文档库 最新最全的文档下载
当前位置:文档库 › 电磁场有限元分析

电磁场有限元分析

电磁场有限元分析
电磁场有限元分析

水轮发电机单通风沟三维简化模型温升计算

一、问题分析

近年来,随着水轮发电机单机容量的不断增加,在发电机进行能量转换过程中产生的损耗不断增大,使其运行的温升问题日趋严峻。根据上述情况,运用有限元分析方法,建立发电机单通风沟三维简化模型进行发电机温升计算。

二、电机单通风沟有限元分析

1.1 水轮发电机单通风沟三维简化模型建立

根据实际水轮发电机结构和通风沟特点,并考虑可接受误差,进行适当简化,以便于简化有限元分析计算得到以下模型,如图1所示。

图1 发电机单通风沟简化物理模型

由图1所示:水轮发电机单风沟简化物理模型三维求解域在轴向上包含发电机一个通风沟以及通风沟两侧各半个轴向铁心段;幅向上包含发电机定子三个槽、转子两个槽。

根据有限元分析特点,对发电机单通风沟简化物理模型进行网格剖分,得到发电机单通风沟简化物理模型剖分图如图2所示。

图2 电机单通风沟简化物理模型网格剖分

由于物理模型较小,可以适当加密剖分进而提高计算精度,故采用楔形和六面体的混合网格进行剖分,总网格数共48万,节点数为30万。利用有限体积法,将流体场和温度场进行强耦合求解,从而

得到发电机的详细温升分布情况。

1.2 边界条件

在图1中,求解域内的面

S为径向通风沟的进风口,沿径向与面

1

S对应的面2S为径向通风沟的出风口。由此,根据所研究发电机的实1

际运行工况,可以给定如下发电机单风沟物理模型的边界条件:1)冷却空气的初始基值绝对温度为0K;

2)径向通风沟入口

S风速为5.1m/s的速度入口边界,通风沟出

1

S为自由流动边界;

2

3)求解域其它外边界均为绝热面,发电机内部流体与固体的接

触面均为无滑移边界面。

采用有限体积法,利用共轭传热问题的相关求解技术,可以对双馈水轮发电机温升分布情况进行流—热耦合场数值计算。进入单个径向通风沟内的空气流速为5.1m/s。

三、计算结果

图3 发电机温升计算值

如图3所示:发电机转子温升略高于定子,尤其是绕组位置最为明显,最高温升点出现在转子绕组处,最高温升为56.91K;无论定转子,绕组部分的温升高于铁心部分温升;对于在铁心部分,铁心齿部温升明显高于轭部温升。

取求解域中铁心轴向远风端模型的外表面,即实际发电机单铁心段轴向中心位置处截面为采样面,该采样面为求解域内最高温升所在的轴向截面,提取该采样面温升如图3-a)所示;取通风沟轴向中心截面为另一采样面,该采样面为求解域内最低温升所在位置,如图3-b)所示。

a)铁芯远风端外表面温升计算值b)通风沟轴向中心截面温升计算值

图4 温升极值所在轴向截面计算值

由图4-a)图可知:发电机转子绕组的温升最高,数值为56.91K,并且由数值计算结果可知,其位置位于发电机转子上层绕组径向偏下处,且转子绕组温升上层明显高于下层,而定子绕组温升相对于转子绕组的较低。

如图4-b)可见:在该区域转子绕组的温升依然最高,最高温升同样为55.82K,比最热面转子绕组的最高温升低了1.09K,由于绕组铜有着良好的导热性能,发电机内流体流动以及温升达到稳定状态后,绕组沿轴向的温升变化幅度很小,而通风沟内的绕组受到冷却空气的吹拂作用,散热性能优于铁心槽内绕组,故温升较低;最低温升为0K,在冷却空气入口处。

如何简单的区分ANSYS Workbench有限元分析中的静力学与动力学问题

如何简单的区分ANSYS Workbench 有限元分析中的静力学与动力 学问题 四川 曹文强 “力”是一个很神秘的字,是个象形字,形体极像古代的犁形,上部为犁把,下部为耕地的犁头,也形象的解释“力”含义 ,将无形不可见,不可描述的现象充分的表达了出来。 从初中物理我们就学习过,力是物体之间的相互作用,是使物体获得加速度和发生形变的外因,单独就力而言,有三个要素力的大小、方向和作用点。力学是研究物体的机械运动和平衡规律及其应用的,力学可分为静力学、运动学和动力学三部分。而今天主要是简单介绍一个静力学与动力学。 首先,静力学与动力学区别是什么? 答案很简单,一个是“静”,一个是“动”,动静的含义就是时间的问题。故,静力学实际是在研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题,其中的静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。当然 “静”动力学 静力学

