文档库 最新最全的文档下载
当前位置:文档库 › 金属有机化学中的钯催化的反应

金属有机化学中的钯催化的反应

金属有机化学中的钯催化的反应
金属有机化学中的钯催化的反应

XXXX大学研究生学位课程论文(2012 ---- 2013 学年第一学期)

学院(中心、所):化学化工学院

专业名称:应用化学

课程名称:高等有机化学

论文题目:金属有机化学中的钯催化的反应

授课教师(职称)XXXX(教授)

研究生姓名:XXXX

年级:2012级

学号:XXXXXXXXX

成绩:

评阅日期:

XXXX大学研究生学院

2012年12 月25 日

金属有机化学中的钯催化的反应

XXXXXX

(XXXX大学化学化工学院,山西,太原,030006)

摘要:过渡金属钯在金属有机化学方面具有丰富的反应性,在各类有机化学反应中如氢化、氧化脱氢、偶联、环加成等反应中,钯是优良的催化剂,或是催化剂的重要组分之一。本文在查阅大量近几年文献资料的基础上,综述了钯催化的反应,同时综述了钯催化反应的机理以及钯催化反应的研究现状。

关键词:钯,催化剂,反应机理,研究进展

1钯催化的反应类型及反应机理

在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。对石油重整反应,钯也是常选取的催化剂组分之一。

1.1氢化反应

钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂。

1.1.1反应式及反应机理

反应底物首先和氢气分子分别被吸附到催化剂上,然后和催化剂的活性中心形成配位键,最后完成氢的转移,氢和反应底物形成σ-键。

1.1.2反应方程式举例

1.2氧化反应

烯烃和炔烃是十分常见并且重要的有机化合物,选择性地氧化这类不饱和碳氢化合物一直是化学工业和学术界的重要研究目标之一。

1.2.1分子氧参与的钯催化烯烃的氧化反应

根据亲核试剂的不同,如氧、氮和碳等亲核试剂,把催化烯烃的氧化反应可以形成C-O、C-N和C-C键。

1.2.1.1反应机理

钯催化烯烃的氧化反应都经过三个过程:首先,把插入烯烃形成新的C-Pd键;接着,有机钯中间体进行β-H消除产生Pd(0);最后,Pd(0)被重新氧化为Pd(П)。

1.2.1.2形成C-C键

1.2.1.2.1烯-烯偶联

化合物3含有两个烯丙基,通过串联环化反应可以合成具有单萜柏木烷骨架的产物。

1.2.1.2.2烯-芳环偶联

Iida等以Pd(OAc)2和Cu(OAc)2为催化剂,乙睛为溶剂,实现了芳氨取代的环己烯酮9的分子内环化反应生成咔唑酮衍生物10。

1.2.1.2.3烯-杂环化合物的偶联

烯基取代的吲哚13在钯催化下可以发生分子内环化偶联反应生成具有三环结构的吲哚衍生物14 。

1.2.1.2.4烯-金属有机化合物的偶联

1968年,Heck首次报道了芳基金属与烯烃的加成反应。这里的芳基金属为芳基汞。反应机理主要包括三个基元反应:(1)转金属化;(2)钯中间体对烯烃的加成反应;(3)β-氢消除。

1.2.1.2.5烯-羧酸脱酸偶联

苯甲酸可以脱去一分子二氧化碳与烯烃发生氧化偶联反应。Pd(OAc)2/O2/DMSO-DMF 体系下,吸电子取代的芳环和供电子取代的芳环都可以与烯烃发生氧化偶联反应。

1.2.1.2形成C-O键

1.2.1.2.1烷氧基化反应

醇或苯酚的-OH对碳碳双键的亲核进攻会导致烷氧基化反应。当双键上含有烷基时氧钯化中间体将会进行β-H消除,形成烯基或烯丙基醚,被称之为Wacker类型反应。

1.2.1.2.2-酰氧基化反应

烯烃的酰氧基化反应也可以形成C-O键,包括分子内酰氧基化反应生成环状内酯化合物和分子间的酰氧基化反应生成烯丙酯衍生物。

1.2.1.2.3缩醛化反应

Hosokawa等使用PdCl2/ CuCl/Na2HPO4/O2催化体系实现了烯醇化合物的环化反应。

1.2.1.3形成C-N键

1.2.1.3.1分子内的胺钯化反应

Hegedus等最先报道了烯烃的氨钯化反应形成C-N键。

1.2.1.3.2分子间的胺钯化反应

烯烃与胺发生分子间的胺钯化反应形成含C-N键的钯中间体,之后进行H消除得到烯胺化合物。Lee等用酞胺与贫电子末端烯在把催化下发生分子间胺化反应合成了烯酞胺

1.2.1.3.3烯烃的双官能团化反应

烯烃的双官能团化反应在可以形成两个C-X键(X一O, N, C,是合成许多有用的有机化合物的重要手段,包括双羟化、双胺化和双氧化等等。

1.2.1.3.4烯烃的双碳化反应

2009年,Sigman等用芳基锡试剂实现了烯烃的双芳化反应。

1.2.1.3.5烯烃的双氧化反应

烯烃的双氧化反应可以形成两个C-O键。2006年,Sigman等报道了把催化邻轻基苯乙烯的二烷基化反应l。

1.2.1.3.6烯烃的胺氧化反应

至今为止,关于钯催化烯烃胺氧化反应的报道很少。2009年,Muniz等实现了烯的分子内胺氧化反应。

1.2.1.3.7烯烃的碳胺化反应

烯烃的碳胺化反应可以在双键上形成C-N和C-C键。2006年,Yang等利用烯烃的胺碳化反应合成了吲哚衍生物。

1.2.1.3.8烯烃的碳氧化反应

2005年,Hosokawa等报道了烯丙醇对烯醚的碳氧化反应。该反应的机理如下,首先烯丙醇的羟基与烯醚发生氧钯化反应形成中间体62,接着C-Pd键断裂插入烯丙醇的双键形成呋喃中间体,最后进行β-氢消除得到所需产物。

1.2.1.3.9Wacker反应

1998年,Sheldon等报道了水溶液中的Wacker反应,该体系成功的关键是使用水溶性的邻菲啰琳为配体。该反应的另一个特点是不需要加入助氧化剂(如氯化铜和苯醌)。

1.2.2分子氧参与的钯催化炔烃的氧化反应

1.2.2.1形成C-C键

2010年,Lei等首次报道了分子氧参与的末端炔与有机锌试剂的偶联反应。该反应对于炔烃的适用性非常广,不管是芳炔还是烷基炔都能以较高的产率得到所需产物。

1.2.2.2炔烃的双官能团化反应

1.2.2.2.1形成C-O和C-C键

Gouverneur等使用β-羟基炔酮与丙烯酸甲酯反应可以得到吡喃酮衍。反应机理如下,三键首先发生氧把化形成烯把中间体,该中间体不会进行β-氢消除而是与丙烯酸乙酯发生Heck反应。结果在炔键上形成一个C-O键和一个C-C键。

1.2.2.2.2形成两个C-C键

Larock等报道了芳基硼酸与内炔的加成反应合成了四取代烯烃。反应的最佳条件是以

Pd(OAc)2为催化剂,以DMSO为溶剂。

1.2.2.2.3形成C-C键和C-N键

2009年,Jiao等报道了苯胺和贫电子炔烃的偶联/环化反应合成了吲哚衍生物特戊酸的加入可以提高产率和减少反应时间。不过该反应仅适用于一级胺和烷基取代的二级苯胺。

1.2.2.2.4炔烃的双酮化反应

Wan等发现用PdBr2/CuBr2为催化剂,1,4-二氧六环/H2O为溶剂,可以实现炔烃的双酮化反应得到1,2-羰基化合物。

1.3环化反应

钯催化环化反应依据钯催化环化反应中间体将其分为以下三类:1)通过π-烯基或π-炔基钯络合物环化反应;2)通过钯的氧化加成/还原消除环化反应;3)通过π-烯丙基钯中间体环化反应。

1.3.1通过π-烯基或π-炔基钯络合物环化反应

1.3.1.1烯烃的环化

各种官能团化的烯烃在Pd(II)催化下可以通过以下的途径生成各种环状化合物。首先,Pd(II)快速的与C=C形成π-烯基钯络合物(π-olefin complex)。紧接着发生分子内的亲核进攻形成σ-烷基钯中间体[σ-alkylpalladium(II)complex],在这步反应中亲核试剂主要从反面进攻乙烯基碳取代基较多的一端。最后该Pd(II)中间体可以经过一系列的转化从而得到环状产物。

