了解如下最常用的回归方法: 1. Linear Regression线性回归 它是最为人熟知的建模技术之一。线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。文档Word . 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。 用一个方程式来表示它,即Y=a+b*X + e,其中a表示截距,b表示直线的斜率,e是误差项。这个方程可以根据给定的预测变量(s)来预测目标变量的值。

线性回归方程和卡方的求法

高考统计部分的两个重要公式的具体如何应用 第一公式:线性回归方程为???y bx a =+的求法: (1) 先求变量x 的平均值,既1231()n x x x x x n = +++???+ (2) 求变量y 的平均值,既1231()n y y y y y n =+++???+ (3) 求变量x 的系数?b ,有两个方法 法112 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=??-+-++-?? (需理解并会代入数据) 法21 2 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆) []1122222212...,...n n n x y x y x y nx y x x x nx ++-?=??+++-??(这个公式需要自己记忆,稍微简单些) (4) 求常数?a ,既??a y bx =- 最后写出写出回归方程???y bx a =+。可以改写为:??y bx a =-(?y y 与不做区分) 例.已知,x y 之间的一组数据: 求y 与x 的回归方程: 解:(1)先求变量x 的平均值,既1(0123) 1.54x = +++= (2)求变量y 的平均值,既1(1357)44 y =+++= (3)求变量x 的系数?b ,有两个方法

法1?b = []11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=??-+-+-+-??--+--+--+--==??-+-+-+-?? 法2?b =[][]11222222222212...011325374 1.5457 ...0123n n n x y x y x y nx y x x x nx ++-??+?+?+?-??==????+++-+++???? (4)求常数?a ,既525??4 1.577a y bx =-=-?= 最后写出写出回归方程525???77y bx a x =+=+ 第二公式:独立性检验 两个分类变量的独立性检验: 注意:数据a 具有两个属性1x ,1y 。数 据b 具有两个属性1x ,2y 。数据c 具有两个属性2x ,2y 数据d 具有两个属性2x ,2y 而且列出表格是最重要。解题步骤如下 第一步:提出假设检验问题 (一般假设两个变量不相关) 第二步:列出上述表格 第三步:计算检验的指标 22 ()()()()()n ad bc K a b c d a c b d -=++++ 2K =9大于表格中7.879,则查表可得结论:两个变量之间不相关概率为0.005,或者可以肯定的说两个变量相关的概率为0.995.或095.50 例如你计算出2K =6大于表格中5.024,则查表可得结论:两个变量之间不相关概率为0.025,或者可以肯定的说两个变量相关的概率为0.995.或097.50 上述结论都是概率性总结。切记事实结论。只是大概行描述。具体发生情况要和实际联 系!!!!

第十二章 简单回归分析

第十二章简单回归分析习题 一、是非题 1.直线回归反映两变量间的依存关系,而直线相关反映两变量间的相互线性伴随变化关系. 2.对同一组资料,如相关分析算出的r越大,则回归分析算出的b值也越大. 3.对同一组资料,对r与b分别作假设检验,可得t r=t b 4.利用直线回归估计X值所对应的Y值的均数置信区间时,增大残差标准差可以减小区间长度. 5.如果直线相关系数r=0,则直线回归的SS残差必等于0. 二、选择题 1. 用最小二乘法确定直线回归方程的原则是各观察点距直线的( ). A.纵向距离之和最小 B. 纵向距离的平方和最小 C. 垂直距离之和最小D.垂直距离的平方和最小 E.纵向距离的平方和最大 2.Y=14十4X是1~7岁儿童以年龄(岁)估计体质量(市斤)的回归方程,若体质量换成位kg,则此方程( ) A 截距改变 B 回归系数改变 C 两者都改变 D 两者都不改变 E.相关系数改变 4.直线回归系数假设检验,其自由度为( ) A.n B. n-1

C.n-2 D. 2n-1 E.2(n-1) 5.当r=0时,Y=a+b X回归方程中( ) A a必大于零 B a必大于X C a必等于零 D a必大于Y E a必等于b 6.在多元线性回归分析中,反应变量总离均差平方和可以分解为两部分,残差是指( ). A.观察值与估计值之差B.观察值与平均值之差 C.估计值与平均值的平方和之差D.观察值与平均值之差的平方和E.观察值与估计值之差的平方和 三、筒答题 1.用什么方法考察回归直线是否正确? 2.简述回归系数方差分析Y的平方和与自由度的分解. 3. 举例说明如何用直线回归方程进行预测和控制? 4. 直线回归分析时怎样确定自变量和因变量? 5. 简述曲线回归常用的几种曲线形式.

