文档库 最新最全的文档下载
当前位置:文档库 › 视频信号的采集与处理

视频信号的采集与处理

视频信号的采集与处理
视频信号的采集与处理

山东轻工业学院实验报告

课程名称多媒体技术及应用指导教师姜合实验日期 2012-04-16 院(系)信息学院专业班级计科(高)09-2 实验地点实验楼四机房

学生姓名孙春杰学号 200903014050 同组人无

实验项目名称实验三视频信号的采集与处理

一、实验目的

(1)了解制作电影的软件“会声会影”;

(2)了解“会声会影”的各种效果的制作;

(3)掌握“会声会影”的过渡效果的制作;

(4)掌握“会声会影”的标题效果的制作;

(5)掌握“会声会影”的音频效果的制作;

(6)掌握三种效果的合成制作

二、实验要求

利用“会声会影”制作多种效果的电影。要求使用过渡,标题,音频三种制作方法编辑片段,最终达到熟练掌握编辑方法的目的,能独立制作电影片段。

三、实验环境

Intel Pentium 或100%的兼容处理器(CPU)

32MB以上的内存(RAM)

60MB以上的可用硬盘空间

256色或更高的显示适配器及兼容监视器

CD-ROM驱动器

Microsoft Windows xp及更高版本的操作系统

四、实验内容

制作avi电影片断

五、实验步骤

1、运行会声会影,选择会声会影编辑器,打开编辑窗口

2、先在编辑状态下,选择“图像”模式,打开需要的图片

3、同样的方法,在“音频”模式下打开需要的音频文件“下个路口见”

4、把音频文件拖到音频文件的时间轴

5、把图片按先后顺序,拖到影像时间轴,在每两个图片之间拖入一种效果,适当将图片和效果拖长

6、单击“标题”选项卡,在每张图片上都可添加文字,同样可以设计字体、字形、字号

7、设置完所有效果后,保存

常用视频信号接口与处理方法总结

常用视频信号接口与处理方法总结 刘学满2010-4-13 视频接口概述 视频接口,从颜色空间、数字/模拟、分离/复合(适用于模拟信号)、并行/串行(适用于数字信号) 单端/ 差分等类别可以分为如下几种,见下表:

二、模拟视频信号接口 1.接口设计 模拟信号由于其电压范围很小,如果接口电路设计不当,很可能造成最终的信号质量下降。因此 需要 注意以下几个事项: 1)阻抗匹配:通常为75Ω ,包括发送端,接收端以及传输路径上的阻抗。

2)隔直电容:为了防止不同设备间地电压差对信号造成的影响,此电容不宜过大或者过小。 3)滤波网络:尽可能地消除低频和高频纹波。 4)地平面:根据理论,地平面分隔可以防止数字信号对模拟地干扰,但从实际经验来 看,分隔成小的地平面后,实际上会造成环流( AD9883资料中有叙述) 。因此大部分 情况下,还是用同一个地。多层地平面,以及多打过孔,保持地电平的稳定是非常必 要的。 5)PCB走线:等长是需要的,而且要确保三个器件经过不同的选择器/ 缓冲器之后的延时也相差不 多,否则很难保证采样相位。 6)ESD保护:如果视频接口经常插拔,就需要加ESD保护二极管。 2.视频ADC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)A/D 是否支持交流耦合方式输入 2)A/D 内部是否有信号增益调整功能 3)是否支持差分输入 4)A/D 内部是否有PLL等器件,采样相位是否可调整 5)A/D输出的信号格式( 24bit RGB ,YCbCr)

6)是否支持SOG或者SOY等同步信号输入 模拟信号在A/D 转换时,通常需要进行一些调整,以达到最佳显示效果: 1)调整黑电平位置和最大辐值,通常可以配置A/D 芯片有关offset 和gain 的寄存器,经过此番调 整之后,实际上是校准了RGB三色,同时提高了灰度等级。 2)调整PLL锁相环,以达到合适的采样频率,并保证PLL 在各种温度条件下均能稳定工作。 3)调整采样起始点和终止点,确保有效信号不丢失。 4)调整采样相位,使最终显示画质更清晰。 3.视频DAC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)D/A 输出时,驱动方式是电压型的,还是电流型的?带负载与不带负载的电压是多少?是否合乎规范要求。如果不合适,必要时加缓冲器或者放大器输出。 2)D/A的输入接口是多少位的?如果是8bit/10bit 兼容,要注意最高2 位和最低2 位的接法。 3)输出同步信号是什么格式?是否需要输出CS或者SOG? 4.解码器 这里说的解码器是指针对CVBS(PAL、NTSC)或者Y/C 信号的亮度色度解调和分离用的解码器,解码器输出的通常为BT656 或者BT601 格式的数字信号,此信号仍为隔行信号。 解码器使用中,接口部分设计与ADC相类似,对输入信号格式,输出信号格式的寄存器配置有一些差异,如果输入格式设置不当,虽然能输出信号,但显示不正确。 5.编码器 视频编码器特指从BT656/BT601 格式转到CVBS/YC信号的转换器,一方面完成数字到模拟信号的转换,另一方面是完成亮度信号与色度信号的调制、复合。 解码器使用中,接口部分设计与DAC相类似,主要的不同也在于I 2C寄存器配置不同。6.缓冲器/放大器/ 选择器/分配器 模拟视频信号在传输和处理的过程中,通常需要一些缓冲/ 放大/ 选择/ 分配等处理。 在这些电路设计时,着重需要考虑的问题: 1)输入信号的电压辐值,芯片供电范围是否能满足要求,是否需要加75Ω电阻。 2)期望信号放大多少倍输出。