1.3.1.1.1烯基酚的环化

1973年,Hosokawa等将酚的钠盐1在化学量的PdCl2(PhCN)2催化下可以以中等的产率得到2-取代苯并呋喃2。

1.3.1.1.2烯基醇的环化

1976年,Hosokawa小组首先报道了Pd(II)催化不饱和醇的环化反应。

1.3.1.1.3烯基酮的环化

以烯基酮的羰基氧为亲核试剂的钯催化C-O键形成的反应也己被报道。在PdCl2催化下,双烯基酮44很容易就可生成两边连有酯基的螺环缩醛产物45 。

1.3.1.1.4烯基酸的环化

钯催化下烯基酸的环化反应由Kasahara小组首次报道,烯基酸48在化学计量的Li2PdCl4催化下很快就生成内酯49,不过最高产率却只有42%。

1.3.1.1.5烯基肟的环化

一个典型的肟环化的例子就是用烯基肟56来制备取代吡啶57。

1.3.1.1.6烯基胺的环化

许多含氮杂环化合物都可以通过钯催化的分子内C-N的形成来实现,吲哚类的苯醒68很容易通过胺基苯醌67的分子内的环化来制备。

1.3.1.1.7烯基氨的环化

钯催化的分子内环化氨酯73可以得到结构单一的非对映异构体1,3-氧氮杂环戊烷酮74,PdCl2(MeCN)2是最理想的催化剂。

1.3.1.1.8二烯的环化

1.3.1.1.8.11,2-二烯的环化

1987年,Walkup和Park发现带有羟基或硅基的丙二烯可以通过钯催化的羰基化环化反应非常高效的合成四氢吠喃衍生物。

1.3.1.1.8.2 1,3-二烯的环化

1975年,lzumin和Kasahara等首先报道了1,3-二烯基酸的环化反应,在Li2PdCl4催化下,烯酸105很快就转化为吡喃酮106。

1.3.1.2炔烃的环化

与烯烃的环化反应类似,各种官能团取代的炔烃也可以发生直接的环化反应来制备各类的环状化合物。不同之处在于反应起初形成的是π炔基钯络合物(π-alkyne complex)最后还原消除得到环化产物。

1.3.1.

2.1炔醇的环化

Utimoto等首先报道了Pd(II)催化炔醇环化制备呋喃的例子。

1.3.1.

2.2炔酚的环化

Yang等发现邻-(1-炔基)苯酚在PdI2/硫脲/CBr4/CO体系下可以高产率的得到2, 3-二取代苯并呋喃130。

1.3.1.

2.3炔酸的环化

3-和4-炔酸在Pd(II)催化同样也可以发生enda或exo型的环化反应分别得到不饱和内酯134和136。

1.3.1.

2.4炔醛和炔酮的环化

炔醛在Pd(II)催化下也可以发生环化反应。在反应中易被氧化的醛并不影响环化。Yamamoto等以炔醛146为原料,可以通过Pd(OAc)2的催化得到缩醛产物147。

1.3.1.

2.5炔胺和炔氨的环化

Pd(II)催化的炔胺或炔氨环化反应被广泛的应用于合成各种含氮杂环化合物。

1.3.1.

2.6其他环化

Cacchi等报道了炔丙基邻-((1-炔基)苯基醚183的环化反应。

1.3.2通过把的氧化加成/还原消除环化反应

1.3.

2.1以烯烃为底物的分子内环化

当在底物分子中同时拥有烯烃以及芳基、乙烯基卤代物或三氟甲烷磺酸酯时,在Pd(0)催化下就很容易发生分子内的氧化加成还原消除从而得到各种环化产物。

1.3.

2.1.1利用Heck反应的芳基卤代物分子内环化

Heck反应是指芳基或烯基卤代物与烯烃的偶联反应。Kozikowski等利用该方法成功得到了用来合成Indolactams 3关键中间体2。

1.3.

2.1.2利用Heck反应的乙烯基卤代物分子内环化

利用分子内乙烯基卤代物的Heck环化制备环化产物的例子要比芳基卤代物的少许多。

1.3.

2.1.3利用Heck反应的乙烯基或芳基三氟甲烷磺酸醋分子内环化

Overman等利用不对称乙烯基三氟甲烷磺酸酷分子内环化成功的构键一个季碳手性中心。

1.3.

2.2以烯烃为底物分子间环化

以邻碘苯胺23为原料与不同的烯烃反应可以分别得到吲哚25或哇琳27。

1.3.

2.3以二烯烃为底物分子内或分子间环化

1.3.

2.

3.1 1,2二烯环化

芳基碘代物通过钯催化的1,2-二烯环化可以得到7-9元含氮、氧的杂环化合物。

1.3.

2.

3.2 1,3-二烯环化

一系列杂环及碳环化合物都能通过各种官能团取代的有机卤代物与1,3-二烯的环化实现。

1.3.

2.

3.3 1,4二烯环化

Larock和其他的小组报道了各种芳基碘代物与1,4二烯环化。

1.3.

2.4以炔烃为底物的环化

1.3.

2.5利用Buchwald-Hartwig C-N键形成反应的环化

钯催化的芳基/乙烯基卤代物的胺化反应是一种非常重要的构建CAr-N键的常用方法。Buchwald和Hartwig首先报道了利用胺化反应来制备环状胺53。

1.3.

2.6利用分子内C-H键活化的环化

通过Pd催化分子内C-H键活化可以用来制备各种碳环和杂环化合物。

1.3.3通过π-烯丙基钯中间体环化反应

通过二烯丙基钯中间体烯丙基烷基化反应(Tsuji-Trost-Type Reaction)是有机合成中非常有用的构建化学键方法。分子内钯催化的烯丙基化反应主要有两种类型:

1)通过碳亲核试剂的烯丙基烷基化反应

2)通过N, O等亲核试剂的烯丙基烷基化反应

1.3.3.1通过碳亲核试剂的烯丙基烷基化反应

Trost等完成烯丙基碳酸酯1的分子内的不对称烯丙基化反应得到了二环[2.2.2]奎宁环-2酮2和3,而2和3则是合成奎宁类生物碱的关键中间体。

1.3.3.2通过N, O等亲核试剂的烯丙基烷基化反应

1.3.3.

2.1烯丙基醋酸酯、碳酸醋的环化

Burke和Jiang等以Trost的配体4通过分子内把催化的烯丙基烷基化反应非对映选择性的得到了四氢呋喃6。

1.3.3.

2.2炔丙基醋酸酯、碳酸酯的环化

炔丙基醋酸酯、碳酸酯类的反应与烯丙基醋酸醋,碳酸酯反应有很多类似的地方,但是比起前者炔丙基类的反应起步要晚的多。现在钯催化的炔丙基醋酸酯,碳酸酯的环化反应也己被广泛的应用在合成各种环化产物的合成上。

1.3.4偶联反应

自上世纪七十年代以来,随着Kumada,Heck,Suzuki,Negishi等偶联反应的陆续发现,钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,己经得到了广泛应用。

1.3.4.1Suzuki偶联反应

在金属钯化合物催化下,有机硼化合物和有机卤素化合物进行的偶联反应称为Suzuki 偶联反应,该类反应一般需要加入碱作助催化剂。反应通式如下:

1.3.4.1.1简单芳基卤化物和芳基硼酸的Suzuki偶联

该类反应中的碱多用碳酸钾,也有磷酸钾、碳酸钠、氟化艳、碳酸钾、叔丁醇钾等。溶剂体系一般选用甲苯/乙醇/水的混合体系,也可以是乙睛/水、甲苯/水等。

1.3.4.1.2大位阻芳基硼酸参与的Suzuki偶联反应

研究表明,芳基硼酸的立体位阻对Suzuki偶联反应的影响比芳基卤的立体位阻对Suzuki 偶联反应的影响大得多。

1.3.4.1.3含敏感官能团的芳基硼酸参与Suzuki偶联反应

2-醛基苯硼酸和2-碘甲苯在碳酸钠水溶液和二甲醚中于80o C反应,生成联苯化合物的收率只有39%。

1.3.4.2 Heck偶联反应

在碱性条件下把催化的芳基或乙烯基卤代物和活性烯烃之间的偶联反应称为Heck反应。反应通式如下:

1.3.4.

2.1分子内Heck反应

1989年Shibasaki MasakaLsu和Overman Larrv E.首先报道了不对称Heck反应,反应方程式如下:

1.3.4.

