文档库 最新最全的文档下载
当前位置:文档库 › 实验三单双极性归零码波形和频谱

实验三单双极性归零码波形和频谱

实验三单双极性归零码波形和频谱
实验三单双极性归零码波形和频谱

现代通信原理课程实验报告单极性和双极性NRZ信噪

现代通信原理课程实验报告单极性和双极性NRZ信噪

现代通信原理课程 设计报告 设计题目:单极性和双极性NRZ信噪 比和误比特率的 关系特性 专业班级:信处 姓名: 指导教师:陈爱萍老师

设计时间:2011.11.28

单极性和双极性NRZ 的信噪比与误比特率关系特性 一、设计任务与要求 利用Matlab 作图比较单极性NRZ 和双极性NRZ 的信噪比与误比特率关系特性,并计算当要求基带传输系统的误码率为10-6时所需要的信噪比。 二、设计任务分析 首先分析下二元码有如下: 单级性非归零码(NRZ (L ))属于非归零码NRZ (Not Return Zero code )在整个码元期间电平保持不变。在这种编码中用高电平和低电平(通常为零电平)分别表示二进制 信息“1”、“0”。 双极性非归零码也同单级性非归零码相同的是在整个码元期间电平保持不变,但它用正电平,负电平分别表示“1”,“0”. 对于单极性NRZ 码,设对应0和1信息时其幅度分别为0和A ,无码间干 扰时,接收滤波器的输出信号 或 。若接 收判决门限为d ,即若 ,判定信号幅度为A ;若 判定信号幅度为0。 当发送信号为0时,叠加高斯噪声后接收波形幅度的概率密度函数为: 发送信号为1时,叠加高斯噪声后的接收波形幅度的概率密度函数为: 若噪声幅度过大,就会造成接收端的误判,误判概率为 总误判概率为 ,通常 ,采用 作为判决电平是最佳的,此时的误比特率为 ,噪声功率为 ,所以有: ,所以 。 流程图: )2220()2r p r σπσ-=())2221()2r A p r σπσ --=()()22212d r A b p dr σπσ--=?0011b b b p p p p p =+0112p p ==2A 2212x b d p dx Q σσπ+∞-??== ????22 S A =2N σ =2b p Q S N =24S A =b p Q S N =()()r KT A n KT =+()()r KT n KT =r d > r d <

应用FFT对信号进行频谱分析实验报告

实验 应用FFT 对信号进行频谱分析 一、实验目的 1、在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉FFT 算法及其程序的编写。 2、熟悉应用FFT 对典型信号进行频谱分析的方法。 3、了解应用FFT 进行新红啊频谱分析过程中可呢个出现的问题,以便在实际中正确应用FFT 。 二、实验原理 一个连续信号()a x t 的频谱可以用它的傅里叶变换表示为: ()()j t a a X j x t e dt +∞ -Ω-∞Ω=? (2-1) 如果对信号进行理想采样,可以得到离散傅里叶变换: ()()j n X e x n z ω +∞ --∞=∑ (2-2) 在各种信号序列中,有限长序列在数字信号处理中占有很重要的。无限长的序列往往可以用有限长序列来逼近。对于有限长的序列我们可以使用离散傅里叶变换(DFT ),这一序列可以很好的反应序列的频域特性,并且容易利用快速算法在计算机上实现当序列的长度是N 时,我们定义离散傅里叶变换为: 1 0()[()]()N kn N n X k DFT x n x n W -===∑ (2-3) DFT 是对序列傅里叶变换的灯具采样,因此可以用于序列的频谱分析。在利用DFT 进行频谱分析的时候可能有三种误差: (1)混叠现象 序列的频谱是采样信号频谱的周期延拓,周期是2/T π,因此当采样频率不满足奈奎斯特定理,即采样频率1/s f T =小于两倍的信号频率时,经过采样就会发生频谱混叠。这导致采样后的信号序列不能真实的反映原信号的频谱。 (2)泄漏现象 泄漏是不能和混叠完全分开的,因为泄漏导致频谱的扩展,从而造成混淆。为了减小混淆的影响,可以选择适当的窗函数使频谱的扩散减到最小。 (3)栅栏效应 因为DFT 是对单位圆上Z 变换的均匀采样,所以它不可能将频谱视为一个连续的函数。这样就产生了栅栏效应。减小栅栏效应的一个方法是在源序列的末端补一些零值,从而变动DFT 的点数。 三、实验内容和结果 1、观察高斯序列的时域和频域特性 (1)固定高斯序列()a x n 中的参数p=8,当q 为2,4,8时其时域和幅频特性分别如图 2.1,图2.2所示:

数据采集及分析试验指导书

《数据采集及分析》实验指导书 实验一采样定理 一、实验目的 熟悉信号采样过程,并通过本实验观察欠采样时信号频谱的混迭现象,了解采样前后信号频谱的变化,加深对采样定理的理解,掌握采样频率的确定方法。 二、实验原理 模拟信号经过(A/D) 变换转换为数字信号的过程称之为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率fs,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成份的两倍,这称之为采样定理。 a) 正常采样b)欠采样 图1.1 采样信号的频混现象 需要注意的是,在对信号进行采样时,满足了采样定理,只能保证不发生频率混叠,对信号的频谱作逆傅立叶变换时,可以完全变换为原时域采样信号,而不能保证此时的采样信号能真实地反映原信号。工程实际中采样频率通常大于信号中最高频率成分的3到5倍。 三、实验仪器和设备 1. 计算机 n台 2. 实验软件 1套 四、实验步骤及内容 1. 启动计算机。 2. 启动实验软件。

图1.2 采样定理实验 3. . 点击"采样定理"实验中的"正弦波"按钮,产生正弦波信号,然后选择不同的采样抽取率,分析和观察信号的时域波形与频谱的变化。 4. 点击"采样定理"实验中的"方波"按钮,产生方波信号,然后选择不同的采样抽取率,分析和观察信号的时域波形与频谱的变化。 5. 点击"采样定理"实验中的"三角波"按钮,产生三角波信号,然后选择不同的采样抽取率,分析和观察信号的时域波形与频谱的变化。 五、实验报告要求 1. 简述实验目的和原理。 2. 按实验步骤附上相应的信号波形和频谱曲线,说明采样频率的变化对信号时域和频域特性的影响,总结实验得出的主要结论。 六、思考题 1.为什么在实际测量中采样频率通常要大于信号中最高频率成分的3到5倍?

紫外光谱分析实验数据处理部分

【实验数据处理部分】 一.由实验测得的数据可以得到以下几个谱图: 1.苯蒸气的紫外吸收光谱: 左图中,苯的K吸 收带大约在214nm处, B吸收带在256nm左右。 并且,苯蒸气的精细结 构(主要指苯分子的振 动能级)清晰可见。 另外,由于滴加到 比色皿中的苯过多导致 浓度偏大,A值偏大。 (超过了1.0)。 2.不同取代基对苯的紫外吸收带的影响: (1)、苯甲酸与苯乙烯: 左图中,①②标示的 是苯蒸气的K带和B带; ③表示的是苯甲酸的K 吸收带;而④⑤表示的是 苯乙烯的E2带和K带。 (其中为了使谱图便于 比对,将苯蒸气的吸光度 值成比例地缩小了一定 的数值。) 读图可知: 与苯比较,羧基(吸 电子基)取代的苯环,其K 吸收带发生了红移,B吸 收带也有一定程度的红 移,但强度变弱了; 而对于苯乙烯,由于乙烯基双键的存在,增大了苯环的共轭体系,使得价电子跃迁所需要的能量变低,因而发生了很大程度的红移,E2带和K带分别红移至210nm和245nm处。 (2)、苯酚和苯胺:

图中,①②标示的是 苯蒸气的K带和B带; ③④表示的是苯酚的K 吸收带和B吸收带;而 ⑤⑥⑦则表示苯胺的E2 带、K带和B带。 读图可知: 苯酚的E2吸收带与 K吸收带合并了,原因是 酚羟基的助色作用使得 吸收带发生红移,同样 地,与苯相比,苯酚的B 吸收带也发生了红移; 苯胺的氮原子上含 有孤对电子,也和酚羟基一样具有助色效应,因此苯胺的各个吸收带也发生了一定程度的红移(相比较于苯而言)。 二、溶液性质对取代苯紫外吸收的影响: 1.苯酚与其碱性溶液: 图中:①②③分别标 示的是苯酚在碱性溶液 中的E2吸收带、K吸收 带和B吸收带的大致位 置;而④⑤则分别标示苯 酚在中性溶液中的K吸 收带和B吸收带的位置。 读图可知: 由于碱性溶液中的 酚羟基以氧负离子形式 存在,使得酚羟基的助色 作用大大增强,因而苯环 的吸收带均发生较大的 红移。 例如:原本在苯酚的 紫外吸收图谱中未能读出的E1、E2吸收带,此时可以大致从图中读出;另外,碱性溶液中,苯酚的K带红移至245nm左右,B带红移至290nm左右。 苯酚在碱性溶液中的变化见下图:

信号与测试技术实验一

实验一基本信号分析实验报告 一实验目的 1掌握基本信号的时域和频域分析方法; 2掌握信号的自相关和互相关分析,了解其应用。 二实验内容与图像结果分析 (1)产生不同的周期信号,包括正弦信号、方波信号、锯齿波,在时域分析这些波形特征(幅值、频率(周期))。 (2)在Matlab中产生不同的非周期信号,包括随机噪声、阶跃信号、矩形脉冲。(3)对产生的信号进行Fourier变换,从频率域分析信号的特征,并说明方波信号和锯齿波信号的信号带宽; 从图中可以看到,正弦信号基频为10rad/s,因此其Fourier变换在w=10处出现了峰值,而方波信号依据佛利叶级数展开可知是由一系列不同频率的正弦波构成,基频是w=10,基频的幅值最大,同时其他频率为基频的整数倍(不含20,40…),且幅值依次减少。

锯齿波信号的基频为w=10,因此傅里叶级数展开同样在10出出现了峰值,而其他出现的依次是基频的整数倍,且幅值依次减少。由于随机噪声信号是随机信号,不具有规律性,因此在傅里叶变换后我们可以看到它含有各个频率的谐波。 阶跃信号的傅里叶变换为冲击函数。矩形信号为非周期信号,因此它的傅里叶变换为连续函数,频率在各处均有分布。 (4)产生复合信号:由3个不同频率、幅值的正弦信号叠加的信号,从图形上判断信号的特征; 产生由正弦信号和随机信号叠加的混合信号,从图形上判断信号的特征;产生由正弦信号和方波叠加的信号,从图形上判断信号的特征。 (5)对(4)中的3种复合信号进行FFT计算,从图上判断信号的特征。

三种不同幅值、频率的正弦信号叠加后,在时域图上我们看不出很有规律性的东西,然而进行傅里叶变换后,放到频域图之后,我们可以很清楚的看到叠加信号的组成规律,在三个频率出现了峰值。正弦信号叠加随机噪声,我们在时域图上也看不到很明显的规律特征,进行傅里叶变换后,我们看到时域图上在一处出现了峰值,则这个频率处实际就是正弦信号的频率。正弦信号叠加方波信号在时域图中同样规律不明显,在进行傅里叶变换后,在频域图上我们看到有两处峰值,这两个频率实际就是正弦波的频率和方波的基频信号,其余较小的为方波的谐波信号。 由此可以看出,通过傅里叶变换,将时域波形变换到频域波形,更加有助于我们分析信号的本质特征,也有利于从噪声信号出提取有用的信号。

用FFT对信号作频谱分析 实验报告

实验报告 实验三:用FFT 对信号作频谱分析 一、 实验目的与要求 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。 二、 实验原理 用FFT 对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ,因此要求2π/N 小于等于D 。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 三、 实验步骤及内容(含结果分析) (1)对以下序列进行FFT 分析: x 1(n)=R 4(n) x 2(n)= x 3(n)= 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤7 0 其它 n

实验结果图形与理论分析相符。(2)对以下周期序列进行谱分析: x4(n)=cos[(π/4)*n]

x5(n)= cos[(π/4)*n]+ cos[(π/8)*n] 选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: (3)对模拟周期信号进行频谱分析: x6(n)= cos(8πt)+ cos(16πt)+ cos(20πt) 选择采样频率Fs=64Hz,FFT的变换区间N为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】:

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

频域分析实验报告

频域分析实验报告 班级: 学号: 姓名:

一、实验内容: 1利用计算机作出开环系统的波特图; 2、观察记录控制系统的开环频率特性; 3、控制系统的开环频率特性分析。 二、仿真原理: 对数频率特性图(波特图): 对数频率特性图包括了对数幅频特性图和对数相频特性图。横坐标为频率w,采用对数分度,单位为弧度/秒;纵坐标均匀分度,分别为幅值函数20lgA(w),以dB表示;相角,以度表示。MATLAB提供了函数bode()来绘制系统的波特图,其用法如下: (1)bode(num,den):可绘制出以连续时间多项式传递函数表示的系统的波特图。 (2)当带输出变量[mag,pha,w]或[mag,pha]引用函数时,可得到系统波特图相应的幅值mag、相角pha及角频率点w矢量或只是返回幅值与相角。相角以度为单位,幅值可转换为分贝单位:magdb=20×log10(mag) 二、实验验证 1、用Matlab作Bode图。要求:画出对应Bode图。 (1)G(S)=25/S2+4s+25 (7)G(S)=9(s2+0.2s+1)/s(s2+1.2s+9);

图 1 图 2 (1)G(S)=25/S2+4s+25 可以看成是一个比例环节和一个振荡环节组成,所以k=1,T1=0.04,因为v=0,所以在转折频率之前都为20lgk,因为k=1所以斜率为0,经过转折频率,分段直线斜率的变化量为-40db/dec。

(7)G(S)=9(s2+0.2s+1)/s(s2+1.2s+9); 可以看成是一个二阶微分环节和一个积分环节和一个振荡环节组成,化常数为1后,v=1,t1=1,t2=1/3,所以我们可以看到,在起始阶段是-20*vdb/dec,所以一开始斜率为-20db/dec。当经过1/3的转折频率之后分段直线的改变量为40db/dec,当经过1的转折频率之后分段直线的改变量为-40db/dec。故图像如图所示。 第二题: 典型二阶系统Gs=Wn2/s2+2ζWns+Wn2,试绘制取不同值时的Bode图。取Wn=8,ζ=0.1,0.2,0.3,,0.5,0.6; 图 3 如图所示。

信号的频谱分析

实验三信号的频谱分析 方波信号的分解与合成实验 一、任务与目的 1. 了解方波的傅立叶级数展开和频谱特性。 2. 掌握方波信号在时域上进行分解与合成的方法。 3. 掌握方波谐波分量的幅值和相位对信号合成的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 信号的傅立叶级数展开与频谱分析 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数: 如果将式中同频率项合并,可以写成如下形式: 从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。依此类推,还有三次、四次等高次谐波分量。 2. 方波信号的频谱 将方波信号展开成傅立叶级数为: n=1,3,5… 此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波 (c)基波+三次谐波+五次谐波 (d)基波+三次谐波+五次谐波+七次谐波 (e)基波+三次谐波+五次谐波+七次谐波+九次谐波 图3-1-1方波的合成 3. 方波信号的分解 方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、三、五、七、九次分量。 4. 信号的合成 本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。 图3-1-2 三、内容与步骤 本实验在方波信号的分解与合成单元完成。 1. 使信号发生器输出频率为100Hz、幅值为4V的方波信号,接入IN端。 2. 用示波器同时测量IN和OUT1端,调节该通路所对应的幅值调节电位器,使该通路输出方波的基波分量,基波分量的幅值为方波信号幅值的4/π倍,频率于方波相同并且没有相位差.(注意:出厂时波形调节电位器已调到最佳位置,其波形基本不失真,基本没有相位差。若实验中发现存在波形失真或有相位差的现象,请适当调节波形调节电位器,使波形恢复正常。) 3. 用同样的方法分别在OUT3、OUT5、OUT7、OUT9端得到方波的三、五、七、九此谐波分量(注意其他谐波分量各参数应当满足式3-1-1所示)。 4. 完成信号的分解后,先后将OUT1与IN1、OUT3与IN2、OUT5与IN3、OUT7与IN4、OUT9与IN5连接起来,即进行谐波叠加(信号合成),分别测量(1)基波与三次谐波;(2)基波、三次谐波与五次谐波;(3)基波、三次谐波、五次谐波与七次谐波;(4)基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形。并分别保