实际上只是相对而言,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态,也就是平衡的状态。 对于平衡的状态阐述,牛顿第一运动定律(牛顿第一定律,又称惯性定律、惰性定律)就有一个完整表述:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。 此外,静力学的有五大公理 公理一 力的平行四边形法则:作用在物体上同一点的两个力,可合成一个合力,合力的作用点仍在该点,其大小和方向由以此两力为边构成的平行四边形的对角线确定,即合力等于分力的矢量和。 公理二 二力平衡公理:作用在物体上的两个力,使物体平衡的必要和充分条件是:两个力的大小相等,方向相反,作用线沿同一直线。 公理三 加减平衡力系公理:在已知力系上加或减去任意平衡力系,并不改变原力系对刚体的作用。 公理四 牛顿第三定律:两物体间的相互作用力,大小相等,方向相反,作用线沿同一直线。 此公理概括了物体间相互作用的关系,表明作用力与反作用力成对出现,并分别作用在不同的物体上。 公理五 刚化公理:变形体在某一力系作用下处于平衡时,如将其刚化为刚体,其平衡状态保持不变。 在有限元结构仿真里面,可简化为下流程图。 静荷载 大小、方向、作用点 输入 刚度、约束、尺寸、材料输出 位移、内力、应力

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

自补偿液体静压轴承静动态特性有限元分析

龙源期刊网 https://www.wendangku.net/doc/5b14938483.html, 自补偿液体静压轴承静/动态特性有限元分析 作者:佐晓波尹自强王建敏李圣怡 来源:《湖南大学学报·自然科学版》2014年第01期 摘要:对一种新型的自补偿双锥面液体静压轴承进行了理论和实验研究.介绍了自补偿双锥面液体静压轴承结构与工作原理,采用小扰动法建立了其润滑油膜的理论模型,自补偿节流公式中计入了转子移动对节流间隙的影响.采用有限元方法求解了轴承的承载力、流量、刚度和阻尼系数,通过对承载力的测试验证了模型的可行性.结果表明:自补偿双锥面液体静压轴承比同条件下固定节流静压轴承的径向承载力高,且其在较小载荷下工作时具有较高刚度. 关键词:液体静压轴承;自补偿;静态特性;动态特性;有限元;小扰动方法 中图分类号:TH133.3 文献标识码:A 液体静压轴承具有承载力大,刚度高,阻尼特性好和磨损小等一系列优点,在精密机床主轴、导轨和转台等基础设备中有着广泛的应用.节流器对静压轴承的静、动态性能具有重要影响.常用的轴承节流器包括小孔、毛细管、狭缝等固定节流器和薄膜等可变节流器,其在现有文献中有较深入的研究.Chen等[1]对毛细管节流静压轴承性能进行了理论研究,郭力等[2]则对毛细管节流的大型动静压轴承进行了实验研究, Chen等[3]以及 Nicodemus和Sharma[4]研究 了小孔节流静压轴承性能,结果均表明节流参数的选择对轴承性能具有重要影响.Sharma等[5]研究了狭缝节流轴颈轴承,指出其失稳速度比毛细管和小孔节流轴承高.郭力等[6]则提出一种圆隙缝节流静压轴承,计算表明其性能优于传统狭缝节流轴承.Singh等[7]和Brecher等[8]研究了薄膜节流多腔静压轴承的特性.Gao等[9-10]分析了一种采用PM流量控制器的新型薄膜节流静压轴承的静态和动态特性.以上类型轴承,节流器的设计、制造往往较为复杂.自补偿节流轴承不使用节流器,采用自身结构实现节流,其性能介于固定节流和薄膜节流之间.夏恒青[11]和王瑜[12]分别对自补偿液体静压轴颈轴承的节流腔结构和动态性能进行了研究.Kane等[13]将节流间隙与承载间隙设计成呈角度相交的两段,制造了一种适用于转台的自补偿静压轴承.现有文献中对自补偿轴承的报道相对较少.本文设计了一种新型的自补偿液体静压轴承,采用小扰动理论建立了轴承计算模型,并采用有限元法计算了其静、动态特性. 1自补偿静压轴承结构及其节流原理 轴承结构示意图如图1(a)所示.轴承采用双锥面形式,主轴由两个圆锥零件和一个连接块组装而成,定子上安装节流环,由节流环的外表面与转子相应配合表面形成的间隙实现润滑油的节流,因不采用传统形式的节流器,所以称为自补偿静压轴承.图1(b)所示为轴承实物

矩形板静力有限元分析

现代设计方法实验报告 题目_矩形板静力有限元分析____ 编号______10、11、12_________ 姓名_______杨操__________ 班级_______2 班__________ 学号_______20092503__________

1.题目概况 矩形板尺寸如下图1,板厚为5mm。材料弹性模量为52 E=?,泊松 210N/mm μ。根据以下情况进行讨论: 比27 .0 = 图1 计算简图 (1)试按下表的载荷约束组合,任选二种进行计算,并分析其位移、应力分布的异同。 (2)如下图,讨论板上开孔、切槽等对于应力分布的影响。 提示:各种圆孔,椭圆孔随大小、形状、数量,分布位置变化引起的应力分布变化;各种形状,大小的切槽及不同位置引起应力分布的变化等,选择二至三种情况讨论,并思考其与机械零部件的构型的相对应关系。