2.2分子间Heck反应

端基烯烃与卤代芳香烃发生分子间Heck反应是研究最早的一类反应。1992年Tamio Havashi等报道了手性把催化环状烯烃的不对称Heck芳基化反应,反应方程式如下:

1.3.4.3 Sonogashira偶联反应

Sonogashira交义偶联反应指有机亲电试剂与末端炔烃之间的反应,是形成碳-碳键合成炔烃的最重要方法之一。反应通式如下:

1.3.4.4 Kumada偶联反应

Kumada偶联反应反应物是指烷基或芳基格氏试剂与芳卤或乙烯基卤在镍或钯催化下的交叉偶联反应,反应产物为苯乙烯衍生物。反应通式如下:

1.3.4.5 Negishi偶联反应

Negishi偶联反应是指有机锌试剂与卤代烃在钯配合物的催化下发生偶联反应,生成新的碳-碳键,反应通式如下:

1.3.4.6 Stille偶联反应

Stille偶联反应是指有机锡化合物和不含β-氢的卤代烃(或三氟甲磺酸酯)在钯催化下发

生的交叉偶联反应因,反应通式如下:

2钯催化反应的研究现状

2.1Pd催化偶联反应

钯用于催化偶联反应可以解决传统的均相催化体系所造成的反应产物的分离困难、催化剂不能重复使用等问题,有非常好的应用。最具有代表性的钯催化的偶联反应是Heck反应和Suzuki偶联反应。负载钯催化的Suzuki偶联反应的研究进展,在近几年已取得了令人瞩目的成果。颜美等人详细归纳了近年来负载钯催化的Suzuki偶联反应研究进展,文中所综述的载体包括活性碳、金属氧化物、硅铝酸盐微孔分子筛、二氧化硅材料、活性粘土和聚合物等。2009年,郑长青课题组乙二胺功能化纤维素负载纳米钯催化Suzuki反应进行了研究。以氯化纤维素为原料,通过与乙二胺的胺化反应制得乙二胺功能化纤维素(Cell-EDA),然后在氯化钯乙醇溶液中反应制备得到乙二胺功能化纤维素负载的纳米钯催化剂(Cell-EDA-Pd0)。Cell-EDA-Pd0催化剂无需在惰性气体的保护下就能有效地催化Suzuki交叉偶联反应。因而,近年来,研究人员关于Suzuki反应催化体系的研究兴趣主要集中在发展钯的非膦配体或无配体钯催化剂、多相催化剂以及具有催化活性的非钯过渡金属等领域。2.2 Pd催化环加成反应

钯配合物催化的[4+2]环加成反应具有催化剂用量少、产率高、选择性好、反应条件温和等显著特点,成为在[4+2]环加成反应中研究的热点。钯手性Lewis酸催化的[4+2]环加成反应,在研究上取得了突破性的进展。段泽斌等人综述了近十年来,钯催化[4+2]环加成反应的研究进展,并在文中讨论了钯催化[4+2]环加成反应的影响因素,主要有二烯体和亲二烯体、催化剂用量、配体、溶剂、反离子、温度及反应时间。

2.3 Pd催化重氮化合物反应

重氮化合物在过渡金属催化剂作用下的分解以及后续反应在有机合成上得到了非常广泛的应用,近年的研究表明钯配合物可以催化重氮化合物发生一些新颖的反应。严国兵等综述了近年来人们利用钯催化剂探索的重氮化合物的一些新反应。文章中主要包括环丙烷化反应、聚合反应、插入反应、交叉偶联反应及其机理的探讨。这些新反应为有机合成提供了新的方法学,,同时也为Pd催化领域展示了新的可能性。

2.4 Pd催化的其他应用

北京大学焦宁课题组首次报道了以Pd来催化联芳香类化合物和炔的芳构化反应。他们以醋酸钯作为催化剂,氧气作为氧化剂,由简单的吲哚类联芳香化合物与炔反应生成了吲哚咔唑北京大学焦宁等首次报道了一种以Pd催化的芳香胺和炔的环化反应合成吲哚的方法。以醋酸钯作为催化剂,氧气作为氧化剂,由芳香胺类化合物与炔反应生成吲哚,产率最高可达99%。北京大学化学与分子科学学院王剑波研究组发现,芳基碘化物和重氮化合物在一氧化碳的气氛中,用Pd催化可以发生多组分化合物的氧化加成、羰基化、钯卡宾生成、酰基转移插入一系列串联反应,并首次报道了钯卡宾的酰基转移插入,同时也把钯催化的羰基化反应和钯卡宾的转移插入反应联系在一起。四川大学化学学院游劲松等对Pd(II)催化杂芳烃C--I-I/c—H交叉氧化偶联反应进行了研究,首次实现了Pd(OAe)催化各类寓电子(黄嘌呤类、唑类、茚类)或缺电子(吡啶氮氧类)含氮杂环与各种取代噻吩或呋喃衍生物的直接交叉偶联反应。该催化反应不仅高效、高选择性形成交叉偶联目标产物,而且催化剂用量仅为2.5 mol%。近年来,钯催化烯烃的双官能化反应有了很多突破,华南理工大学江焕峰等以O2作为单一氧化剂,醋酸钯为催化剂,成功实现了烯烃的双乙酰氧基化反应。这一方法以1,2-二取代的烯烃底物时,得到的l,2-二乙酰氧基产物以顺式为主。

3 钯催化反应的展望

钯在金属有机化学方面具有丰富的反应性,作为催化剂的活性中心,有很高的催化活性。钯催化剂在有机合成中的应用有着举足轻重的地位,由于钯催化剂的新应用,有机合成领域出现了很多新的合成工艺、合成产物等。但钯是一种贵金属,在有些生产中钯的应用会增加生产成本,因而开发新型的高效的、廉价的非钯催化剂是非常必要的。

钯催化反应及其机理

钯催化反应及其机理研究 摘要:目前过渡金属催化的有机反应研究一直是一个比较热的话题,其中由于钯催化的反应活性和稳定性等原因,使其在有机反应中得到了广泛的使用,被全球广泛关注。本文主要列举了钯催化的交叉偶联反应的机理,及与偶联反应相关的钯催化的碳氢键活化反应、钯催化的脂肪醇的芳基化反应等的机理。 关键词:过渡金属催化偶联反应钯催化机理 1.引言 进入二十一世纪以后,钯催化的偶联反应已经建立了比较完整的理论体系,研究的侧重点也和以前有所不同化学键的断裂和形成是有机化学的核心问题之一。在众多化学键的断裂和形成方式中,过渡金属催化的有机反应有着独特的优势:这类反应通常具有温和的反应条件,产率很高并有很好的选择性(包含立体、化学、区域选择性)。很多常规方法根本无法实现的化学反应,采用了过渡金属催化后可以很容易地得到实现。在众多过渡金属中,金属钯是目前研究得最深入的一个。自上世纪七十年代以来,随着 Kumada,Heck,Suzuki,Negishi [1]等偶联反应的陆续发现,钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用。 2.钯催化各反应机理的研究 2.1.钯催化的交叉偶联反应 自上世纪七十年代以来,随着 Kumada,Heck,Suzuki,Negishi 等偶联反应的陆续发现[1],钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用[2]。交叉偶联,就是两个不同的有机分子通过反应连在了一起(英文中交叉偶联为crosscoupling,同种分子偶联为 homo coupling)。 2.1.1Heck反应 Heck 反应是不饱和卤代烃和烯烃在强碱和钯催化下生成取代烯烃的反应,是一类形成与不饱和双键相连的新 C—C 键的重要反应[3]。反应物主要为卤代芳烃(碘、溴)与含有α-吸电子基团的烯烃,生成物为芳香代烯烃。所用的不饱和卤化烃是一类芳基化合物。亲电性不饱和碳(sp 或 sp2杂化)与亲核性碳、氮、氧、硫、硒原子经过某些过渡金属的催

钯催化剂的制备

金属钯最外层电子数为零,赋予了钯怎样的性质? 因为最外层电子数为零,其化学性质不活泼(但是不如铂稳定)。常温下在空气和潮湿环境中稳定,加热至800℃,钯表面形成一氧化钯薄膜。钯能耐氢氟酸、磷酸、高氯酸、盐酸和硫酸蒸气的侵蚀,但易溶于王水和热的浓硫酸及浓硝酸。熔融的氢氧化钠、碳酸钠、过氧化钠对钯有腐蚀作用。 因为电子价层是4d10(钯(Pd)的原子结构为[Kr]4d10,虽然钯原子中的电子只占据四个电子层,但因期第五能级组(5s4d5p)上由电子,故钯仍属于第五周期),钯的氧化态为+2、+3、+4。钯容易形成配位化合物,如K2[PdCl4]、K4[Pd(CN)4]等。 化学符号Pd ,原子序数46 ,原子量106.42 ,属周期系Ⅷ族,为铂系元素的成员。1803 年英国W.H.渥拉斯顿从粗铂中分离出一种新元素,为了纪念1802年发现的小行星武女星(Pallas),把它命名为palladium。钯在地壳中的含量为1×10-6%,常与其他铂系元素一起分散在冲积矿床和砂积矿床的多种矿物(如原铂矿、硫化镍铜矿、镍黄铁矿等)中。独立矿物有六方钯矿、钯铂矿、一铅四钯矿、锑钯矿、铋铅钯矿、锡钯矿等,还以游离状态形成自然钯。 钯是银白色金属,熔点1554 ℃,沸点2970 ℃,密度12.02克/厘米3(20℃)。较软,有良好的延展性和可塑性,能锻造、压延和拉丝。块状金属钯能吸收大量氢气,使体积显著胀大,变脆乃至破裂成碎片。海绵状或胶状钯吸氢能力更强,在常温下,1体积海绵钯可吸收900体积氢气,1体积胶体钯可吸收1200体积氢气。加热到40~50℃,吸收的氢气即大部释出。 将精选的砂铂矿或富铂矿用王水溶解,经一系列的化学处理,可得二氯二氨合钯,经灼烧后在高温下用氢气还原可得海绵状钯。钯在硝酸生产、蒽醌法制造过氧化氢以及氢化、脱氢、异构化和裂解反应中用作催化剂。钯银合金管用于生产高纯氢,钯铜合金可做大容量继电器的触头,钯钌合金用于补牙和制造首饰、厚膜电路上的电容和电阻。 元素符号:Pd 中文名称:钯 英文名称:Palladium 原子序数:46 原子量:106.4