干扰处理方法

技术支持 干扰的来源及影响方式 闭路电视监控系统中传输信号的类型主要有两类:一类是模拟视频信号,传输路径由摄象机到矩阵,从矩阵再到显示器或录象机;一类是数字信号包括矩阵与摄象机之间的控制信息传输,矩阵中计算机部分的数字信号。一般设备成为干扰源的可能性很小,因此干扰主要通过信号传输路径进入系统。闭路电视监控系统的信号传输路径是能通过视频电缆和传输控制信号的双绞线耦合进系统的干扰有:各种高频噪声比如大电感负载启停,地电位不等引入的工频干扰,平衡传输线路失衡使抑噪能力下降将共频干扰转成了差模干扰,传输线上阻抗不匹配造成信号的反射使信号传输质量下降,静电放电沿传输线进入设备造成接口芯片损伤或损坏。具体表现如下:由于阻抗不匹配造成的影响在视频图象上表现为重影。在信号传输线上会将在脉冲序列的前后沿形成震荡。震荡的存在使高低电平间的阈值差变小,当震荡的幅值再大或有其他干扰引入时就无法正确分辨出脉冲电平值,导致通信时间变长或通信中断。接地和屏蔽不好会导致传输线抑制外部电磁干扰能力的下降,体现在视频图象就是雪花噪点、网纹干扰以及横纹滚动等;在信号传输线上形成尖峰干扰,造成通信错误。平衡传输线路失衡也会在信号传输线上形成尖峰干扰。静电放电除了会造成设备损坏外,还会影响存储器内的数据,使设备出现些莫名其妙的错误。 抗干扰的方法 从干扰源的分析了解到并没有特别的干扰源,消除或者减少上述干扰的理论探讨也有许多,如何针对闭路电视监控工程解决干扰问题,很少有文献涉及,下面就闭路电视监控工种中常见的干扰及解决方法进行些探讨。 视频信号的干扰 视频信号的干扰在图象上表现为地花点和50HZ横纹滚动,对于雪花点干扰是由于传输线上信号衰减以及耦合了高频干扰所致,这种干扰比较容易消除,在摄象机与控制矩阵之间合理位置增加一个视频放大器,将信号的受噪比提高,或者改变视频电缆的路径避开高频干扰源,高频干扰的问题可基本上得到解决。较难解决的是50HZ横纹滚动及进一步加高频干扰的情况,比如电梯轿厢内摄象机的输出图象。为了抑制上述干扰,首先分析一 下造成上述问题的原因。 摄象机要求的供电电源一般有三种:直流12V、交流24V或220V,大多数工程应用中不从电梯轿厢的供电电源上取,而是另外布设供电电源给摄象机供电,摄象机输出图象经过一条软性的视频电缆从井道的上方

声音信号的获取与处理

实验一声音信号的获取与处理 声音媒体是较早引入计算机系统的多媒体信息之一,从早期的利用PC机内置喇叭发声,发展到利用声卡在网上实现可视电话,声音一直是多媒体计算机中重要的媒体信息。在软件或多媒体作品中使用数字化声音是多媒体应用最基本、最常用的手段。通常所讲的数字化声音是数字化语音、声响和音乐的总称。在多媒体作品中可以通过声音直接表达信息、制造某种效果和气氛、演奏音乐等。逼真的数字声音和悦耳的音乐,拉近了计算机与人的距离,使计算机不仅能播放声音,而且能“听懂”人的声音是实现人机自然交流的重要方面之一。 采集(录音)、编辑、播放声音文件是声卡的基本功能,利用声卡及控制软件可实现对多种音源的采集工作。在本实验中,我们将利用声卡及几种声音处理软件,实现对声音信号的采集、编辑和处理。 实验所需软件: Windows录音机(Windows98内含) Creative WaveStudio(Creative Sound Blaster系列声卡自带) Syntrillium Cool Edit 2000(下载网址:https://www.wendangku.net/doc/5b5553610.html,) 进行实验的基本配置: Intel Pentium 120 CPU或同级100%的兼容处理器 大于16MB的内存 8位以上的DirectX兼容声卡 1.1 实验目的和要求 本实验通过麦克风录制一段语音信号作为解说词并保存,通过线性输入录制一段音乐信号作为背景音乐并保存。为录制的解说词配背景音乐并作相应处理,制作出一段完整的带背景音乐的解说词。 1.2 预备知识 1.数字音频和模拟音频 模拟音频和数字音频在声音的录制和播放方面有很大不同。模拟声音的录制是将代表声音波形的电信号转换到适当的媒体上,如磁带或唱片。播放时将纪录在媒体上的信号还原为波形。模拟音频技术应用广泛,使用方便。但模拟的声音信号在多次重复转录后,会使模拟信号衰弱,造成失真。 数字音频就是将模拟的(连续的)声音波形数字化(离散化),以便利用数字计算机进行处理,主要包括采样和量化两个方面。 2.数字音频的质量 数字音频的质量取决于采样频率和量化位数这两个重要参数。采样频率是对声音波形每秒钟进行采样的次数。人耳听觉的频率上限在2OkHz左右,根据采样理论,为了保证声音