图2 开孔/切槽示例 1.1基本数据 对第(1)题中矩形板按照三种边界约束条件分别进行位移、应力分析; 对第(2)题矩形板开槽情况按照三种边界约束条件分别进行位移、应力分析;对第(2)题矩形板开槽位置不同的情况按照三种边界约束条件分别进行位移、应力分析; 对第(2)题矩形板开槽形状的不同按照三种边界约束条件分别进行位移、应力分析。 1.2 分析任务/分析工况 由于矩形板的板厚远小于长宽,且沿薄板周围边界承受着平行于薄板平面并沿厚度均匀分布的外力,因此该问题属于平面应力问题。 2.模型建立 2.1单元选择及其分析 在进行有限元分析时,应根据分析问题的几何结构,分析类型和所分析的问题精度等要求,选择适合暗送秋波分析的单元类型,本次上机实验选择四节点四

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

(完整版)基于ANSYS的重力坝三维静动态结构分析

基于ANSYS 的重力坝三维静动态结构分析 目录 1 引言..................................................................... 1.. 2 工程概况................................................................. 1... 3 基本资料................................................................. 1... 3.1 反应谱............................................................ 1... 3.2 材料参数.......................................................... 2... 3.3 规范要求.......................................................... 2... 4 分析简介................................................................. 4... 4.1 分析模型.......................................................... 4... 4.2 边界条件.......................................................... 6... 4.3 荷载工况.......................................................... 6... 5 计算成果................................................................. 7... 5.1 工况一............................................................. 7... 5.2 工况二............................................................ 8... 5.3 工况三 1..0. 5.4 工况四 1..1. 5.5 工况五 1.. 2. 5.6 工况六 1..4. 5.7 结果总结及分析 1..5 6 结论及建议 1..7. 7 分析命令流 1..7.

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

111ANSYS进行有限元静力学分析

经典理论 一、设计大纲概述 1、设计目的 (1)熟悉有限元分析的基本原理和基本方法; (2)掌握有限元软件ANSYS的基本操作; (3)对有限元分析结果进行正确评价。 2、设计原理 利用ANSYS进行有限元静力学分析。 3、设计仪器设备 1)安装windows 2000以上版本的微机; 2)ANSYS 8.0以上版本软件。 4、实验内容与步骤 1)熟悉ANSYS的界面和分析步骤; 2)掌握ANSYS前处理方法,包括平面建模、单元设置、网格划分和约束设置; 3)掌握ANSYS求解和后处理的一般方法; 4)实际应用ANSYS软件对平板结构进行有限元分析。 二、题目: 如图试样期尺寸为100mm*5mm*5mm,下端固定,上端受拉 力10000N作用。已知该试样材料的应力-应变曲线如图 所示。计算试样的位移分布。

三、分析步骤: 分析:从应力-应变关系可以看出该材料的屈服极限是225MPa 左右,弹性部分曲线的斜率为常数75GPa。之后材料进入塑性变形阶段,应力-应变关系为非线性的。估计本题应力10000/(0.05*.005)=400MPa,因此材料屈服进入塑性,必须考虑材料非线性影响。 (1)建立关键点。单击菜单Main Menu>Preprocessor>Modeling>Create>Keypoints>In ActiveCS,建立两个关键点(0,0,0)和(0,100, 0)。 (2)建立直线。单击菜单Main Menu>Preprocessor>Modeling>Create>Lines>Staight Line,在关键点1、2之间建立直线。 (3)定义单元类型。单击菜单Main Menu>Preprocessor>ElementType>Add/Edit/Delete, 定义单元Structural>Link>2D spar1(LINK1) (4)定义单元常数。单击菜单Main Menu>Preprocessor>RealConstants>Add/Edit/Delete,

基于ABAQUS的电梯层门静力学有限元分析

基于ABAQUS的电梯层门静力学有限元分析 摘要根据GB7588-2003《电梯制造与安装安全规范》[1]中7.2项规定了门及其框架的强度;随着经济的发展,电梯也变得越来越重要,电梯事故频发,电梯层门的门机械机构强度也是一个重要的检验项目,关系到特种设备的安全运行。本文针对现场检验中的电梯层门,以Abaqus有限元软件为工具,具体量化其机械结构,建立相关的简化模型并进行网格的划分,基于现场检验提供的数据,设置电梯层门门板的载荷与边界条件,模拟电梯受到静力的物理过程,通过其特定材质厚度的仿真分析,分析特定材质下的门板变形影响情况,为电梯层门门板的设计及检验提供一定的参考。 关键词曳引电梯;层门门板;检验;强度分析 1 电梯层门机械强度的标准要求 根据GB7588-2003《电梯制造与安装安全规范》7.2.3.1规定层门在锁住位置时,所有层门及其门锁应有这样的机械强度: (1)用300 N的静力垂直作用于门扇或门框的任何一个面上的任何位置,且均匀地分布在5 cm2的圆形或方形面积上时,应: ①永久变形不大于1 mm; ②弹性变形不大于15 mm; 试验后,门的安全功能不受影响。 (2)用1000 N的静力从层站方向垂直作用于门扇或门框上的任何位置,且均匀地分布在100 cm2的圆形或方形面积上时,应没有影响功能和安全的明显的永久变形[见7.1(最大10 mm的间隙)和7.7.3.1]。 注:对于(1)和(2),为避免损坏层门的表面,用于提供测试力的测试装置的表面可使用软质材料。 2 现场的检验 2.1 电梯基本技术参数 以现场检验电梯为例,进行层门的测量。结合检规规定的测量方法。该电梯产品制造商为某著名电梯公司,产品型号为TE-Evolution,电梯类别为有机房曳引驱动乘客客梯,额定载重量为1000kg,额定速度为1.75m/s,站/层/门为7/7/7。根据现场的测量,记录下层门相关数据,查阅安装资料,确定层门材质及尺寸。