钯催化交叉偶联反应

钯催化交叉偶联反应 钯催化交叉偶联反应是一类用于碳碳键形成的重要化学反应,在有机合成中应用十分广泛。 简介: 为制造复杂的有机材料,需要通过化学反应将碳原子集合在一起。但是碳原子在有机分子中与相邻原子之间的化学键往往非常稳定,不易与其他分子发生化学反应。以往的方法虽然能令碳原子更加活跃,但是,过于活跃的碳原子却又会产生大量副产物,而用钯作为催化剂则可以解决这个问题。钯原子就像“媒人”一样,把不同的碳原子吸引到自己身边,使碳原子之间的距离变得很近,容易结合——也就是“偶联”。这样的反应不需要把碳原子激活到很活跃的程度,副产物比较少,因此更加精确而高效。赫克、根岸英一和铃木章通过实验发现,碳原子会和钯原子连接在一起,进行一系列化学反应。这一技术让化学家们能够精确有效地制出他们需要的复杂化合物。 发展阶段: 一、大约100年前,法国化学家维克多·格林尼亚发现,将一个镁原子同一个碳原子偶联在一起,会将额外的电子推向这个碳原子,使得它能够更容易同另外一个碳原子连接在一起。不过,科学家们发现,这样的方法在创造简单的分子时起到了效果,但是在对更为复杂的分子进行合成时,却在试管里发现了很多并不需要的副产品。 二、早在上世纪60年代,赫克就为钯催化交叉偶联反应奠定了基础,1968年,他报告了新的化学反应——赫克反应,该反应使用钯作为主要的催化剂来让碳原子连接在一起。 三、1977年,根岸英一对其成果进行了精练,他使用一种有机氯化物作为催化剂;两年后,铃木章发现使用有机硼化合物的效果会更好。应用: 如今,“钯催化交叉偶联反应”被应用于许多物质的合成研究和工业化生产。例如合成抗癌药物紫杉醇和抗炎症药物萘普生,以及有机分子中一个体格特别巨大的成员——水螅毒素。科学家还尝试用这些方法改造一种抗生素——万古霉素的分子,用来灭有超强抗药性的细菌。此外,利用这些方法合成的一些有机材料能够发光,可用于制造只有几毫米厚、像塑料薄膜一样的显示器。科学界一些人士表示,依托“钯催化交

金属有机化学中的钯催化的反应全解

XXXX大学研究生学位课程论文(2012 ---- 2013 学年第一学期) 学院(中心、所):化学化工学院 专业名称:应用化学 课程名称:高等有机化学 论文题目:金属有机化学中的钯催化的反应 授课教师(职称)XXXX(教授) 研究生姓名:XXXX 年级:2012级 学号:XXXXXXXXX 成绩: 评阅日期: XXXX大学研究生学院 2012年12 月25 日

金属有机化学中的钯催化的反应 XXXXXX (XXXX大学化学化工学院,山西,太原,030006) 摘要:过渡金属钯在金属有机化学方面具有丰富的反应性,在各类有机化学反应中如氢化、氧化脱氢、偶联、环加成等反应中,钯是优良的催化剂,或是催化剂的重要组分之一。本文在查阅大量近几年文献资料的基础上,综述了钯催化的反应,同时综述了钯催化反应的机理以及钯催化反应的研究现状。 关键词:钯,催化剂,反应机理,研究进展 1钯催化的反应类型及反应机理 在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。对石油重整反应,钯也是常选取的催化剂组分之一。 1.1氢化反应 钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂。 1.1.1反应式及反应机理 反应底物首先和氢气分子分别被吸附到催化剂上,然后和催化剂的活性中心形成配位键,最后完成氢的转移,氢和反应底物形成σ-键。 1.1.2反应方程式举例 1.2氧化反应 烯烃和炔烃是十分常见并且重要的有机化合物,选择性地氧化这类不饱和碳氢化合物一直是化学工业和学术界的重要研究目标之一。 1.2.1分子氧参与的钯催化烯烃的氧化反应 根据亲核试剂的不同,如氧、氮和碳等亲核试剂,把催化烯烃的氧化反应可以形成C-O、C-N和C-C键。 1.2.1.1反应机理 钯催化烯烃的氧化反应都经过三个过程:首先,把插入烯烃形成新的C-Pd键;接着,有机钯中间体进行β-H消除产生Pd(0);最后,Pd(0)被重新氧化为Pd(П)。 1.2.1.2形成C-C键 1.2.1.2.1烯-烯偶联

钯催化的交叉偶联反应——2010年诺贝尔化学奖获奖工作介绍

2011年第 31卷 有 机 化 学 V ol. 31, 2011 * E-ma i l: nxwang@ma i l.i https://www.wendangku.net/doc/5c12559431.html, Received December 9, 2010; revised and accepted March 10, 2011. ·学术动态· 钯催化的交叉偶联反应——2010年诺贝尔化学奖获奖工作介绍 王乃兴 (中国科学院理化技术研究所 北京 100190) 摘要 钯催化的交叉偶联反应是非常实用的合成新方法. 文章给出了Heck 反应、Negishi 反应和Suzuki 反应的概念, 对其反应机理作了详细的说明, 并对其在复杂化合物和天然产物全合成中的应用作了评价. 关键词 钯催化; Heck 反应; Negishi 反应; Suzuki 反应 Palladium-Catalyzed Cross-Coupling Reactions — Introduction of Nobel Prize in Chemistry in 2010 Wang, Naixing (Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190) Abstract Palladium-catalyzed cross-coupling reactions provide chemists with a more precise and efficient new methodologies. The concepts of the Heck reaction and Negishi reaction as well as Suzuki reaction are given, the reaction mechanisms are proposed, and applications of these reactions in the total synthesis of natural products are commented. Keywords palladium-catalyzed; Heck reaction; Negishi reaction; Suzuki reaction 2009年10月6日, 瑞典皇家科学院宣布, 美国科学家Richard F. Heck(理查德 赫克)、日本科学家Ei-ichi Negishi(根岸英一)和Akira Suzuki(铃木章)共同获得今年的诺贝尔化学奖. 美国教授Richard F. Heck, 1931年出生于美国的斯普林菲尔德, 1954年在美国加利福尼亚大学洛杉矶分校获得博士学位. 随后他进入瑞士苏黎世联邦工学院从事博士后研究, 后在美国特拉华大学任教, 于1989年退休. Richard F. Heck 现为特拉华大学名誉教授. Ei-ichi Negishi 教授是日本人, 1935年出生于中国长春, 1958年从东京大学毕业后进入帝人公司, 1963年在美国宾夕法尼亚大学获得博士学位, 现任美国普渡大学教授. Akira Suzuki 也是日本人, 1930年出生于日本北海道鹉川町, 1959年在北海道大学获得博士学位, 随后留校工作了一段时间. 1963年到1965年, Akira Suzuki 在美国普渡大学从事了两年的博士后研究工作. Akira Suzuki 于1973年任北海道大学工学系教授, 现在是北 海道大学名誉教授. 钯催化的交叉偶联反应是一种可靠而又实用的工具, 对有机合成具有长久和深远的影响力, 该反应得到了合成化学工作者的普遍应用. 笔者于2004年在《有机反应——多氮化物的反应及有关理论问题(第二版)》的第4.13节中列举了5个较新的人名反应[1], 其中有Heck 反应、Negishi 反应和Suzuki 反应. 对其定义分别为: Heck 反应是钯催化下, 不饱和有机卤化物或三氟磺酸酯与烯烃进行的偶联反应. Negishi 反应是钯催化下的不饱和有机锌试剂和芳基或乙烯基卤化物等进行偶联的反应. Suzuki 反应是钯催化下不饱和有机硼试剂和芳基或乙烯基卤化物等进行偶联的反应. 这是钯催化的交叉偶联反应的基本概念. 最初的Suzuki 反应还需要在无氧无水的条件下来进行, 后来发展的一些反应条件已经无需无氧无水操作了. 这几种钯催化的交叉偶联反应机理不尽相同, 对机