视频基础知识详解

视频基础知识详解 视频技术发展到现在已经有100多年的历史,虽然比照相技术历史时间短,但在过去很长一段时间之内都是最重要的媒体。 由于互联网在新世纪的崛起,使得传统的媒体技术有了更好的发展平台,应运而生了新的多媒体技术。而多媒体技术不仅涵盖了传统媒体的表达,又增加了交互互动功能,成为了目前最主要的信息工具。 在多媒体技术中,最先获得发展的是图片信息技术,由于信息来源更加广泛,生成速度高生产效率高,加上应用门槛较低,因此一度是互联网上最有吸引力的内容。 然而随着技术的不断进步,视频技术的制作加工门槛逐渐降低,信息资源的不断增长,同时由于视频信息内容更加丰富完整的先天优势,在近年来已经逐渐成为主流。 那么我们就对视频信息技术做一个详细的介绍。 模拟时代的视频技术 最早的视频技术来源于电影,电影技术则来源于照相技术。由于现代互联网视频信息技术原理则来源于电视技术,所以这里只做电视技术的介绍。 世界上第一台电视诞生于1925年,是由英国人约翰贝德发明。同时也是世界上第一套电视拍摄、信号发射和接收系统。而电视技术的原理大概可以理解为信号采集、信号传输、图像还原三个阶段。 摄像信号的采集,通过感光器件获取到光线的强度(早期的电视是黑白的,所以只取亮度信号)。然后每隔30~40毫秒,将所采集到光线的强度信息发送到接收端。而对于信号的还原,也是同步的每隔30~40毫秒,将信号扫描到荧光屏上进行展示。 那么对于信号的还原,由于荧光屏电视采用的是射线枪将射线打到荧光图层,来激发荧光显示,那么射线枪绘制整幅图像就需要一段时间。射线枪从屏幕顶端

开始一行一行的发出射线,一直到屏幕底端。然后继续从顶部开始一行一行的发射,来显示下一幅图像。但是射线枪扫描速度没有那么快,所以每次图像显示,要么只扫单数行,要么只扫双数行。然后两幅图像叠加,就是完整的一帧画面。所以电视在早期都是隔行扫描。 那么信号是怎么产生的呢? 跟相机感光原理一样,感光器件是对光敏感的设备,对于进光的强弱可以产生不同的电压。然后再将这些信号转换成不同的电流发射到接收端。电视机的扫描枪以不同的电流强度发射到荧光屏上时,荧光粉接收到的射线越强,就会越亮,越弱就会越暗。这样就产生了黑白信号。 那么帧和场的概念是什么? 前面说到,由于摄像采集信号属于连续拍摄图像,比如每隔40毫秒截取一张图像,也就是说每秒会产生25副图像。而每个图像就是一帧画面,所以每秒25副图像就可以描述为帧率为25FPS(frames per second)。而由于过去电视荧光屏扫描是隔行扫描,每两次扫描才产生一副图像,而每次扫描就叫做1场。也就是说每2场扫描生成1帧画面。所以帧率25FPS时,隔行扫描就是50场每秒。 模拟时代在全世界电视信号标准并不是统一的,电视场的标准有很多,叫做电视信号制式标准。黑白电视的时期制式标准非常多,有A、B、C、D、E、G、H、I、K、K1、L、M、N等,共计13种(我国采用的是D和K制)。到了彩色电视时代,制式简化成了三种:NTSC、PAL、SECAM,其中NTSC又分为NTSC4.43和NTSC3.58。我国彩色电视采用的是PAL制式中的D制调幅模式,所以也叫PAL-D 制式。有兴趣的可以百度百科“电视制式”来详细了解。 另外你可能会发现,场的频率其实是和交流电的频率一致的。比如我国的电网交流电的频率是50Hz,而电视制式PAL-D是50场每秒,也是50Hz。这之间是否有关联呢?可以告诉你的是,的确有关联,不过建议大家自己去研究。如果确实不懂的同学可以@我。 彩色信号又是怎么产生的呢?

视频信号的传输方式

视频信号的传输方式 监控系统中,视频信号的传输是整个系统非常重要的一环,也是广大工程商挺挠头的一件事,随着工程中监控设备价格的透明性和工程商竞争的加剧,信号传输部分的费用越来越受到大家的重视;目前,在监控系统中最常用的传输介质是同轴电缆、双绞线、光纤等方式,对于不同场合、不同的传输距离,怎样能保证传输质量、降低费用,根据多年的工程经验,在这里我们作一些介绍供参考。 一、同轴电缆传输 (一)通过同轴电缆传输视频基带信号视频基带信号也就是通常讲的视频信号,它的带宽是0-6MHZ,一般来讲,信号频率越高,衰减越大,一般设计时只需考虑保证高频信号的幅度就能满足系统的要求,视频信号在5.8MHZ的衰减如下:SYV75-3 96编国标视频电缆衰减30dB/1000米, SYV75-5 96编国标视频电缆衰减19dB/1000米,,SYV75-7 96编国标视频电缆衰减13dB/1000米;如对图象质量要求很高,周围无干扰的情况下,75-3电缆只能传输100米,75-5传输160米,75-7传输230米;实际应用中,存在一些不确定的因素,如选择的摄像机不同、周围环境的干扰等,一般来讲,75-3电缆可以传输150米、75-5可以传输