有限元法分析过程

有限元法分析过程 有限元法分析过程大体可分为:前处理、分析、后处理三大步骤。 对实际的连续体经过离散化后就建立了有限元分析模型,这一过程是有限元的前处理过程。在这一阶段,要构造计算对象的几何模型,要划分有限元网格,要生成有限元分析的输入数据,这一步是有限元分析的关键。 有限元分析过程主要包括:单元分析、整体分析、载荷移置、引入约束、求解约束方程等过程。这一过程是有限元分析的核心部分,有限元理论主要体现在这一过程中。 有限元法包括三类:有限元位移法、有限元力法、有限元混合法。 在有限元位移法中,选节点位移作为基本未知量; 在有限元力法中,选节点力作为未知量; 在有限元混合法中,选一部分基本未知量为节点位移,另一部分基本未知量为节点力。 有限元位移法计算过程的系统性、规律性强,特别适宜于编程求解。一般除板壳问题的有限元应用一定量的混合法外,其余全部采用有限元位移法。因此,一般不做特别声明,有限元法指的是有限元位移法。 有限元分析的后处理主要包括对计算结果的加工处理、编辑组织和图形表示三个方面。它可以把有限元分析得到的数据,进一步转换为设计人员直接需要的信息,如应力分布状态、结构变形状态等,并且绘成直观的图形,从而帮助设计人员迅速的评价和校核设计方案。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰

橡胶件的静、动态特性及有限元分析

橡胶件的静、动态特性及有限元分析 北方交通大学 硕士学位论文   橡胶件的静、动态特性及有限元分析   姓名:郑明军 申请学位级别:硕士 专业:车辆工程 指导教师:谢基龙   2002.2.1 file:///E|/Material/new download/Y476948/Paper/pdf/fm.htm2007-7-3 11:31:00

目录 文摘 英文文摘 第一章绪论 1.1引言 1.2选题背景 1.3本论文的主要研究内容第二章橡胶类材料的本构关系 2.1引言 2.2橡胶材料的本构关系2.2.1橡胶材料的统计理论2.2.2橡胶材料的唯象理论2.3橡胶材料的应力应变关系2.4小结 第三章非线性橡胶材料的有限单元法 3.1引言 3.2非线性橡胶材料的罚有限元法3.3非线性橡胶材料的混合有限元法3.4非线性橡胶材料的杂交有限元法 3.5ANSYS软件的非线性有限元分析方法3.6小结 第四章橡胶材料常数的研究 4.1引言 4.2测定橡胶材料常数的实验方法 4.3 Mooney-Rivlin型橡胶材料常数C1和C2的测定4.4橡胶硬度对Mooney-Rivlin型橡胶材料常数的影响 4.4.1橡胶硬度与弹性模量的关系4.4.2橡胶柱的压缩试验 4.4.3橡胶柱的有限元分析 4.4.4橡胶支座的有限元分析 4.4.5不同硬度下橡胶材料常数C1和C2的确定5小结 第五章橡胶夹层的断裂分析 5.1引言 5.2双悬臂橡胶夹层梁的有限元分析5.2.1试验研究 5.2.2有限元分析 5.2.3计算结果分析 5.3双悬臂橡胶夹层梁的断裂力学分析5.3.1双悬臂橡胶夹层梁界面J积分5.3.2双悬臂橡胶夹层梁应变能释放率G 5.3.3双悬臂橡胶夹层梁的断裂力学分析5.4双剪切橡胶夹层的有限元分析 5.5双剪切橡胶夹层的断裂力学分析 5.5.1双剪切橡胶夹层界面断裂韧性 5.5.2双剪切橡胶夹层的断裂力学分析 6小结 第六章橡胶弹性车轮动态特性分析 6.1引言 6.2橡胶弹性车轮的特点 6.3橡胶弹性车轮的结构 6.4橡胶弹性车轮的有限元分析6.4.1橡胶弹性车轮的有限元分析 6.4.2橡胶弹性车轮的减振效果 6.4.3橡胶硬度对弹性车轮动态特性的影响6.5小结 第七章结论 7.1橡胶材料常数的研究 7.2橡胶夹层的断裂分析 7.3橡胶弹性车轮动态特性分析 参考文献 致谢