一种金属钯催化剂及其制备方法和应用

一种金属钯催化剂及其制备方法和应用 2016-07-18 14:17来源:内江洛伯尔材料科技有限公司作者:研发部 一种金属钯催化剂及其制备方法 钯能够催化卤代芳烃与有机苯硼酸以及其衍生物的Suzuki 反应,这在有机合成中的用途非常广泛,其反应条件比较温和,底物适用比较广泛、产物便于处理等特点,在碳- 碳偶联反应中具有很重要的地位,是合成联苯类化合物的有效方法。近年来,钯催化剂具有很高的催化性能、反应条件温和、易于回收等优点,这就决定了负载型的钯催化剂具有潜在的应用价值。目前,已经有很多文献报道过各种各样的催化剂,在研究Suzuki 反应的现有文献中,有很多含膦配体、含氮配体以及卡宾配体等,但是,在此反应中,常常存在一些的缺点,比如:大量的钯催化剂使用量、催化剂活性低、催化剂难回收使用等问题。膦配体对钯催化剂的催化效果影响很大,但是有些含膦钯催化剂在Suzuki 反应中,活性不高甚至活性很低。另外,在Suzuki 反应中常使用的有机溶剂( 例如甲苯、DMF 等) 通常是有毒、昂贵的。因此,制备出催化活性很高的钯催化剂,在Suzuki 反应中,使用毒性较低的有机溶剂在实际应用中非常重要。 由含氮和膦小分子在钯作用下,通过碳膦、碳氮偶联,生成包覆金属钯的大分子聚合物催化剂。钯盐先与DIPPF([1,1'- 双( 二异丙基膦) 二茂铁)的配位,然后再催化胺化合物与含膦化合物的之间的反应,最后加入一定量的钯盐、胺化合物、哌嗪和碱,其中碱的作用是消除在反应过程中生成的HBr,在甲苯有机溶剂中,惰性气体保护下,一定温度下反应生成的包覆金属钯的聚合物。该催化剂为含氮和膦的聚合物固载金属钯,其中金属钯占聚合物的质量负载量( 通过ICP 测得) 为0.2 ~ 2%;由含氮和膦小分子在钯作用下,通过碳膦、碳氮偶联,生成包覆金属钯的大分子聚合物催化剂。由于固载的含膦配体以及聚苯胺共同作用提高了钯催化剂活性和稳定性。该催化剂在醇和水的混合溶液中可以超高效的催化Suzuki 反应,可在极低的催化剂用量的条件下进行;该催化剂易于回收、便于应用,且该催化剂能够用于合成新型沙坦类高血压药的沙坦联苯(2- 氰基-4′ - 甲基联苯) 和4- 氯-2′ - 硝基联苯( 合成啶酰菌胺的药物中间体) 药物中间体的放大实验,这在工业上有很大的应用价值。

钯的催化剂种类及其应用

钯的催化剂种类及其应用 钯的催化剂种类及其应用 2011年11月03日 钯催化剂在有机加氢中通常兼有良好的活性和选择性,正是这一特性,使钯催化剂在有机催化加氢中极具实用价值。通常钯催化剂分有载体和无载体两类。其中无载体的钯催化剂主要有钯黑、胶态钯、氧化钯和氢氧化钯等。基本上都用于各种有机催化加氢。钯催化剂的载体,本身具有助催化作用,还能调变催化加氢的选择性。相对于无载体钯催化剂,有载体的钯催化剂价格更实惠。 1. 钯/碳酸钙催化剂 钯/碳酸钙催化剂特点是用稀醋酸铅来处理钯/碳酸钙。由于铅的毒性作用,使钯催化剂加氢活性减弱,加氢选择性加强。还可以加喹啉进一步提高其加氢选择性。它能控制反应固定在碳-碳三键加氢成碳-碳双键这一步上,也能使共轭二烯选择加氢成单烯。 1.1. 钯/碳酸钙催化剂的实验室制备 将50ml 5%的氯化钯水溶液加入50g碳酸钙和400mL水的混合液中,室温下搅拌5 min,80?下搅拌10min,然后通氢气。还原氯化钯为钯。过滤并水洗得钯/碳酸钙。将5g醋酸铅溶于100mL水中,然后浸渍钯/碳酸钙。20?搅拌10min。沸水浴上加热并搅拌40min。滤出、水洗后40?-50?真空干燥得钯/碳酸钙催化剂。 1.2 钯/碳酸钙催化剂的应用 前苏联索科耳斯基等表明:在气相中,用被铅毒化的钯/碳酸钙催化剂可非常顺利地使乙炔加氢成乙烯。在40?-60?和C2H2?H2=1:2 时,乙烯产率达98%-100% 。

另外,由于钯在常态下对羰基和芳环基催化加氢无活性,故钯/碳酸钙催化剂能实现选择性加氢。例如:用被铅毒化的钯/碳酸钙催化剂。催化加氢去氢沉香醇成为沉香醇,该反应炔基加氢停留在烯基这一步上,而醇基并不加氢。 开发钯/碳酸钙催化剂可参考钯、碳酸钙、醋酸铅的质量比例。工艺过程能重新设计。试验室制备中催化剂真空干燥主要考虑到单质钯加热易吸附氧,催化剂活性会下降。真空干燥工业生产不现实,可设计成在惰性气氛中干燥。沸水浴上加热搅拌可设计成在红外或微波中加热。载体也可设计成氧化铝或氧化铝球。也有用醋酸锌作毒物处理钯/ 碳酸钙催化剂的。现在工业中运用较多的是钯载于氧化铝上,用负载铅作毒物。用作催化乙炔选择加氢成乙烯,丙炔选择加氢成丙烯、丁二烯,丁炔选择加氢成丁烯等。 2. 钯/碳催化剂 该催化剂的特点是制备工艺流程较简洁,但使用技术要求很高。在某 碳催化剂用95%乙醇洗净凉干,再用其它溶液洗后能套用3-4次。些反应中,钯/ 2.1. 钯/碳催化剂的实验室制备 根据计算钯在催化剂中的百分含量,将固体氯化钯溶于浓盐酸和水,再用水稀释,浸渍炭,搅拌,蒸干。使用时用氢气还原。一般钯/碳催化剂含钯3%-5% 。 钯/碳催化剂用于腈加氢时,要用硼氢化钠还原附载在炭上的氯化钯,制成钯/碳催化剂。这是因为金属硼化物对腈加氢有良好的活性和选择性。 2.2. 钯/碳催化剂的应用 钯/碳催化剂可用于吡啶加氢制哌啶。将吡啶和醛或酮混合,用钯/碳催化剂加氢,可制得收率很好的N-烷基哌啶。钯/碳(5%钯)催化剂,在乙醇中对芳香族硝基化合物进行加氢时,添加烷基环己烯或脂肪族酮可获得良好效果。用钯/碳(5%钯)

钯催化交叉偶联反应

钯催化的交叉偶联反应 一、偶联反应综述 1.交叉偶联反应 偶联反应,从广义上讲,就是由两个有机分子进行某种化学反应而生成一个新有机分子的过程。狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成的反应,根据类型的不同,又可分为自身偶联反应和交叉偶联。交叉偶联反应是一个有机分子与另一有机分子发生的不对称偶联反应。 2.碳碳键形成的重要性 新碳-碳键的形成在有机化学中是极其重要的。人们了解了天然有机物质的结构和性能,并根据有机物质的结构,通过碳原子组装成链,建立有机分子,最终实现天然有机物质的人工合成。目前为止,人类已经利用有机合成化学手段创造出几千万种物质,且越来越多的有机物质已经广泛应用到制药、建材、食品、纺织等人类生活领域,我们的生活也几乎离不开有机物了。合成药物、塑料等有机物质时,需要用小的有机分子将碳原子连接在一起构建新的复杂大分子,因而有机合成中高效的连接碳-碳键的方法是有机合成化学中的重要工具。从以往该领域诺贝尔化学奖的授予情况也可以看出合成新碳-碳键的重要性:1912年维克多·格林尼亚因发明格林尼亚试剂——有机镁试剂获奖,1950年迪尔斯和阿尔德因发明双烯反应迪尔斯-阿尔德反应获奖,1979年维蒂希与布朗因发明维蒂希反应共同获奖,2005年伊夫·肖万、罗伯特·格拉布、理查德·施罗克因在有机化学的烯烃复分解反应研究方面作了突出贡献获奖。 3.有机合成中的钯催化交叉偶联反应 随着时代发展,合成有机化学的研究愈加深入,20世纪后半期,科学家们发现了大量通过过渡金属催化来创造新有机分子的反应,促使有机合成化学快速发展。