300米、75-7可以传输500米;对于传输更远距离,可以采用视频放大器(视频恢复器)等设备,对信号进行放大和补偿,可以传输2-3公里;另外,通过一根同轴电缆还可以实现视频信号和控制信号的共同传输,即同轴视控传输技术,下面简单介绍一下该技术:在监控系统中,需要传输的信号主要有两种,一个是图像信号,另一个是控制信号。其中视频信号的流向是从前端的摄像机流向控制中心;而控制信号则是从控制中心流向前端的摄像机(包括镜头)、云台等受控对像;并且,流向前端的控制信号,一般又是通过设置在前端的解码器解码后再去控制摄像机和云台等受控对像的。同轴视控传输技术是利用一根视频电缆便可同时传输来自摄象机的视频信号以及对云台、镜头的控制功能,这种传输方式节省材料和成本、施工方便、维修简单化,在系统扩展和改造时更具灵活性;同轴视控实现方法有两类:一是采用频率分割,即把控制信号调制在与视频信号不同的频率范围内,然后同视频信号复合在一起传送,再在现场做解调将两者区分开;由于采用频率分割技术,为了完全分割两个不同的频率,需要使用带通滤波器、带通陷波器和低通滤波器、低通陷波器,这样就影响了视频信号的传输效果;由于需将控制信号调制在视频信号频率的上方,频率越高,衰减越大,这样传输距离受到限制;另外方法是采用双调制的方

各种视频信号接口及定义

各种视频信号接口及定义 1.复合视频信号(Video) 复合视频信号是我们日常生活中最为常见的视频信号,它在一个传输信号中包含了亮度、色度和同步信号。 由于彩色编码的不同,复合视频又有PAL、NTSV、SECAM制式之分。复合视频信号本身的带宽只有5MHz(NTSC制式带宽仅4.5MHz),中间又加了彩色副载波信号(NTSC制为3.58MHz,PAL和SECAM制为4.43MHz),正好落在亮度信号带宽之内,占去了一部分亮度信号,又造成亮度和色度的相互干扰,使得复合视频成为最差的视频信号。 复合视频信号一般用RCA插头连接,就是通常说的莲花插头,见图1。欧洲也用SCART接口,老式的视频设备也有用BNC插头连接。 2.S视频信号(S-Video) S视频信号俗称S端子信号,它同时传送两路信号:亮度信号Y和色度信号C。由于将亮度和色度分离,所以图象质量优于复合视频信号,色度对亮度的串扰现象也消失。由于S 视频信号亮度带宽没有改变,色度信号仍须解调,所以其图象质量的提高是有限的,但肯定解决了亮色串扰,消除图象的爬行现象。S端子用四芯插头,见图2。欧洲也用SCART插头,老式的视频设备也有用两个BNC插头连接,计算机显卡也有用七芯插头,其外形与S端子一样,只是又包含了复合视频信号。 3.隔行色差信号(Y、Cr、Cb) 隔行色差信号含义与逐行色差信号相同,只是对应的是逐行扫描信号,包含在Y里的行同步信号频率为31KHz,而前述的几种视频信号行频只有15KHz。逐行色差信号须配具有逐行显示功能的设备,图象质量高于隔行色差信号,主要表现在图象更稳定。逐行色差所用端子与隔行色差相同,只是C换成P。 4.RGB信号 我们知道图象中的各种色彩都是由R、G、B三基色组成,显象管电子枪是R、G、B三枪组成,投影机三片液晶板也是R、G、B三色。R、G、B三路信号中,行、场的同步信号加在G信号中,RGB信号的带宽可以到几十兆,只要显示设备能兼容。所以RGB信号又优于色差信号,是最好最直接的显示信号。RGB信号同样也分为逐行和隔行,逐行信号要优于隔行信号。RGB信号所用端子为RCA插头,欧洲用SCART插头,老式设备用BNC插头。5.RGB+S信号 此信号就是在前述的RGB信号基础上,把加在G信号中的同步信号拿出来,再加一个复合同步信号,共四路信号传输。复合同步信号中包含了水平同步和垂直同步信号。此信号在老式设备中用的较多,一般用BNC插头。 6.RGB+Hs、Vs信号 这个信号是在上述信号基础上把复合同步信号分成水平同步信号和垂直同步信号,在老式三枪投影机用的较多,一般用BNC插头。现在17寸以上的高端显示器也此输入端子。电脑显示用的15针D型VGA插座,就是这5根线起作用。老式的EGA和CGA显示器行频只有15KHz,用的是9针D型接口。现代视听设备逐行扫描的RGB+Hs、Vs信号是以VGA端子输出的,是视频信号的最高级,与电脑640×480分辨率是兼容的。