回归分析与因子分析之比较

回归分析与因子分析之比较 刘婷玉数学与统计学院 06 级 【摘要】回归分析与因子分析是数理统计中常用的两种数据处理方法,本文对他们进行比较,分析了两种方法的区别与联系,各自的使用和适用范围,对教学质量的提高及在实际中对于有效选择此两种统计方法提供了依据。 【关键词】回归分析因子分析比较 一、问题提出 回归分析和因子分析都是研究因变量与因子间关系的一种数据处理 方法,在模型上看,只是因子结构不一样,他们之间到底有什么内在联系,值得我们研究并加以利用。 二、问题分析 1、统计模型和类型 多元线性回归模型表示方法为 Y b0b1 X 1b2 X 2b k X k u n 个样本观测值(Y,X 1i , X 2 i ,, X ki )i 1,2, , n i 得: Y b 0b X 1 i b X 2 i b X ki u i i12k 其解析表达式为 :

Y 1 b 0 b 1 X 11 b 2 X 21 b k X Y 2 b 0 b 1 X 12 b 2 X 22 b k X k 1 u 1 k 2 u 2 Y n b b 1 X 1n b 2 X 2 n b k X kn u n 多元模型的矩阵表达式为 Y 1 1 X Y 2 1 X Y n 1 X YXB U 11 12 1 n X X X 21 22 2 n X X X k1 b 0 u 1 b 1 k 2 u 2 b 2 kn b k u n Y 1 1 X 11 X Y Y 2 1 X 12 X X Y n 1 X 1 n X b 0 u 1 b 1 U u 2 B b 2 21 22 2 n X X X k 1 k 2 kn b k u n 一般地,设 X=(x1 , x2, ?,xp) ’为可观测的随机变量,且有 X i i a i 1 f 1 a i 2 f 2 a im f m e i 。在因子分析中, p 维的变量 向量 x 被赋予一个随机结构, x = α+Af+ε具体也可以写成以下形式: x 1 a 11 f 1 a 12 f 2 a 1m f m 1 x 2 a 21 f 1 a 22 f 2 a 2 m f m 2 x p a p1 f 1 a p 2 f 2 a pm f m p (1) 其中 α是 p 维向量, A 是 p ×r 参数矩阵, f 是 r 维潜变量向量,称为

基于空间自回归模型的中长期负荷特性分析及预测1022

基于空间自回归模型的中长期负荷特性分析及预测 摘要 - 本文利用空间自回归模型,对电力需求和国内生产总值之间的空间特征进行了分析。建立了将电力需求之间的空间特征考虑在内的预测组合模型。仿真结果显示了电力需求和国内生产总值之间有明显的空间相互依存性,并且两者之间在空间的相互依赖性很强。预测结果表明,本文中建立的预测组合模型的误差很小。另外,本文提出的组合模型因其适应性较强,是一种有效的预测方法。 关键词——电力需求;负荷预测;空间自回归模型;莫兰 一.引言 对负荷的特点和中长期负荷预测的研究对电力系统是非常重要。在电力市场中,做好特性分析与负荷预测,特别是中长期负荷,直接关系到电网的经济利益 针对时间相关性的电力需求及其影响因素的研究的方法早已提出,研究结果之间的时间相关性,旨在表明电力需求和它的因素之间的关系是非常强烈。但随着理论研究的发展,越来越多的论文指出,根据空间依赖变量的空间计量经济学的研究表明,经济和文化发展是密切相关的。电力需求和使用之间的统计年鉴数据在中国 30 个省的 GDP 之间的依赖关系。莫兰的结果我显示电力需求与国内生产总值的 30 个省市之间的空间强烈依赖关系。空间自回归模型的研究关键在于探讨是否存在变量之间的空间相关性。对空间的依赖研究引起的广泛关注,是因为其采用空间自回归计算模型是很合理的。采用空间自回归模型,灰色模型和BP 神经网络模型的建立与空间相关性的组合。 二.空间自回归模型 A.空间自回归模型 一个空间自回归模型的一般规范是规范相结合的空间自回归因变量之间的解释变量和空间自回归干扰。对于一阶过程中,该模型是由: 1y y ρωχβμ=++ 2μλωε =+ (1) () 20,,n εσ≈N I 其中Y 是(1)N ?)对因变量的观测向量,X 的 ()N K ?包含的解释变量的设