特别是赫克、根岸英一和铃木章发现的钯催化交叉偶联反应,为化学家们提供了一个更为精确有效的工具。三位科学家发现的钯催化交叉偶联反应中都使用了金属钯作为反应的催化剂,当碳原子与钯原子连在一起时,钯原子唤醒了“懒惰”的碳原子但又不至于使它太活泼,于是形成温和的碳-钯键,在反应过程中,钯原子又可以把别的碳原子吸引过来,形成另一个金属-碳键,此时两个碳原子都连接在钯原子上,它们的距离足够接近而发生反应,生成新的碳-碳单键。以下两个反应式代表了典型的两类钯催化交叉偶联反应。 上述两个反应的催化剂都是零价的金属钯,都使用卤代烃RX(或卤代烃的类似物)作为亲电偶联试剂。区别在于两个反应所选用的亲核偶联试剂,在反应(1)中,选用的是烯烃,反应(2)中则是一种有机金属化合物R〃M(M为Zn,B,Al 或Sn)。我们所熟知的赫克反应属于反应(1)这一类的交叉偶联反应,根岸反应和铃木反应属于反应(2)这一类。由于反应底物不同,三个反应的应用范围和适用途径也各不相同。 4.“钯催化的交叉偶联反应”内容及反应原理 (1)Heck反应 Heck反应以有机钯配合物为催化剂得到具有立体专一性的芳香代烯烃(图1)。反应物主要是卤代芳烃(碘、溴)与含有吸电子基团的烯烃。该反应的催化剂通常用Pd(0),Pd(II)或含Pd的配合物(常用醋酸钯和三苯基膦)。卤代烃首先与A 发生氧化加成反应,C-X键的断裂与Pd-C和Pd-X键的形成是同步进行的。氧化加成反应是偶联反应中最常见的决速步骤,经过氧化加成化合物A生成中间体B,B再经过配体解离,得到化合物RPdLX。RPdLX先与烯烃配位,然后再经烯烃插入,配

钯催化的交叉偶联反应——2010年诺贝尔化学奖简介

doi:10.3969/j.issn0253-9608.2010.06.005 钯催化的交叉偶联反应 ———2010年诺贝尔化学奖简介 肖唐鑫① 刘 立② 强琚莉③ 王乐勇④ ①②博士研究生,③博士,④教授,南京大学化学化工学院,南京210093 关键词 钯催化 偶联反应 诺贝尔化学奖 2010年10月6日,瑞典皇家科学院宣布将2010年诺贝尔化学奖授予美国科学家Richar d F.Heck,日本科学家Ei-ichi Ne g ishi和A kira Suzuki。这三名科学家是因为在有机合成领域中钯催化交叉偶联反应方面的卓越研究而获奖。它为化学家提供了一款精致的工具来合成复杂的有机分子。这一成果广泛应用于制药、电子工业和先进材料等领域。笔者对钯催化交叉偶联反应领域作了粗浅的介绍,以期起到抛砖引玉之作用。 2010年的诺贝尔化学奖揭晓后,很多专业人士对此 并不感到惊讶,认为这次的评选结果实乃众望所归。确实如此,三位科学家都已近耄耋之年,他们所做的贡献早已造福全球,按理早应摘取这个桂冠了。当瑞典皇家科学院在2010年10月6日宣布将诺贝尔化学奖颁发给美国科学家Richard F.Heck和日本科学家Ei-ichi Negishi,Akira Suzuki时,Heck所说的一句话———这是个圆满的结局———道出了所有人的心声。目前,钯催化的交叉偶联反应在全球的科研、医药生产、电子工业和先进材料等领域都有广泛应用。以在此领域有卓越贡献的科学家名字命名的有机反应对于从事化学的人来说是耳熟能详的,如Heck反应、Negishi反应、Suzuki反应、Stille反应、Kumada反应、Sonogashira反应以及Hiyama反应等等。 众所周知,有机合成化学以其强大的生命力制造出了几千万种新的物质,并且这个数目仍在迅速的膨胀,而有机合成化学的基础核心是新型、高效有机合成方法学的研究和发展。我们从21世纪这10年来三次与有机合成方法学相关的诺贝尔化学奖授予情况可以看出这一领域的重要性:2001年W.S.Knowles,R.Noyori 和K.B.Sharpless因在发展催化不对称合成研究方面获奖;2005年Y.Chauvin,R.H.Grubbs和R.R. Schrock因在发展烯烃复分解反应所作出的贡献而获奖;最后就是2010年的钯催化交叉偶联反应的获奖。下面对钯催化交叉偶联反应的早期研究、反应机理以及发展应用等做一个粗浅的介绍,以期达到抛砖引玉之作用。1早期研究 有机合成化学制造出的这几千万种新的物质绝大多数都是以碳原子为主来构建的。为了制备结构更复杂、功能更强大的新型材料,就要想办法通过各种化学反应将碳原子连接在一起。然而碳原子本身是十分稳定的,在化学反应中并不活泼,所以就得想办法来激活碳原子,让它更容易参与反应并与其他碳原子连接起来,逐步形成更高层次的碳基骨架。1912年,法国人Grignard因发明有机镁试剂(格氏试剂)而荣获诺贝尔化学奖,可以说是碳基活化史上的第一个里程碑。随着时代的发展,人们对碳基的研究愈加深入。在研究的前期,要么无法活化碳基,化合物难于参加反应;要么使碳原子过于活跃,虽然能有效地制造出很多简单的有机物,但要是合成复杂分子却有大量的副产物生成。正如大家所知,在有机合成操作中提纯是一项繁琐的工作。Heck,Negishi和Suzuki等人通过实验发现,当碳原子和钯原子连接在一起,会形成一种“温和”的碳钯键,在这里钯既活跃了碳基,又使其不至于过于活泼,然后又可以把别的碳原子吸引过来,这样使得两个碳原子距离拉近,容易成键而偶联起来。在这里钯原子就相当于“媒人”的作用,只需使用催化剂就行。所以“钯催化交叉偶联反应”就是一款精致的工具,让化学家得以像艺术家一样来雕刻和拼接类似积木的模块(小的基团),构筑令人叹为观止的艺术品(有机复杂分子)。与此同时还避免了过多不必要副产物的生成。 Heck1931年出生于美国麻省斯普林菲尔德(Spri- · 332·Chinese J ournal o f N ature V ol.32N o.6   Brief Introduction of No bel Prize

直接析出法合成铂钯贵金属催化剂

直接析出法合成铂钯贵金属催化剂 2016-08-28 12:45来源:内江洛伯尔材料科技有限公司作者:研发部 铂钯催化剂合成路线 多元醇还原法原理为利用多元醇的醇基将金属离子还原成金属,并使金属原子被覆于载体上:一般直接将金属前驱物以及载体溶于多元醇中,加热(约120~ 198℃)进行还原反应,以获得纳米金属触媒。 多元醇法制备触媒具有步骤简单、容易操作等优点,由于系统成分单纯,故容易控制还原温度、反应时间、保护剂浓度等制备过程条件,进而得到所需特定晶体形状及纳米尺寸的触媒,且此方法可还原较难还原的金属,于触媒应用上颇具潜力。 汽车尾气净化催化剂用途占到铂需求的近一半。今后,随着新兴市场国家汽车尾气排放规定的增强,全球汽车数量不断增长,在生产国和生产企业有限的情况下,铂和钯等金属的供应量有可能出现短缺。因此,必须使大量使用铂的柴油氧化催化剂的铂使用量减少。 在日本新能源产业的技术综合开发机构(NEDO)的“稀有金属代替材料开发项目”下,产综研开始进行铂纳米颗粒的应用研究,目的是开发出使柴油氧化催化剂的铂族金属使用量减半的基础技术。 在使用来捕捉尾气中碳微粒的柴油颗粒捕捉器再生时,柴油氧化催化剂会暴露于高温下,这会使作为催化剂的铂颗粒受热发生凝聚(热劣化)。为弥补因此而劣化的催化剂性能,需要使用大量的铂。因此,提高铂颗粒的耐热性是减少铂族金属使用量的关键。前面提到的NEDO项