视频信号处理实验报告

中南大学 实验报告(实验一) 实验名称 JM代码编译与编解码参数配置 课程名称视频信号处理 姓名:杨慧成绩:__________________ 班级:电子信息工程1301班学号: 0903130117 日期: 2016.6.10 地点:综合实验楼 备注:

1.实验目的 1)掌握常用的编解码器参数及其用法,实现测试序列的编解码 2)初步了解H.264视频编解码的基本原理、熟开发工具的使用 3)学会使用相关的开发工具修改、调试参考软件,掌握使用相应软件实现视频编解码的经验与技巧,锻炼提高分析问题和解决问题的能力 4)调试、编译好相应的实验程序,正确配置测试参数,能预计可能出现的结果2.实验环境(软件、硬件及条件) Windows 7 3.实验方法 1)JM工作目录与文件设置 ①下载并解压JM源代码。 ②在源代码根目录下的bin文件夹中新建backup文件夹,将bin文件夹中所有文件移入该文件夹做备份。 ③在源代码根目录下新建encodtest文件夹,作为编码使用。将编码过程所需要的文件,例如:编码配置文件(encoder_baseline.cfg)、待编码视频序列文件(foreman_part_qcif.yuv,对应为编码配置文件中InputFile参数的值)复制到该文件夹中。 ④在源代码根目录下新建decodtest文件夹,作为解码使用。将解码过程所需要的文件,例如:解码配置文件(decoder.cfg)复制到该文件夹中。 ⑤检查实验用机安装的MS Visual C++版本,根据表3,本实验打开jm_vc10.sln 解决方案。

2)配置、编译、测试编码项目——lencod ①选中lencod项目,打开主菜单“项目——属性”,将所有配置(Debug、Release)和所有平台(Win32、x64)“常规”选项中的“输出目录”设置为 “.\bin\$(Configuration)_$(Platform)\”;将“调试”选项中“工作目录”设置为“.\encodtest”,在“命令参数”中设置要使用的解码配置文件,例如:“-d encoder_baseline.cfg”,然后确定修改。 ②选中lencod工程,选择鼠标右键菜单“设为启动项目”。 ③打开主菜单“生成--批生成”,勾选所有的lencod项目,点击生成后,将会在主目录bin文件夹的Debug_Win32/x64文件夹及Release_Win32/x64文件夹下生成Win32/x64平台的调试版(运行速度慢)和发行版(运行速度快)编码器程序lencod.exe。打开主菜单“生成--配置管理器”,将活动解决方案配置和平台分别设置为Release何Win32,执行调试完成编码。此时会在源代码根目录下的encodtest文件夹中生成几个新文件,其中test.264(对应编码配置文件中OutputFile参数的值)即为压缩码流文件。 3)配置、编译、测试解码项目--ldecod ①选中ldecod项目,打开主菜单“项目——属性”,将所有配置(Debug、Release)和所有平台(Win32、x64)“常规”选项中的“输出目录”设置为 “.\bin\$(Configuration)_$(Platform)\”;将“调试”选项中“工作目录”设置为“.\decodtest”,在“命令参数”中设置要使用的解码配置文件,例如:“ decoder.cfg”,然后确定修改。 ②将编码生成的压缩码流文件test.24复制到decodtest文件夹中。 ③选中lencod工程,选择鼠标右键菜单“设为启动项目”。 ④打开主菜单“生成--批生成”,勾选所有的ldecod项目,点击生成后,将会在主目录bin文件夹的Debug_Win32/x64文件夹及Release_Win32/x64文件夹下生成Win32/x64平台的调试版(运行速度慢)和发行版(运行速度快)编码器程序ldecod.exe。打开主菜单“生成--配置管理器”,将活动解决方案配置和平台分别设置为Release何Win32,执行调试完成编码。此时会在源代码根目录下的decodtest文件夹中生成几个新文件,其中test_dec.yuv(对应解码配置文

视频监控中的常见几种视频传输方式介绍

视频监控中的常见几种视频传输方式介绍 目前,在安防监控行业中用来传输图象信号的方式有很多,但主要传输介质是同轴电缆、双绞线和光纤,对应的传输设备分别是同轴视频放大器、双绞线视频传输设备和光端机。同轴电缆是较早使用,也是最传统的视频传输方式。后来,由于远距离和大范围图象监控的需要以及人们对监控图象质量的要求提高,监控网络中开始大量使用光纤来传输图象信号。虽然双绞线被使用到图象监控网络中是近来的事,但双绞线的视频平衡传输技术是很早就出现了。它也是视频传输技术的一个分支。下面详细介绍下常见视频传输方式: 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能力和可扩