齿轮动态啮合有限元分析

齿轮动态啮合有限元分析 作者:陕西法士特齿轮有限公司孙春艳郭君宝 齿轮传动是机械传动中最重要、应用最广泛的一种传动。通常齿轮安装于轴上并通过键连接,转矩从驱动轴经键、齿轮体和轮齿最终传递到从动轮的齿轮。在这一过程中,齿轮承受应力作用。另外,为了润滑齿轮传动与减少齿轮传动时产生的热量,通常在齿轮轮体上开设润滑油孔(图1)。油孔的开设位置将影响齿轮的应力及其分布,进而影响齿轮疲劳寿命。 图1中的齿轮A在实际使用过程中,经常发生油孔附近轮齿断裂的现象。本文的目的在于计算齿轮动态啮合过程的应力分布,得到齿轮轮齿根部应力及接触应力的分布情况,从而为齿轮的结构优化提供理论依据。 传动齿轮在工作中速度高,所受载荷大,引起的应力情况复杂。传统的齿轮强度分析是建立在经验公式基础上的,其局限性和不确定性日益突出。有限元方法在齿轮仿真分析中的应用,提高了齿轮设计计算精度。目前,轮齿接触有限元分析多建立在静力分析基础上,未考虑动力因素的影响。而在齿轮轮齿啮合过程中,动力因素对轮齿的受力和变形状态会产生较大的影响,尤其在轮齿啮入和啮出时,由于轮齿受力变形,会产生较大的啮合冲击。本文应用参数化方法首先建立齿轮轮齿的精确几何模型,然后采用动力接触有限元方法,对齿轮轮齿啮合过程中的应力变化情况进行仿真分析,得到轮齿应力在啮合过程中随时间的变化情况。 本文主要针对图1中的齿轮A和与其配对齿轮在运转过程中的应力变化情况进行有限元分析。其主要参数为:主动齿轮齿数20,从动齿轮齿数19,模数4.5,压力角为20°,齿宽为23mm,从动齿轮上所受扭矩为400N·m。

如图2 所示,首先利用Pro/ENGINEER软件建立四齿对啮合的齿轮轮齿几何模型。这是因为,对于重合度大于1的齿轮副,需要考虑几对轮齿同时啮合的情况,建立多对轮齿的几何模型,在此基础上划分有限元网格,如图3所示。由于轮齿接触区域很小,需要对接触齿面的有限元网格加密。边界条件为约束齿轮内圈表面节点的径向和轴向位移,只保留沿轴向的转动自由度。在主动齿轮上施加轴向的角速度载荷,在从动齿轮上施加扭矩负载,然后应用显式非线性动力有限元方法进行求解。对于动力接触这种非线性问题,可采用拉格朗日增量描述法。设质点在初始时刻的坐标为Xi,任意时刻t,该质点坐标为xi,质点运动方程为:xi=xi(Xi,t), i=1,2,3。结合动量方程、质量守恒方程和能量方程,并考虑沙漏效应和阻尼影响,得到总体运动方程: 其中M为集中质量矩阵;P为总体载荷矢量;F为单元应力场的等效节点力矢量组集而成; H 为总体结构沙漏粘性阻尼矩阵;为总体节点加速度矢量; C为阻尼矩阵。对总体运动方程采用显式时间积分法求解。本文采用ABAQUS 有限元分析软件对上述模型进行有限元分析,得到该对齿轮的一对轮齿啮合全过程,及Von Mises应力变化,如图4 所示。

Ansys有限元分析温度场模拟指导书

实验名称:温度场有限元分析 一、实验目的 1. 掌握Ansys分析温度场方法 2. 掌握温度场几何模型 二、问题描述 井式炉炉壁材料由三层组成,最外一层为膨胀珍珠岩,中间为硅藻土砖构成,最里层为轻质耐火黏土砖,井式炉可简化为圆筒,筒内为高温炉气,筒外为室温空气,求内外壁温度及温度分布。井式炉炉壁体材料的各项参数见表1。 表1 井式炉炉壁材料的各项参数 三、分析过程 1. 启动ANSYS,定义标题。单击Utility Menu→File→Change Title菜单,定义分析标题为“Steady-state thermal analysis of submarine” 2.定义单位制。在命令流窗口中输入“/UNITS, SI”,并按Enter 键

3. 定义二维热单元。单击Main Menu→Preprocessor→Element Type→Add/Edit/Delete 菜单,选择Quad 4node 55定义二维热单元PLANE55 4.定义材料参数。单击Main Menu→Preprocessor→Material Props→Material Models菜单

5. 在右侧列表框中依次单击Thermal→Conductivity→Isotropic,在KXX文本框中输入膨胀珍珠岩的导热系数0.04,单击OK。 6. 重复步骤4和5分别定义硅藻土砖和轻质耐火黏土砖的导热系数为0.159和0.08,点击Material新建Material Model菜单。 7.建立模型。单击Main Menu→Preprocessor→Modeling→Create→Areas→Circle→By Dimensions菜单。在RAD1文本框中输入0.86,在RAD2文本框中输入0.86-0.065,在THERA1文本框中输入-3,在THERA2文本框中输入3,单击APPL Y按钮。