目前半段的基础研究表明,铂与钯复合而成的纳米颗粒催化剂能够有效提高耐热性。因此,产综研开始面向实用化,开发适合量产的制造工艺。 产综研开发出了可大量制造铂钯纳米颗粒催化剂的工艺——表面多元醇还原法。具体流程如下:首先在贵金属盐的水溶液中加入少量多元醇还原剂(乙二醇等)制成混合水溶液,再加入催化剂载体Al2O3(氧化铝)粉末进行浸渍,对得到的悬浊液进行加热,得到干燥粉末;然后,在氮气流中加热得到的粉末,在粉末表面残留的多元醇还原剂的作用下,发生还原反应,贵金属盐以贵金属纳米颗粒的形式在载体表面析出;最后,对该粉末高温加热,去除残留的多元醇还原剂等,就制作出了担载贵金属纳米颗粒的催化剂。 在透射电子显微镜(TEM)下观察该催化剂可发现,粒度均匀的铂纳米颗粒(3nm左右)直接析出到了氧化铝粉末的表面。产综研开发的这种方法接近传统的实用催化剂制造工艺,能够满足实用化所要求的大量生产。而且,使用表面多元醇还原法制作的铂钯复合纳米颗粒催化剂不仅可使铂、钯的使用量减半,而且,与利用传统方法制作的催化剂相比,还实现了相同甚至更高的除烃性能。这是因为,利用表面多元醇还原法制作的铂钯复合纳米颗粒催化剂与浸渍法制造的催化剂相比,在高温下不易发生贵金属颗粒的烧结,贵金属颗粒能够维持催化反应所需的表面积。而耐热性的增加则有两方面的原因,一是铂钯复合纳米颗粒的粒度不易受烧结的影响,二是遏制了铂钯合金化导致的烧结。

金属有机化学中的钯催化的反应

XXXX大学研究生学位课程论文 (2012 ---- 2013 学年第一学期) } 学院(中心、所):化学化工学院 专业名称:应用化学 课程名称:高等有机化学 论文题目:金属有机化学中的钯催化的反应 授课教师(职称)XXXX(教授) ! 研究生姓名:XXXX 年级:2012级 学号:XXXXXXXXX 成绩: 评阅日期: XXXX大学研究生学院 } 2012年12 月25 日

金属有机化学中的钯催化的反应 XXXXXX (XXXX大学化学化工学院,山西,太原,030006) 摘要:过渡金属钯在金属有机化学方面具有丰富的反应性,在各类有机化学反应中如氢化、氧化脱氢、偶联、环加成等反应中,钯是优良的催化剂,或是催化剂的重要组分之一。本文在查阅大量近几年文献资料的基础上,综述了钯催化的反应,同时综述了钯催化反应的机理以及钯催化反应的研究现状。 关键词:钯,催化剂,反应机理,研究进展 1钯催化的反应类型及反应机理 } 在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。对石油重整反应,钯也是常选取的催化剂组分之一。 氢化反应 钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂。 反应式及反应机理 反应底物首先和氢气分子分别被吸附到催化剂上,然后和催化剂的活性中心形成配位键,最后完成氢的转移,氢和反应底物形成σ-键。 反应方程式举例 > 氧化反应 烯烃和炔烃是十分常见并且重要的有机化合物,选择性地氧化这类不饱和碳氢化合物一直是化学工业和学术界的重要研究目标之一。 分子氧参与的钯催化烯烃的氧化反应 根据亲核试剂的不同,如氧、氮和碳等亲核试剂,把催化烯烃的氧化反应可以形成C-O、C-N和C-C键。 反应机理 钯催化烯烃的氧化反应都经过三个过程:首先,把插入烯烃形成新的C-Pd键;接着,有机钯中间体进行β-H消除产生Pd(0);最后,Pd(0)被重新氧化为Pd(П)。 ! 形成C-C键

钯炭催化剂

钯炭催化剂 英文名称:Palladium-carbon catalyst 中文名称:钯炭催化剂 钯——化学符号Pd ,是银白色金属,较软,有良好的延展性和可塑性,能锻造,压延和拉丝。块状金属钯能吸收大量氢气,使体积显著胀大,变脆乃至破裂成碎片。 钯炭催化剂是将金属钯负载到活性炭里形成负载型加氢精制催化剂,用于精制处理对苯二甲酸原料,生产精制对苯二甲酸。钯炭催化剂已经先 后在不同工艺的PTA(精对苯二甲酸)装量,如北京燕山、上海石化、辽阳石化、洛阳石化和天津石化等炼化企业,成功进行了工业应用。其 主要技术指标: 项目SAC-05 外观椰壳片状 钯含量% 粒度(4-8目)% ≥95 压碎强度N ≥40 比表面积m2/g 1000-1300 堆密度g/ml 磨耗% ≤1 反应收率% ≥99 钯碳的作用 钯碳是一种催化剂,是把金属钯粉负载到活性碳上制成的,主要作用是对不饱和烃或CO的催化氢化。具有加氢还原性高、选择性好、性能稳定、使用时投 料比小、可反复套用、易于回收等特点。广泛用于石油化工、医药工业、电子工业、香料工业、染料工业和其他精细化工的加氢还原精制过程。钯碳的提纯 钯合金可制成膜片(称钯膜)。钯膜的厚度通常为左右。主要于氢气与杂质的分离。钯膜纯化氢的原理是,在300—500℃下,把待纯化的氢通入钯膜的一侧时,氢被吸附在钯膜壁上,由于钯的4d电子层缺少两个电子,它能与氢生成不稳定的化学键(钯与氢的这种反应是可逆的),在钯的作用下,氢被电离为质子其半径为×1015m,而钯的晶格常数为×10-10m(20℃时),故可通过钯膜,在钯的作用下质子又与电子结合并重新形成氢分子,从钯膜的另一侧逸出。在钯膜表面,未被离解的气体是不能透过的,故可利用钯膜获得高纯氢。虽然钯对氢有独特的透过性能,但纯钯的机械性能差,高温时易氧化,再结晶温度低,易使钯管变形和脆化,故不能用纯钯作透过膜。在钯中添加适量的IB族和Ⅷ族元素,制成钯合金,可改善钯的机械性能。

贵金属钯催化剂的研究现状和发展前景_周春晖

综 述 贵金属钯催化剂的研究现状和发展前景 周春晖 李小年 葛忠华 (浙江工业大学催化新材料研究室,浙江省多相催化重点实验室,杭州310014) 摘要 按照反应类型介绍了现今化学工业中使用的贵金属钯催化剂; 综述了国内外钯催化剂研究开发状况;阐明了近期及将来钯催化剂工 业发展前景。 关键词 贵金属 钯 催化剂 综述 贵金属催化剂由于其无可替代的催化活性和选择性,在炼油、石油化工和有机合成中占有极其重要的地位。贵金属钯具有优异的催化性能。70年前,朗格缪尔,为CO在钯上的氧化确立了科学基础,以及70年代以来利用钯等贵金属催化剂的汽车尾气净化催化转化器,这些都是催化科学技术上的重大发现之一。钯催化剂在石油化学工业中的应用甚至超过铂催化剂。例如,石油精炼中的催化重整,烷烃、芳烃的异构化反应、脱氢反应,烯烃生产中的选择加氢反应,乙醛、醋酸乙烯、甲基丙烯酸甲酯等有机化工原料的生产均离不开钯催化剂。此外,在各类有机化学反应中如氢化、氧化脱氢、氢化裂解、偶联、氢酯基化、一碳化学以及汽车尾气净化等反应中,钯是优良的催化剂,或是催化剂的重要组分之一。 1 钯催化反应 在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。对石油重整反应,钯也是常选取的催化剂组分之一。在脱氢反应和异构化反应中,虽多数应用贵金属催化剂,但主要是Pt,直接用钯的不多。 1.1 氢化反应 金属钯是催化加氢的能手。在石油化学工业中,乙烯、丙烯、丁烯、异戊二烯等烯烃类是最重要的有机合成原料。在聚合过程中,对烯烃类的纯度要求很高。所以必须予以提纯。由石油化工得到的烯烃含有炔烃及二烯烃等杂质,可将它们转化为烯烃除去。由于形成的烯烃容易被氢化成烷烃,必须选择合适的催化剂来控制适宜的反应条件。钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂。Lindla r催化剂(沉淀在Ba SO4上的金属钯,加喹啉以降低其活性)是一个著名的选择性加氢催化剂。从乙烯中除去乙炔常用的催化剂是0.03%Pd/Al2O3[1]。文献报道,在输入的乙烯气中加入CO,可以改进Pd/Al2O3催化剂对乙炔氢化的选择性,并已在工业应用[2]。菲利浦石油公司开发的用Pd-Ag/Al2O3催化剂的工艺,可将烯烃中的乙炔降至1%以下[3]。IFP技术[4]是用传统的钯催化剂或含钯的双金属催化剂,用于生产1-丁烯、1,3-丁二烯,可提高烯烃收率,显著降低能耗。常用的氢化反应钯催化剂有Pd、Pd/C、Pd/硫酸钡、Pd/硅藻土、PdO2、Ru-Pd/C等。 1.2 氧化反应 在化肥工业中,只需要常温条件,用金属钯作催化剂,便可由氨气、氧气和水一步生产出亚硝酸铵化肥。 乙烯氧化制乙醛是一个古老的工艺,称作Hoechst-Wacker工艺,使用PdCl2/Cu Cl2均相催化剂。乙醛主要用于进一步氧化生产乙酸,这是以前乙酸工业生产的主要方法之一。目前,对这一古老工艺的改进有美国Cataly tica公司开发的新工艺[5],关键在于用磷钼钒酸盐聚氧阴离子/氯化钯催化剂代替传统的PdCl2/CuCl2水溶液催化剂,从而完全避免氯化烃类副产物的生成。该新型催化剂已用于工业规模的乙醛装置。日昭和电子公司开发的乙烯直接氧化制乙酸的新工艺[6],使用钯为基础的新催化剂。与现有工艺相比,新工艺可大幅度削减建设费用 收稿日期:1999-10-11