实验一 紫外吸收光谱定性分析的应用

实验一紫外吸收光谱定性分析的应用 一、实验目的 1、掌握紫外吸收光谱的测绘方法。 2、学会利用吸收光谱进行未知物鉴定的方法。 3、学会杂质检出的方法。 二、基本原理 紫外吸收光谱为有机化合物的定性分析提供了有用的信息。其方法是将未知试样和标准品以相同浓度配制在相同的溶剂中,在分别测绘吸收光谱,比较二者是否一致也可将未知试样的吸收光谱与标准图谱,如萨特勒紫外吸收光谱图相比较,如果吸收光谱完全相同,则一般可以认为两者是同一种化合物。但是,有机化合物在紫外区的吸收峰较少,有时会出现不 同的结构,只要具有相同的生色团,它们的最大吸收波长 max λ相同,然而其摩尔吸光系数ε 或比吸光系数E % 1 1cm 值是有差别的。因此需利用 max λ和 max λ处的ε或E%1 1cm 等数据作进一 步比较。 在没有紫外吸收光谱峰的物质中检查含高吸光系数的杂质是紫外吸收光谱的重要用途之一。如乙醇中杂质苯的检查,只需测定256 nm处有无苯的吸收峰即可。因为在这一波段,主成分乙醇无吸收峰。 在测绘比较用的紫外吸收光谱图时,应首先对仪器的波长准确性进行检查和校正。还必须采用相同的溶剂,以排除溶剂的极性对吸收光谱的影响。同时还应注意PH值、温度等因素的影响。在实际应用时,应注意溶剂的纯度。 三、仪器与试剂 1、仪器 T6型(或其他型号)紫外可见分光光度计 1㎝石英比色皿 2、试剂 苯的乙醇溶液

1,4对苯二酚水溶液 苯甲酸的乙醇溶液 四、实验步骤 1、已知芳香族化合物标准光谱的绘制 在一定的实验条件下,以相应的溶剂作参比,用1㎝石英比色皿,在一定的波长范围内扫描(或测绘)各已知标准物质的吸收光谱作为标准光谱。 如苯甲酸的乙醇溶液的和1,4对苯二酚水溶液的标准溶液的标准光谱的绘制。 各已知芳香族化合物的标准光谱也可通过查阅有关手册得到,但应注意实验条件的一致。 2、未知芳香族化合物的鉴定 (1)称取0.100 g未知芳香族化合物,用去离子水溶解后转让100 ml容量瓶中,稀释至刻度,摇匀。实验前,稀释100倍使用。 (2)用1㎝石英比色皿,以去离子水作参比,在200-600波长范围内扫描测定未知芳香族化合物吸收光谱(如使用无扫描功能的紫外可见分光光度计测定时应首先每间隔 20 nm测量一次吸光度,然后每间隔10 nm 、5 nm 、2 nm、1 nm、0.5 nm 测量 一次吸光度。总之,越靠近吸收峰,波长间隔应越小,以得到较准确的吸收曲线)。 3、乙醇中杂质苯的检出 用1㎝石英比色皿,以乙醇作参比,在220-280 nm波长范围内扫描测定乙醇试样的吸收光谱(吸收曲线)。 五、实验结果 1、通过将未知芳香族化合物吸收光谱与已知芳香族化合物标准光谱进行比对,指出未知芳 香族化合物可能为哪种物质。 2、将乙醇试样的吸收光谱与溶解在乙醇中苯的吸收光谱进行比较,指出乙醇试样中是否有 苯存在。 六、思考题 1、配制试样溶液浓度的大小,对吸光度测量值有何影响?在实验中应如何调整? 2、对已经初步确认的化合物纯品,再设计一个实验方案,对未知物作进一步鉴定。

信号与系统实验二

实验二 常用信号分类与观察 一、实验目的 1、观察常用信号的波形特点及产生方法。 2、学会使用示波器对常用波形参数的测量。 二、实验内容 1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。 2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。 三、实验仪器 1、信号与系统实验箱一台(主板)。 2、20MHz 双踪示波器一台。 四、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。 1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。其波形如下图所示: 图 1-5-1 正弦信号 2、指数信号:指数信号可表示为at Ke t f =)(。对于不同的a 取值,其波形表现为不同的形式,如下图所示:

图 1-5-2 指数信号 3、指数衰减正弦信号:其表达式为 ?? ???><=-)0()sin()0(0)(t t Ke t t f at ω 其波形如下图: 图 1-5-3 指数衰减正弦信号 4、抽样信号:其表达式为: sin ()t Sa t t = 。)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