非线性回归分析(常见曲线及方程)

非线性回归分析 回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理 两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析 常见非线性规划曲线 1.双曲线1b a y x =+ 2.二次曲线 3.三次曲线 4.幂函数曲线 5.指数函数曲线(Gompertz) 6.倒指数曲线y=a/e b x其中a>0,

7.S型曲线(Logistic) 1 e x y a b-= + 8.对数曲线y=a+b log x,x>0 9.指数曲线y=a e bx其中参数a>0 1.回归: (1)确定回归系数的命令 [beta,r,J]=nlinfit(x,y,’model’,beta0) (2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) 2.预测和预测误差估计: [Y,DELTA]=nlpredci(’model’, x,beta,r,J) 求nlinfit 或lintool所得的回归函数在x处的预测值Y及预测值的显著性水平为1-alpha的置信区间Y,DELTA. 例2 观测物体降落的距离s与时间t的关系,得到数据如下表,求s 关于t的回归方程2 ?ct bt a s+ + =. yhat=beta(1)*exp(beta(2)./x); 2.输入数据: x=2:16; y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59

用最小二乘法求线性回归方程

最小二乘法主要用来求解两个具有线性相关关系的变量的回归方程,该方法适用于求解与线性回归方程相关的问题,如求解回归直线方程,并应用其分析预报变量的取值等.破解此类问题的关键点如下: ①析数据,分析相关数据,求得相关系数r,或利用散点图判断两变量之间是否存在线性相关关系,若呈非线性相关关系,则需要通过变量的变换转化构造线性相关关系. ②建模型.根据题意确定两个变量,结合数据分析的结果建立回归模型. ③求参数.利用回归直线y=bx+a的斜率和截距的最小二乘估计公式,求出b,a,的值.从而确定线性回归方程. ④求估值.将已知的解释变量的值代入线性回归方程y=bx+a中,即可求得y的预测值. 注意:回归直线方程的求解与应用中要注意两个方面:一是求解回归直线方程时,利用样本点的中心(x,y)必在回归直线上求解相关参数的值;二是回归直线方程的应用,利用回归直线方程求出的数值应是一个估计值,不是真实值. 经典例题: 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为1,2.,……,17)建立模型①:y=+;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:y=99+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠并说明理由. 思路分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测. 解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–+×19=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+×9=(亿元). (2)利用模型②得到的预测值更可靠.理由如下: (i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利

JMP和Minitab的比较(二):简单回归分析

JMP和Minitab的比较(二):简单回归分析 ZDNet 企业管理软件频道更新时间:2008-08-14 作者:来源: 本文关键词:统计JMP 上次看到有人以“基本统计分析”的应用为出发点对JMP和Minitab进行了真刀真枪的大PK,并且得出JMP在统计专业性和整体易用性方面远胜于Minitab的结论。笔者对该作者实事求是的风格颇认同,在此继续遵循这一原则,从另外一个常用统计“简单回归分析”的应用来再次比较JMP和Minitab到底孰优孰劣。 将相同的两列数据“X”和“Y”分别输入到最新版的JMP7和Minitab15中,想得到线性回归方程、含回归直线的散点图、回归检验报告以及回归直线的预测区间。 对比项目一:操作的便捷性。 JMP的操作路径为:主菜单Analyze > Fit Y By X,初始报告弹出菜单中的Fit Line,以及Linear Fit弹出报告中的Confid Curve Fit和Confid Curve Indiv等相关选项,得到的报表如图一所示;Minitab的操作路径为:主菜单Stat > Regression > Fitted Line Plot,Options中选择Display confidence interval和Display prediction interval,得到的报告和图形经整合后如图二所示。操作实现的时间没有明显的差异,但JMP的操作模式让人意识到操作步骤之间层层递进的关系,逻辑性强,而Minitab的操作则纯粹是靠用户用记忆力连接起来的一组相对独立的机械动作。