钯催化的偶联反应

AgNO3/KF作用下的Pd催化2-溴噻吩S原子邻位上的C-H键选择性偶联反 应 摘要: 溴噻吩的衍生物与芳基碘在加入了钯的硝酸银/氟化钾催化剂的催化下发生C—H键的偶联反应,而C—Br键未发生变化。这些含有C —Br键的偶联产物在钯的进一步催化下使溴噻吩和芳基碘的C—C键相连接从而得到理想的产量。 引言: 狭义上的偶联反应是涉及由基金属催化剂的C-C键生成的反应,根据类型不同,可分为交叉偶联反应和自身偶联反应。交叉偶联反应是一个有机分子与另一有机分子发生的不对称偶联反应。例如:烯丙基锂与2-氯辛烷可以发生交叉偶联反应生成4-甲基-1-癸烯。格利雅试剂、有机铝、有机锌、有机锡、有机铜、有机铅、有机汞等多种有机金属化合物也都可以与卤化烷等烃基化试剂发生交叉偶联反应,生成相应的不对称烃,是合成不对称烃,特别是单烷基芳烃和含有三级碳原子的链烃的有效方法。交叉偶联反应的范围很广,像芳烃重氮盐与苯酚或N,N-二甲基苯胺的偶联反应,也属于交叉偶联反应。

正文: 芳香族化合物与有机卤化物的C-H键取代反应和那些含金属试剂与相同的有机卤化物的偶联反应相比,在有机合成中更有前景。【1】相比之下,C-H键上的直接反应将有利于含有不同种类的官能团的衍生物的合成,并且,反应也会加强合成中原子的效应。我们注意到噻吩衍生物的偶联反应是发生在C-H键上,从而形成了联噻吩。在添加了AgF后,反应效率得到了提高。【2】当噻吩与2-溴噻吩反应生成正联溴噻吩时,仍然是C-H键发生偶联,而C-Br键未发生变化。我们的注意力集中到溴噻吩衍生物C-H键的交叉耦合上,来介绍噻吩环上的取代基。【3】溴噻吩上的C-H键偶联,如果可以通过C-Br键的反应而进一步改变偶联产物,那么C-H键和C-Br键的偶联反应的相互结合将得到一种新的合成取代噻吩的方法。这将把人们的注意力都吸引到设计更先进的有机金属材料来揭示液晶、光发射和有机半导体的特点。【4】在此,我们报告一个新的催化剂系统—AgNO3/KF,它有助于提高钯催化下溴噻吩衍生物C-H键的取代反应发的效率。 2-溴噻吩与对甲氧基碘苯的反应在添加了钯催化剂的含AgF的条件下进行。在60℃的条件下搅拌5小时后,将得到占总产物50%的正偶联产物。类似的反应如用AgNO3/KF来替代AgF,将会得到占总产物42%的上述产物。值得注意的是尽管最后的终产物是适度的,我们并没有发现C-Br键上有反应发生,而是在溴噻吩的与S原子相邻的C-H 键上有反应发生。噻吩衍生物的芳基化反应是在钯和体积较大的磷化氢配合基的混合物催化下在150℃利用Cs2CO3作为碱的反应条件下

钯炭催化剂

钯炭催化剂 英文名称:Palladium-carbon catalyst 中文名称:钯炭催化剂 钯——化学符号Pd ,就是银白色金属,较软,有良好的延展性与可塑性,能锻造,压延与拉丝。块状金属钯能吸收大量氢气,使体积显著胀大,变脆乃至破裂成碎片。 钯炭催化剂就是将金属钯负载到活性炭里形成负载型加氢精制催化剂,用于精制处理对苯二甲酸原料,生产精制对苯二甲酸。钯炭催化剂已经先后 在不同工艺的PTA(精对苯二甲酸)装量,如北京燕山、上海石化、辽阳石化、洛阳石化与天津石化等炼化企业,成功进行了工业应用。其主要 技术指标: 项目SAC-05 外观椰壳片状 钯含量% 0、48-0、52 粒度(4-8目)% ≥95 压碎强度N ≥40 比表面积m2/g 1000-1300 堆密度g/ml 0、4-0、5 磨耗% ≤1 反应收率% ≥99 钯碳的作用 钯碳就是一种催化剂,就是把金属钯粉负载到活性碳上制成的,主要作用就是对不饱与烃或CO的催化氢化。具有加氢还原性高、选择性好、性能稳定、使用 时投料比小、可反复套用、易于回收等特点。广泛用于石油化工、医药工业、电子工业、香料工业、染料工业与其她精细化工的加氢还原精制过程。钯碳的提纯 钯合金可制成膜片(称钯膜)。钯膜的厚度通常为0、1mm左右。主要于氢气与杂质的分离。钯膜纯化氢的原理就是,在300—500℃下,把待纯化的氢通入钯膜的一侧时,氢被吸附在钯膜壁上,由于钯的4d电子层缺少两个电子,它能与氢生成不稳定的化学键(钯与氢的这种反应就是可逆的),在钯的作用下,氢被电离为质子其半径为1、5×1015m,而钯的晶格常数为3、88×10-10m(20℃时),故可通过钯膜,在钯的作用下质子又与电子结合并重新形成氢分子,从钯膜的另一侧逸出。在钯膜表面,未被离解的气体就是不能透过的,故可利用钯膜获得高纯氢。虽然钯对氢有独特的透过性能,但纯钯的机械性能差,高温时易氧化,再结晶温度低,易使

有机合成中钯催化下的交叉偶联反应

有机合成中钯催化下的交叉偶联反应 -2010年诺贝尔化学奖简介 陈明华 ( 兴义师范学院化学生物系,贵州兴义 562400) 摘要:介绍了2010年诺贝尔化学奖的科学背景,即“有机合成中钯催化下的交叉偶联反应”的产生、发展和应用,体现了有机化学已经发展成为一门艺术形式,在这个形式下,科学家们在试管里创造性的产生出不可思议的化学物质的过程。 关键词:钯催化剂;交叉偶联反应;赫克反应;铃木反应;根岸反应 Palladium-Catalyzed Cross Couplings in Organic Synthesis CHEN Ming-Hua (Department of Chemistry and Biological, Xingyi Normal College, Xingyi, Guizhou 562400) Abstract: This paper introduces scientific background of the Nobel Prize in Chemistry for 2010, it’s palladium-catalyzed cross couplings in organic synthesis.And this fack had been presents that “Organic chemistry has developed into an art form where scientists produce marvelous chemical creations in their test tubes”. Key words: palladium catalyst; cross-coupling reaction; heck reaction; suzuki reaction; negishi reaction 2010年10月6日,瑞典皇家科学院决定授予美国特拉华大学(University of Delaware) 理查德-赫克(Richard F. Heck), 普渡大学(Purdue University)根岸荣一(Ei-ichi Negishi)和日本北海道大学(Hokkaido University)的铃木彰(Akira Suzuki)三位教授2010年的诺贝尔化学奖,以表彰他们在“有机合成中钯催化下的交叉偶联反应”作出的贡献[1]。 碳元素是构成生命的主要物质,这些物质是以C-C键(单键或双键)为基础,形成各种形式的碳胳化合物。人们要想制备新药物、新材料、生物分子和了解生命的过程,最先的方法就是合成一系列碳胳化合物。可见,以简单的有机原料为基础,通过化学反应合成更复杂的化合物(增长碳链),是十分重要的,这种重要性体现在过去历年授予的诺贝尔化学奖:格利雅试剂(Grignard reagent,) 维狄反应(Wittig reaction, 1979年),烯烃的转位反应(Olefin metathesis, 2005年)[1]。 作者简介:陈明华(1966,3-),男,兴义师范学院化学生物系教师,理学硕士,高级实验师、教授。主要研究方向:有机合成。

相关文档