控制系统的频域分析实验报告

实验名称: 控制系统的频域分析 实验类型:________________同组学生姓名:__________ 一、实验目的和要求 用计算机辅助分析的方法,掌握频率分析法的三种方法,即Bode 图、Nyquist 曲线、Nichols 图。 二、实验内容和原理 (一)实验原理 1.Bode(波特)图 设已知系统的传递函数模型: 1 1211121)(+-+-+???+++???++=n n n m m m a s a s a b s b s b s H 则系统的频率响应可直接求出: 1 1211121)()()()()(+-+-+???+++???++=n n n m m m a j a j a b j b j b j H ωωωωω MATLAB 中,可利用bode 和dbode 绘制连续和离散系统的Bode 图。 2.Nyquist(奈奎斯特)曲线 Nyquist 曲线是根据开环频率特性在复平面上绘制幅相轨迹,根据开环的Nyquist 线,可判断闭环系统的稳定性。 反馈控制系统稳定的充要条件是,Nyquist 曲线按逆时针包围临界点(-1,j0)p 圈,为开环传递函数位于右半s 一平面的极点数。在MATLAB 中,可利用函数nyquist 和dnyquist 绘出连续和离散系统的乃氏曲线。 3.Nicho1s(尼柯尔斯)图 根据闭环频率特性的幅值和相位可作出Nichols 图,从而可直接得到闭环系统的频率特性。在 MATLAB 中,可利用函数nichols 和dnichols 绘出连续和离散系统的Nichols 图。 (二)实验内容 1.一系统开环传递函数为 ) 2)(5)(1(50)(-++=s s s s H 绘制系统的bode 图,判断闭环系统的稳定性,并画出闭环系统的单位冲击响应。 2.一多环系统 ) 10625.0)(125.0)(185.0(7.16)(+++=s s s s s G 其结构如图所示 试绘制Nyquist 频率曲线和Nichols 图,并判断稳定性。 (三)实验要求

仪器分析实验5-紫外可见光谱分析

实验五色氨酸、苯丙氨酸和酪氨酸的紫外吸收光谱分析 一、实验目的 1. 掌握紫外-可见分光光度计的工作原理和基本操作。 2. 掌握紫外-可见吸收光谱的绘制(包括导数光谱)以及定量测定方法。 3. 掌握。 4. 了解氨基酸类物质的紫外吸收光谱特点。 二、实验原理 1. 紫外-可见吸收光谱法测定蛋白质含量的基本原理 紫外-可见吸收光谱法是根据溶液中物质的分子或离子对紫外和可见光谱区辐射能的吸收来研究物质的组成和结构的方法,也称作紫外和可见吸收广度法,它包括比色分析法和紫外-可见分光光度法。 紫外-可见分光光度法属于吸收光谱法,分子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。电子由于受到光、热、电等的激发,从一个能级转移到另一个能级,称为跃迁。当这些电子吸收了外来辐射的能量,就从一个能量较低的能级跃迁到另一个能量较高的能级。 图1 电子跃迁示意图 物质对不同波长的光线具有不同的吸收能力,如果改变通过某一吸收物质的入射光的波长,并纪录该物质在每一波长处的吸光度(A),然后以波长为横坐标,以吸光度为纵坐标作图,这样得到的谱图为该物质的吸收光谱或吸收曲线。 当一定波长的光通过某物质的溶液时,入射光强度I。与透过光强度I之比的对数与该物质的浓度c及样品池厚度b成正比。其数学表达式为: 此式为Lambert-Beer定律,是分光光度法定量分析的基础,其中A为吸光度。 由于不同物质具有不同的分子结构,对不同波长的光会产生选择性吸收,具有不同的吸收光谱,因而,我们可以利用紫外-可见吸收光谱法对物质结构进 行鉴定和进行定量分析、根据被测量物质分子对紫外-可见波段范围

信号与测试实验1时率与频率

基本信号分析 一、实验目的 1.掌握基本信号的时域和频域分析方法 2.掌握信号的自相关和互相关分析,了解其应用 二、数据处理与分析 (1)幅值为1,频率为100Hz的正弦信号,上图为时域图,下图为利用快速傅里叶变换获得的频谱图。从频谱图上看出,f=100Hz时频域的幅值最大。 (2)频域为100Hz,幅值为1的方波信号,上图为时域图,下图为借助快速傅立叶变换获得的频域图。从频谱图上看出,f=100Hz时频域的幅值最大,随着频域增大,频域的幅值逐渐衰减。