对比项目二:输出报表的整体效果。 JMP将统计分析结果和相关图形天然地整合在一起,用户查阅起来一目了然。而Minitab的统计分析结果显示在Session窗口,而相关图形又显示在另一个独立的Graph窗口中,查阅起来平添了几分麻烦。如果分析的数据、内容、次数一多,这种麻烦就更难忍受了。 对比项目三:统计分析的具体内容。 无论是回归方程的系数,还是R2、显著性检验P值等等,JMP和Minitab的输出结果都是一致的,这说明两种软件背后所遵循的统计原理其实都是一样的。如果观察得更仔细一些,你会发现JMP中的小数位保留得比Minitab更多,而且可以自定义,显得更精确、更专业一些。

风速时程模拟自回归法空间20个点-AR模型

%风速时程模拟自回归法空间20个点-AR模型 %自回归模型阶p=4,模拟空间20个点,时间步长ti=0.1,频率步长f=0.001, %空间相干系数采用与频率无关的shiotani相关系数,脉动风速谱为Davenport谱 clear tic k=0.005; v10=25; n=0.001:0.001:10; xn=1200*n./v10; s1=4*k*25^2*xn.^2./n./(1+xn.^2).^(4/3); %Davenport谱 %产生空间点坐标 for i=1:20 x(i)=5+i; z(i)=8+i; end %求R矩阵 syms f R0=zeros(20); for i=1:20 for j=i:20 H0=inline('(4*1200^2*f*k)./(1+(1200*f/v10).^2).^(4/3)','f','k','v10'); k=0.005; %地面粗糙度长度 v10=25; R0(i,j)=quadl(H0,0.001,10,0.001,0,k,v10); R0(j,i)=R0(i,j); end end R1=zeros(20); for i=1:20 for j=i:20 H1=inline('(4*1200^2*f*k).*exp(-sqrt(dx^2/50^2+dz^2/60^2)).*cos(2*pi*f* ti)./(1+(1200*f/v10).^2).^(4/3)','f','k','dx','dz','ti','v10'); k=0.005; ti=0.1; %时间步长 v10=25; dx=x(i)-x(j); dz=z(i)-z(j); R1(i,j)=quadl(H1,0.001,10,0.001,0,k,dx,dz,ti,v10); R1(j,i)=R1(i,j); end

应用回归分析第七章答案.

第七章岭回归 1.岭回归估计是在什么情况下提出的? 答:当解释变量间出现严重的多重共线性时,用普通最小二乘法估计模型参数,往往参数估计方差太大,使普通最小二乘法的效果变得很不理想,为了解决这一问题,统计学家从模型和数据的角度考虑,采用回归诊断和自变量选择来克服多重共线性的影响,这时,岭回归作为一种新的回归方法被提出来了。 2.岭回归估计的定义及其统计思想是什么? 答:一种改进最小二乘估计的方法叫做岭估计。当自变量间存在多重共线性,∣X'X∣≈0时,我们设想给X'X加上一个正常数矩阵kI(k>0),那么X'X+kI 接近奇异的程度小得多,考虑到变量的量纲问题,先对数据作标准化,为了计算方便,标准化后的设计阵 仍然用X表示,定义为 ()()1 ?'' X X I X y βκκ- =+,称为β的岭回归估计,其中k称 为岭参数。 3.选择岭参数k有哪几种主要方法? 答:选择岭参数的几种常用方法有1.岭迹法,2.方差扩大因子法,3.由残差平方和来确定k值。 4.用岭回归方法选择自变量应遵从哪些基本原则? 答:用岭回归方法来选择变量应遵从的原则有: (1)在岭回归的计算中,我们假定设计矩阵X已经中心化和标准化了,这样可以直接比较标准化岭回归系数的大小,我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量。 (2)当k值较小时标准化岭回归系数的绝对值并不是很小,但是不稳定,随着k的增加迅速趋于零。像这样的岭回归系数不稳定,震动趋于零的自变量,我们也可以予以删除。 (3)去掉标准化岭回归系数很不稳定的自变量,如果有若干个岭回归系数不稳定,究

竟去掉几个,去掉哪几个,这并无一般原则可循,这需根据去掉某个变量后重新进行岭回归分析的效果来确定。 5.对第5章习题9的数据,逐步回归的结果只保留了3个自变量x1,x2,x5,用y 对这3个自变量做岭回归分析。 答:依题意,对逐步回归法所保留的三个自变量做岭回归分析。 程序为: include'C:\Program Files\SPSSEVAL\Ridge regression.sps'. ridgereg dep=y/enter x1 x2 x5 /start=0.0/stop=1/inc=0.01. 计算结果为:

相关文档
相关文档 最新文档