常见干扰问题怎么解决

常见干扰问题怎么解决 说起视频干扰,要讲一下视频监控信号传输的传统方式视频基带传输。所谓的视频基带传输是指视频信号不经过频率变换等任何处理由图像摄取端通过同轴电缆直接传输到监视端的传输方式,图像在传输时直接利用同轴电缆的0~6MHz来传输,非常容易受到干扰,使图像出现网纹、横纹和噪点影响监视效果。对于基带传输视频干扰,从干扰源角度分为交流声干扰和空间电磁波干扰,从干扰切入方式分为传导式干扰和辐射式干扰。下面分析一下常见视频干扰现象及其原因。 1、工频干扰 干扰现象:图像出现雪花噪点、网纹或很宽暗横带持续不断滚动。 干扰原因:此现象是当摄像端与监控设备端同时接地时,由于地电阻及电缆外皮电阻的存在,在两地之间电力系统各相负载不平衡或接地方式不同引起50Hz电位差,从而产生工频干扰所致。地电位使两接地端存在电压降,电压降加在屏蔽层两端并与大地(地电阻)构成回路产生地电流,地电流经过线缆屏蔽层形成干扰电压,地电流的部分谐波分量落入视频芯线,致使芯线与屏蔽层之间产生干扰电位,使干扰信号加入视频信号中对监控图像形成干扰。 2、空间电磁波干扰 干扰现象:图像出现较密的斜形网纹,严重时会淹没图像。 干扰原因:当监控电缆在空中架设时,空中电磁波干扰信号所产生的空间电场会作用于监控传输线路,使线路两端而产生相当大的电磁干扰电压,其频率约在200Hz~2.3MHz。由于电缆中电位差的存在,使电缆屏蔽层产生干扰电流,而一般情况下摄像端和监控设备端均为接地状态,这就使干扰电流通过线缆两端接地点与大地形成回路,导致终端负载产生干扰电压,干扰信号耦合进视频信号中,产生图像干扰情况。 3、低频干扰(20Hz-nKHz低频噪声干扰) 干扰现象:图像出现静止水平条纹。 现象原因:由于声音、数据等信号属于低频信号,其频带狭窄在传输时只用到20Hz~nKHZ,几乎采用任何种类的电缆都可以传输,一般只受交流声干扰。用于传输视频信号的同轴电缆,其屏蔽层抗干扰曲线特性表明干扰信号频率越高其屏蔽性能越好,对于诸如载波电话、有线电台等低频率信号干扰反而显得苍白无力。低频干扰信号同样会在传输线缆上产生干扰电压,从而影响图像质量。 4、高频干扰 干扰现象:图像出现雪花点或高亮点。 现象原因:虽然视频传输所用同轴电缆抗高频干扰要比抗低频干扰性能强,但是强高频干扰信号还会对

视频输入输出常用接口介绍

视频输入输出常用接口介绍 随着视频清晰度的不断提升,这也促使我们对高清视频产生了浓厚的兴趣,而如果要达某些清晰度的视频就需要配备相应的接口才能完全发挥其画质。所以说视频接口的发展是实现高清的前提,从早期最常见且最古老的有线TV输入到如今最尖端的HDMI数字高清接口,前前后后真是诞生了不少接口。但老期的接口信号还在继续使用,能过信号转换器就能达到更清晰的效果,比如: AV,S-VIDEO转VGA AV,S-VIDEO转HDMI,图像提升几倍,效果更好。 从现在电视机背后的接口也能看出这点,背后密密麻麻且繁琐的接口让人第一眼看过去有点晕的感觉。今天小编就将这些接口的名称与作用做一个全面解析,希望能对选购电视时为接口而烦恼的朋友起到帮助。 TV接口

TV输入接口 TV接口又称RF射频输入,毫无疑问,这是在电视机上最早出现的接口。TV接口的成像原理是将视频信号(CVBS)和音频信号(Audio)相混合编码后输出,然后在显示设备内部进行一系列分离/ 解码的过程输出成像。由于需要较多步骤进行视频、音视频混合编码,所以会导致信号互相干扰,所以它的画质输出质量是所有接口中最差的。 AV接口 AV接口又称(RCARCA)可以算是TV的改进型接口,外观方面有了很大不同。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。

AV输入接口与AV线 由于AV输出仍然是将亮度与色度混合的视频信号,所以依旧需要显示设备进行亮度和色彩分离,并且解码才能成像。这样的做法必然对画质会造成损失,所以AV接口的画质依然不能让人满意。在连接方面非常的简单,只需将3种颜色的AV线与电视端的3种颜色的接口对应连接即可。 总体来说,AV接口实现了音频和视频的分离传输,在成像方面可以避免音频与视频互相干扰而导致的画质下降。AV接口在电视与DVD连接中使用的比较广,是每台电视必备的接口之一。 S端子 S端子可以说是AV端子的改革,在信号传输方面不再将色度与亮度混合输出,而是分离进行信号传输,所以我们又称它为“二分量视频接口”。

常见视频信号传输特性(精)