(3)频率为100Hz,幅值为1的锯齿波信号图,上图为时域图,下图为借助傅立叶变换而获得的频域图。从频域图看出,在100Hz的整数倍频率上,频域幅值都出现了峰值,随着频率的增大,峰值逐渐收敛至0. (4)平均振幅为1的噪声信号,上图为时域图,下图为通过快速傅立叶变

换得出的频谱图,从频谱图可以看出,白噪声信号的频谱杂乱无章,无明显规律。 (5)由频率为50Hz、100Hz、150Hz的正弦信号组成的复合信号,上图为时域图,下图为频域图,从图中可以看出,频谱图在50、100、150Hz处出现了峰值。 (6)频率为100Hz 的正弦信号叠加噪声信号:上图为时域信号图,下图为

通过快速傅立叶变换获得的频谱图。与没有叠加噪声信号的正弦波相比,时域波形出现了毛刺,而频谱图中除了在100Hz处有峰值外,在其他频率点处也出现了一些较低的峰值。 (7)频率为100Hz的正弦信号和频率为100Hz的方波信号进行叠加,上图为时域信号,下图为频谱图。从时域图上可以看出,正弦波形叠加方波后有了明显的畸变。从频谱图上可以看出,除了100Hz处出现峰值以外,在其他频率点也出现了一些峰值。

信号与系统实验报告实验三 连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3

由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。在研究系统的频率响应时,更多的是把它表示成极坐标形式: ) ()()(ω?ωωj e j H j H = 3.4 上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ω?称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。)(ωj H 和)(ω?都是频率ω的函数。 对于一个系统,其频率响应为H(j ω),其幅度响应和相位响应分别为)(ωj H 和)(ω?,如果作用于系统的信号为t j e t x 0)(ω=,则其响应信号为 t j e j H t y 0)()(0ωω= t j j e e j H 00)(0)(ωω?ω=))((000)(ω?ωω+=t j e j H 3.5 若输入信号为正弦信号,即x(t) = sin(ω0t ),则系统响应为 ))(sin(|)(|)sin()()(00000ω?ωωωω+==t j H t j H t y 3.6 可见,系统对某一频率分量的影响表现为两个方面,一是信号的幅度要被)(ωj H 加权,二是信号的相位要被)(ω?移相。 由于)(ωj H 和)(ω?都是频率ω的函数,所以,系统对不同频率的频率分量造成的幅度和相位上的影响是不同的。 2 LTI 系统的群延时 从信号频谱的观点看,信号是由无穷多个不同频率的正弦信号的加权和(Weighted sum )所组成。正如刚才所述,信号经过LTI 系统传输与处理时,系统将会对信号中的所有频率分量造成幅度和相位上的不同影响。从相位上来看,系统对各个频率分量造成一定的相位移(Phase shifting ),相位移实际上就是延时(Time delay )。群延时(Group delay )的概念能够较好地反

VC编程实现对波形数据的频谱分析修订稿

V C编程实现对波形数据的频谱分析 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

到1024时,需要进行复数乘法运算1,048,576次,显然这种算法在实际运用中无法保证当点数较大时的运算速度,无法满足对信号的实时处理。 根据W矩阵中W元素的周期性和对称性我们可以将一个N点的DFT运算分解为两组N/2点的DFT运算,然后取和即可,为进一步提高效率,将上述两个矩阵按奇偶顺序逐级分解下去。当采样点数为2的指数次方M时,可分解为M级子矩阵运算,全部工作量仅为: 复数乘法:M*N/2次 复数加法:N*M次 而直接DFT需要的运算量为: 复数乘法:N*N次 复数加法:N*(N-1)次 当点数N为几十个点时FFT的优势还不明显,而一旦达到几千、几百个点时优势是十分明显的: N=1024时:DFT需1048576次运算,FFT仅需5120次运算,改善比。 N=2048时:DFT需4194304次运算,FFT仅需11264次运算,改善比达到。