ANSYS进行有限元静力学分析

一、设计大纲概述 1、设计目的 (1)熟悉有限元分析的基本原理和基本方法; (2)掌握有限元软件ANSYS的基本操作; (3)对有限元分析结果进行正确评价。 2、设计原理 利用ANSYS进行有限元静力学分析。 3、设计仪器设备 1)安装windows 2000以上版本的微机; 2)ANSYS 8.0以上版本软件。 4、实验内容与步骤 1)熟悉ANSYS的界面和分析步骤; 2)掌握ANSYS前处理方法,包括平面建模、单元设置、网格划分和约束设置; 3)掌握ANSYS求解和后处理的一般方法; 4)实际应用ANSYS软件对平板结构进行有限元分析。 二、题目: 如图试样期尺寸为100mm*5mm*5mm,下端固定,上端受拉 力10000N作用。已知该试样材料的应力-应变曲线如图 所示。计算试样的位移分布。

三、分析步骤: 分析:从应力-应变关系可以看出该材料的屈服极限是225MPa 左右,弹性部分曲线的斜率为常数75GPa。之后材料进入塑性变形阶段,应力-应变关系为非线性的。估计本题应力10000/(0.05*.005)=400MPa,因此材料屈服进入塑性,必须考虑材料非线性影响。 (1)建立关键点。单击菜单Main Menu>Preprocessor>Modeling>Create>Keypoints>In ActiveCS,建立两个关键点(0,0,0)和(0,100, 0)。 (2)建立直线。单击菜单Main Menu>Preprocessor>Modeling>Create>Lines>Staight Line,在关键点1、2之间建立直线。 (3)定义单元类型。单击菜单Main Menu>Preprocessor>ElementType>Add/Edit/Delete, 定义单元Structural>Link>2D spar1(LINK1) (4)定义单元常数。单击菜单Main Menu>Preprocessor>RealConstants>Add/Edit/Delete, 在弹出的Real Constants for LINK1对话框中,输入 如下的单元几何参数:截面面积AREA=25 出始应 变=0

电磁场有限元分析

水轮发电机单通风沟三维简化模型温升计算 一、问题分析 近年来,随着水轮发电机单机容量的不断增加,在发电机进行能量转换过程中产生的损耗不断增大,使其运行的温升问题日趋严峻。根据上述情况,运用有限元分析方法,建立发电机单通风沟三维简化模型进行发电机温升计算。 二、电机单通风沟有限元分析 1.1 水轮发电机单通风沟三维简化模型建立 根据实际水轮发电机结构和通风沟特点,并考虑可接受误差,进行适当简化,以便于简化有限元分析计算得到以下模型,如图1所示。 图1 发电机单通风沟简化物理模型 由图1所示:水轮发电机单风沟简化物理模型三维求解域在轴向上包含发电机一个通风沟以及通风沟两侧各半个轴向铁心段;幅向上包含发电机定子三个槽、转子两个槽。 根据有限元分析特点,对发电机单通风沟简化物理模型进行网格剖分,得到发电机单通风沟简化物理模型剖分图如图2所示。

图2 电机单通风沟简化物理模型网格剖分 由于物理模型较小,可以适当加密剖分进而提高计算精度,故采用楔形和六面体的混合网格进行剖分,总网格数共48万,节点数为30万。利用有限体积法,将流体场和温度场进行强耦合求解,从而 得到发电机的详细温升分布情况。 1.2 边界条件 在图1中,求解域内的面 S为径向通风沟的进风口,沿径向与面 1 S对应的面2S为径向通风沟的出风口。由此,根据所研究发电机的实1 际运行工况,可以给定如下发电机单风沟物理模型的边界条件:1)冷却空气的初始基值绝对温度为0K; 2)径向通风沟入口 S风速为5.1m/s的速度入口边界,通风沟出 1 口 S为自由流动边界; 2 3)求解域其它外边界均为绝热面,发电机内部流体与固体的接 触面均为无滑移边界面。