常见视频信号传输特性 1. 分量视频(Component Signal) 摄像机的光学系统将景像的光束分解为三种基本的彩色:红色、绿色和蓝色。感光器材再把三种单色图像转换成分离的电信号。为了识别图像的左边沿和顶部,电信号中附加有同步信息。显示终端与摄像机的同步信息可以附加在绿色通道上,有时也附加在所有的三个通道,甚至另作为一个或两个独立的通道进行传输,下面是几种常见的同步信号附加模式和表示方法: - RGsB:同步信号附加在绿色通道,三根75Ω同轴电缆传输。 - RsGsBs:同步信号附加在红、绿、蓝三个通道,三根75Ω同轴电缆传输。 - RGBS:同步信号作为一个独立通道,四根75Ω同轴电缆传输。 - RGBHV:同步信号作为行、场二个独立通道,五根75Ω同轴电缆传输。 RGB分量视频可以产生从摄像机到显示终端的高质量图像,但传输这样的信号至少需要三个独立通道分别处理,使信号具有相同的增益、直流偏置、时间延迟和频率响应,分量视频的传输特性如下: - 传输介质:3-5根带屏蔽的同轴电缆 - 传输阻抗:75Ω- 常用接头:3-5×BNC接头 - 接线标准:红色=红基色(R)信号线,绿色=绿基色(G)信号线,蓝色=蓝基色(B)信号线,黑色=行同步(H)信号线,黄色=场同步(V)信号线,公共地=屏蔽网线(见附图VP-03) 2. 复合视频(Composite-Video)

由于分量视频信号各个通道间的增益不等或直流偏置的误差,会使终端显示的彩色产生细微的变化。同时,可能由于多条传输电缆的长度误差或者采用了不同的传输路径,这将会使彩色信号产生定时偏离,导致图像边缘模糊不清,严重时甚至出现多个分离的图像。 插入NTSC或PAL编解码器使视频信号易于处理而且是沿单线传输,这就是复合视频。复合视频格式是折中解决长距离传输的方式,色度和亮度共享 4.2MHz(NTSC)或 5.0-5.5MHz(PAL)的频率带宽,互相之间有比较大的串扰,所以还是要考虑频率响应和定时问题,应当避免使用多级编解码器,复合视频的传输特性如下: - 传输介质:单根带屏蔽的同轴电缆 - 传输阻抗:75?- 常用接头:BNC接头、莲花(RCA)接头 - 接线标准:插针=同轴信号线,外壳公共地=屏蔽网线(见附图VP-01) 3. 色差信号(Y,R-Y,B-Y) 对视频信号进行处理而传输图像时,RGB分量视频的方式并不是带宽利用率最高的方法,原因是三个分量信号均需要相同的带宽。 人类视觉对亮度细节变化的感受比彩色的变化更加灵敏,因此我们可以将整个带宽用于亮度信息,把剩余可用带宽用于色差信息,以提高信号的带宽利用率。 将视频信号分量处理为亮度和色差信号,可以减少应当传输的信息量。用一个全带宽亮度通道(Y)表示视频信号的亮度细节,两个色差通道(R-Y和B-Y)的带宽限制在亮度带宽的大约一半,仍可提供足够的彩色信息。采用这种方法,可以通过简单的线性矩阵实现RGB与Y,R-Y,B-Y的转换。色差通道的带宽限制在线性矩阵之后实现,将色差信号恢复为RGB分量视频显示时,亮度细节按全带宽得以恢复,而彩色细节会限制在可以接受的范围内。 色差信号也有多种不同的格式,有着不同的应用范围,在普遍使用的复合PAL、SECAM和NTSC制式中,编码系数是各不相同的,见下表:

信号抗干扰解决办法

信号抗干扰解决办法 The Standardization Office was revised on the afternoon of December 13, 2020

解决现场的信号干扰问题 时间:2010-04-24 22:30来源:作者:点击: 17次 生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。以示意图一为例. 图一 PLC与外接仪表示意图 图一中标明有两个现场设备仪表向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为误差就产生了,同时1#,2#设备的“地”线在PLC汇合联接。将电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。例如某大型建材公司的生产线调试中,使用美国AB-PLC接国内某厂家手操器。AB-PLC的数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换

数字视频基础知识

第三章 数字视频基础知识 3.1 视频的基础知识 在人类接受的信息中,有70%来自视觉,其中视频是最直观、最具体、信息量最丰富的。我们在日常生活中看到的电视、电影、VCD、DVD以及用摄像机、手机等拍摄的活动图像等都属于视频的范畴。 摄影机是指用胶片拍摄电影的机器,摄像机是用磁带、光盘、硬盘等作为界质记录活动影像的机器,广泛用于电视节目制作、家庭及其他各个方面。 摄影机使用胶片和机械装置记录活动影像,所采用的是光学和化学记录方式,摄象机是采用电子记录方式。 1 视频的定义 ?视频(Video)就其本质而言,是内容随时间变化的一组动态图像(25或30帧/秒),所以视频又叫作运动图像或活动图像。 ?一帧就是一幅静态画面,快速连续地显示帧,便能形运动的图像,每秒钟显示帧数越多,即帧频越高,所显示的动作就会越流畅。 『视觉暂留现象』 ?人眼在观察景物时,光信号传人大脑神经,需经过一段短暂的时间,光的作用结束后,视觉形象并不立即消失,这种残留的视觉称“后像”,视觉的这一现象则被称为“视觉暂留现象”。 ?具体应用是电影的拍摄和放映。 ?根据实验人们发现要想看到连续不闪烁的画面,帧与帧之间的时间间隔最少要达到是二十四分之一秒。 ?视频信号具有以下特点: ?内容随时间而变化 ?有与画面动作同步的声音(伴音) ?图像与视频是两个既有联系又有区别的概念:静止的图片称为图像(Image),运动的图像称为视频(Video)。 ?图像与视频两者的信源方式不同,图像的输入靠扫描仪、数字照相机等设备;视频的输入是电视接收机、