三、 "时间抽选奇偶分解快速离散傅立叶变换"的程序实现 当采样点数较多时,如变换前和变换后的序列都按自然顺序排列,则中间运算过程会占用大量的中间存储单元,造成效率的低下和存储单元的浪费。根据FFT的实现原理我们可以对采样序列进行逐次奇偶抽选,打乱以前的次序重新排序,然后按此顺序参加运算,可以实现"即位运算"提高存储单元的利用率。 (一)复数的描述方法 进行傅立叶变换时不可避免的要用到复数,而在VC中并没有现成的可用于表示复数的数据类型,可以自己定义一个含有两个成员变量的数据结构来表示复数,这两个成员变量可分别用于表示复数的实部与虚部:

紫外吸收光谱实验报告

利用紫外吸收光谱检查物质纯度 紫外-可见分光光度法测定水中苯酚含量 一、实验目的 1.学会使用Cary50型紫外-可见分光光度计 2.掌握紫外-可见分光光度计的定量分析方法 二、原理简介 紫外-可见吸收光谱是由分子外层电子能级跃迁产生,同时伴随着分子的振动能级和转动能级的跃迁,因此吸收光谱具有带宽。紫外-可见吸收光谱的定量分析采用朗伯-比尔定律,被测物质的紫外吸收的峰强与其浓度成正比,即: 其中A是吸光度,I、分别为透过样品后光的强度和测试光的强度,为摩尔吸光系数,b为样品厚度。 由于苯酚在酸、碱溶液中吸收波长不一致(见下式),实验选择在碱性中测试,选择测试的波长为288nm左右,取紫外-可见光谱仪波长扫描后的最大吸收波长。 Cary50是瓦里安公司的单光束紫外-可见分光光度计。仪器原理是光源发出光谱,经单色器分光,然后单色光通过样品池,达到检测器,把光信号转变成电信号,再经过信号放大、模/数转换,数据传输给计算机,由计算机软件处理。 三、仪器与溶液准备 1、Cary50型紫外-可见分光光度计 2、1cm石英比色皿一套

3、25 ml容量瓶5只,100 ml容量瓶1只,10ml移液管二支 配置250 mg/L苯酚的标准溶液:准确称取0.0250 g苯酚于250 mL烧杯中,加入去离子水20 mL使之溶解,加入0.1M NaOH 2mL,混合均匀,移入100 mL容量瓶,用去离子水稀释至刻度,摇匀。 取5只25 mL容量瓶,分别加入1.00、2.00、3.00、4.00、5.00 mL苯酚标准溶液,用去离子水稀释至刻度摇匀,作为标准溶液系列。 将溶剂,标准溶液,待测水样依此装入石英比色皿。按测试程序的提示,依次放入样品室中进行测试。 四、测试过程 1、确认样品室内无样品 2、开电脑进入Window 系统 3、点击进入Cary50 主菜单 4、双击Cary-WinUV图标 5、在Win-UV 主显示窗口下,双击所选图标“SCAN”以扫描测定吸收曲线:取上述标准系列任一溶液装进1cm石英比色皿至4/5,以装有蒸馏水的1cm石英比色皿作为空白参比,设定在220-350 nm波长范围内扫描,获得波长-吸收曲线,读取最大吸收的波长数据。 6、在Win-UV 主显示窗口下,双击图标“Concentration”进入定量分析主菜单 7、设定测试分析步骤: (l)单击Setup功能键,进入参数设置页面。在Wavelength处填入由步骤5获取的波长数据。 (2)按Cary Control 、Standards、Options、Samples、Reports、Auto store顺序,分别设置好菜单中每页的参数。按OK回到“Concentration”界面主菜单。 (3)单击View莱单,选择需要显示的内容。 例如基本选项Toolbar,buttons,Graphics,Report。 (4)单击Zero,提示“Load blank press OK to read” (放空白按OK读),放入空白蒸馏水到样品室内,按OK测试,测完取出样品。 (5)单击Start, 出现标准/样品选择页。选Selected for Analysis(选择分析的标准和样品)。此框的内容为准备分析的标准和样品。 (6)按OK进行分析测试。 依Presentstdl的提示:放入标准1然后按OK键进行读数。放标准2按OK进行读数。直到全部标准读完。 (7)出现“Present Samplel Press OK to read”提示框,根据提示,放入样品1按OK开始读样品,直到样品测完。

相关文档
相关文档 最新文档