SOLIDWORKS Simulation 动态有限元分析视频教程

SolidWorks Simulation动态有限元分析视频教程第一章一根弯管的振动 1、介绍动态分析及频率的相关理论概念 2、理解静态和动态方法的区别,并学会选用算例 3、定义并完成一个基础的动力学瞬态分析 4、理解模态分析方法的基础 第二章基于标准MILS-STD-810F的瞬态振动分析 1、定义瞬态动力学算例 2、了解阻尼与相关的理论概念,并理解模态时间历史算例 中的时间步长 3、基于标准MILS-STD-810F确定加载参数 4、从动态分析中后处理结果 5、使用远程质量特征简化模型 第三章支架的谐波分析 1、谐波分析的概念 2、分析外部载荷随频率变化的模型 3、完成谐波分析 第四章响应波谱分析 1、响应波谱的概念 2、分析物体在波谱形式载荷作用下的最大响应 3、运行响应波谱分析 第五章 Ipad支架的随机振动分析 1、运行随机振动分析 2、随机振动的相关概念 3、理解随机振动分析的输入和输出 第六章包含碰撞的非线性动态分析1、执行一个碰撞挤压的非线性动态分析 2、在算例中引入初始条件的设置 3、使用塑性Von Mises材料模型,模拟动态分析中材料的 非线性行为 4、理解非线性动态分析的结果 第七章自行车架的线性与非线性动态分析 1、运行非线性动态分析 2、比较线性动态分析和非线性动态分析 3、理解何时需要非线性动态分析 4、使用瑞利阻尼 第八章基于谐波载荷的疲劳分析 1、运行谐波响应分析计算结构应力 2、使用谐波响应分析的结果执行谐波载荷疲劳分析 第九章车轮动态弯曲疲劳分析 1、理解相关试验标准要求 2、建立合理的分析模型 3、通过动态分析找出最危险载荷方向 4、执行静强度分析计算结构强度 5、使用疲劳分析评估结构耐久性 第十章机台振动变形分析 1、简化模型,压缩不必要的零部件 2、使用“分布质量”包含零部件质量效应 3、列举“质量参与”信息 4、定义速度激发条件 5、生成位移响应响应图解 技术交流QQ群:474293508 个人QQ:285037033 视频观看地址:优酷网搜索“仿真Show”账号

ANSYS大型变压温度场的有限元分析

ANSYS大型变压温度场的有限元分析 杨涛 华北科技学院机电工程系材控B112班 摘要:变压器是一种静止的电能转换装置,它利用电磁感应原理,根据需要可以将一种交流电压和电流等级转变成同频率的另一种电压和电流等级。它对电能的经济传输、灵活分配和安全使用具有重要的意义;同时,它在电气的测试、控制和特殊用电设备上也有广泛的应用。如何开发合适的温度场计算技术,准确地计算变压器在各种运行状态下内部线圈、结构件及铁芯等部位的温度,控制内部热点温度不超过其内部绝缘材料的许用温度,从而保证变压器的热寿命,提高变压器的安全可靠性,是企业急需解决的问题。准确计算出变压器的平均温升和最热点温升,并合理地控制其分布,以满足标准要求,是保证变压器安全、稳定和高校运行的关键。 关键字:温度场;变压器;铁芯;有限元;ANSYS 1引言 变压器是电力网中的主要设备,其总容量达到发电设备总容量的5~6倍。电力变压器的技术性能、经济指标直接影响着电力系统的安全性、可靠性和经济性。随着科学技术的发展、生产技术的进步以及新型电工材料的开发应用,变压器的各项性能指标不断刷新,单机容量越来越大,变压器中的漏磁场也随之增大,引起了人们的关注。在额定运行情况下,漏磁场的增强引起的变压器附加损耗的增加将直接影响变压器的运行效率和产品的竞争力。严重的是,由于漏磁场在一定范围内的金属结构件中产生的涡流损耗不均匀,有可能造成这些结构件的局部过热现象。变压器的容量越大,漏磁场就越强,从而使稳态漏磁场引起的各种附加损耗增加,如设计不当它将造成变压器的局部过热,使变压器的热性能变坏,最终导致绝缘材料的热老化与击穿。 在电力系统发生短路时,暂态短路电流产生的漏磁场还可能产生巨大的机械力,对其绝缘和机械结构造成致命威胁。为了避免此种事故发生,必须对漏磁场进行全面的分析。为此,对变压器运行的效率、寿命和可靠性提出了越来越高的要求。 变压器在220℃温度下, 保持长期稳定性,在350℃温度下, 可承受短期运行,在很广的温度和湿度范围内, 保持性能稳定,在250℃温度下, 不会熔融,流动和助燃,在750℃温度下, 不会释放有毒或腐蚀性气体。为了减少过高温度对变压器绝缘材料的影响,使变压器实现预期的使用寿命,保证变压器安全可靠的运行,变压器各部分都有各自所规定的温度极限,现主要对变压器的铁芯和绕组进行有限元分析。 2变压器 2.1变压器的基本原理 由于变压器是利用电磁感应原理工作的,因此它主要由铁心和套在铁心上的两个(或两个以上)互相绝缘的线圈所组成,线圈之间有磁的耦合,但没有电的联系(如图1所示)。

齿轮轴的静力学有限元分析.

课程论文封面 课程名称:结构分析的计算机方法 论文题目:齿轮轴3的静力学有限元分析学生学号: 学生姓名: 任课教师: 学位类别:学硕

目录 1. HyperMesh软件介绍 (1) 1.1 HyperMesh简介 (1) 1.2 HyperMesh的优势 (1) 2. 齿轮轴3的理论分析 (2) 2.1 齿轮轴3的平面简图 (2) 2.2 齿轮轴3的受力分析 (2) 3. 齿轮轴3的三维建模 (4) 3.1 插入斜齿轮 (4) 3.2 绘制轴的三维模型 (5) 4.齿轮轴3的有限元分析 (7) 4.1 几何模型的编辑 (7) 4.2 网格划分 (12) 4.3 材料属性和单元属性的创建 (19) 4.4 施加约束和载荷 (21) 4.5 求解计算和结果分析 (25)

1. HyperMesh软件介绍 1.1 HyperMesh简介 HyperMesh 是一个高质量高效率的有限元前处理器,它提供了高度交互的可视化环境帮助用户建立产品的有限元模型。其开放的架构提供了最广泛的CAD 、CAE 和CFD 软件接口,并且支持用户自定义,从而可以与任何仿真环境无缝集成。HyperMesh 强大的几何清理功能可以用于修正几何模型中的错误,修改几何模型,从而提升建模效率;高质量高效率的网格划分技术可以完成全面的杆梁、板壳、四面体和六面体网格的自动和半自动划分,大大简化了对复杂儿何进行仿真建模的过程:先进的网格变形技术允许用户直接更改现有网格,实现新的设计,无需重构几何模型,提高设计开发效率:功能强大的模型树视图能轻松应对各种大模型的要素显示和分级管理需要,特别适合复杂机械装备的整体精细化建模。HyperMesh 的这些特点,大大提高了CAE 建模的效率和质量,允许工程师把主要精力放在后续的对产品本身性能的研究和改进上,从而大大缩短整个设计周期。 HyperMesh 直接支持目前全球通用的各类主流的三维CAD 平台,用户可以直接读取CAD 模型文件而不需要任何其他数据转换,从而尽可能避免数据丢失或者几何缺陷。HyperMesh 与主流的有限元计算软件都有接口,如Nastran 、Fluent 、ANSYS 和ABAQUS 等,可以在高质量的网格模型基础上为各种有限元求解器生成输入文件,或者读取不同求解器的结果文件。 1.2 HyperMesh的优势 1 .强大的有限元分析建模企业级解决方案 ●通过其广泛的CAD!CAE 接U 能力以及可编程、开放式构架的用户定制接 口能力,HyperMesh 可以在任意工作领域与其他工程程软件进行无缝连接工作。 ●HyperMesh 为用户提供了一个强大的、通用的企业级有限元分析建模平台, 帮助用户降低在建模工具上的投资及培训费用。 2. 无与伦比的网格划分技术一一质量与效率导向 ●依靠全面的梁杆、板壳单元、四面体或六面体单元的自动网格划分或半自动 网格划分能力,HyperMesh 大大降低了复杂有限元模型前处理的工作量。 3. 通过批量处理网恪划分( Batch Mesher ) 及自动化组装功能提高用户效率 ●批处理网格生成技术无需用户进行常规的手工几何清理及网格划分工作,从 而加速了模型的处理工作。 ●高度自动化的模型管理能力,包括模型快速组装以及针对螺栓、定位焊、粘 接和缝焊的连接管理。 4. 交互式的网格变形、自定义设计变量定义功能 ●HyperMesh 提供的网格变形工具可以帮助用户重新修改原有网格即可自动 生成新的有限元模型。 5. 提供了由CAE 向CAD 的逆向接口 ●HyperMesh 为用户提供了由有限元模型生成几何模型的功能。

有限元分析的一般过程

一、结构的离散化 将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。 这一步要解决以下几个方面的问题: 1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。 2、根据结构的特点,选择不同类型的单元。对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。 3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。 4、根据工程需要,确定分析类型和计算工况。要考虑参数区间及确定最危险工况等问题。 5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。 二、选择位移插值函数 1、位移插值函数的要求 在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。 位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。 但近年来有人提出了一些新的位移插值函数,如:三角函数、样条函数及双曲函数等,此时需要检查是否满足相容条件。 2、位移插值函数的收敛性(完备性)要求: 1)位移插值函数必须包含常应变状态。 2)位移插值函数必须包含刚体位移。 3、复杂单元形函数的构造 对于高阶复杂单元,利用节点处的位移连续性条件求解形函数,实际上是不可行的。因此在实际应用中更多的情况下是利用形函数的性质来构造形函数。 形函数的性质: 1)相关节点处的值为 1,不相关节点处的值为 0。 2)形函数之和恒等于 1。 1、建立数学模型(特征消隐,理想化,清除)((即从CAD 几何体→FEA 几何体),共 有下列三法:▲ 特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲ 理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理▲ 清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。) 2、建立有限元模型:(选择网格种类及定义分析类型;添加材料属性;施加约束;定义载 荷;网格划分) 3、求解有限元模型:再在此基础上计算应变和应力等其它物理量;在热分析中,FEA 首先 计算的是网格中每个节点的温度(标量),再在此基础上计算温度梯度和热流等其它物理量. 一般如果模型可划分网格,那么它就可以求解,但如果没有定义材料或载荷,则求解会终止。 4、结果分析:材料线性假设、小变形假设、静态载荷假设等等。

相关文档
相关文档 最新文档