摄象机、录象机、影碟机以及可以输出连续图像信号的设备。 2.视频的分类 ?按照处理方式的不同,视频分为模拟视频和数字视频。 ?模拟视频(Analog Video) ?模拟视频是用于传输图像和声音的随时间连续变化的电信号。早期视频的记录、存储和传输都采用模拟方式,如在电视上所见到的视频图像是以一种模拟电信号的形式来记录的,并依靠模拟调幅的手段在空间传播,再用盒式磁带录像机将其作为模拟信号存放在磁带上。 ?模拟视频的特点: ?以模拟电信号的形式来记录 ?依靠模拟调幅的手段在空间传播 ?使用磁带录象机将视频作为模拟信号存放在磁带上 ?传统视频信号以模拟方式进行存储和传送然而模拟视频不适合网络传输,在传输效率方面先天不足,而且图像随时间和频道的衰减较大,不便于分类、检索和编辑。 ?要使计算机能对视频进行处理,必须把视频源即来自于电视机、模拟摄像机、录像机、影碟机等设备的模拟视频信号转换成计算机要求的数字视频形式,这个过程称为视频的数字化过程。 ?数字视频可大大降低视频的传输和存储费用、增加交互性、带来精确稳定的图像。 ?如今,数字视频的应用已非常广泛。包括直接广播卫星(DBS)、有线电视(如图5.2)、数字电视在内的各种通信应用均需要采用数字视频。 ?一些消费产品,如VCD和DVD,数字式便携摄像机,都是以MPEG视频压缩为基础的。 数字化视频的优点 ?适合于网络应用 ?在网络环境中,视频信息可方便地实现资源共享。视频数字信号便于长距离传输。 ?再现性好 ?模拟信号由于是连续变化的,所以不管复制时精确度多高,失真不可避免,经多次复制后,误差就很大。

常用视频信号接口与处理方法总结材料

常用视频信号接口与处理方法总结 学满2010-4-13 一、视频接口概述 视频接口,从颜色空间、数字/模拟、分离/复合(适用于模拟信号)、并行/串行(适用于数字信号)、单端/差分等类别可以分为如下几种,见下表:

二、模拟视频信号接口 1.接口设计 模拟信号由于其电压围很小,如果接口电路设计不当,很可能造成最终的信号质量下降。因此需要注意以下几个事项: 1)阻抗匹配:通常为75Ω,包括发送端,接收端以及传输路径上的阻抗。 2)隔直电容:为了防止不同设备间地电压差对信号造成的影响,此电容不宜过大或者过小。 3)滤波网络:尽可能地消除低频和高频纹波。 4)地平面:根据理论,地平面分隔可以防止数字信号对模拟地干扰,但从实际经验来看,分隔成小的地平面后,实际上会造成环流(AD9883资料中有叙述)。因此大部分情况下,还是用同一 个地。多层地平面,以及多打过孔,保持地电平的稳定是非常必要的。 5)PCB走线:等长是需要的,而且要确保三个器件经过不同的选择器/缓冲器之后的延时也相差不多,否则很难保证采样相位。 6)ESD保护:如果视频接口经常插拔,就需要加ESD保护二极管。 2.视频ADC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)A/D是否支持交流耦合方式输入

2)A/D部是否有信号增益调整功能 3)是否支持差分输入 4)A/D部是否有PLL等器件,采样相位是否可调整 5)A/D输出的信号格式(24bit RGB,YCbCr) 6)是否支持SOG或者SOY等同步信号输入 模拟信号在A/D转换时,通常需要进行一些调整,以达到最佳显示效果: 1)调整黑电平位置和最大辐值,通常可以配置A/D芯片有关offset和gain的寄存器,经过此番调整之后,实际上是校准了RGB三色,同时提高了灰度等级。 2)调整PLL锁相环,以达到合适的采样频率,并保证PLL在各种温度条件下均能稳定工作。 3)调整采样起始点和终止点,确保有效信号不丢失。 4)调整采样相位,使最终显示画质更清晰。 3.视频DAC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)D/A输出时,驱动方式是电压型的,还是电流型的?带负载与不带负载的电压是多少?是否合乎规要求。如果不合适,必要时加缓冲器或者放大器输出。 2)D/A的输入接口是多少位的?如果是8bit/10bit兼容,要注意最高2位和最低2位的接法。 3)输出同步信号是什么格式?是否需要输出CS或者SOG? 4.解码器 这里说的解码器是指针对CVBS(PAL、NTSC)或者Y/C信号的亮度色度解调和分离用的解码器,解码器输出的通常为BT656或者BT601格式的数字信号,此信号仍为隔行信号。 解码器使用中,接口部分设计与ADC相类似,对输入信号格式,输出信号格式的寄存器配置有一些差异,如果输入格式设置不当,虽然能输出信号,但显示不正确。 5.编码器 视频编码器特指从BT656/BT601格式转到CVBS/YC信号的转换器,一方面完成数字到模拟信号的转换,另一方面是完成亮度信号与色度信号的调制、复合。 解码器使用中,接口部分设计与DAC相类似,主要的不同也在于I2C寄存器配置不同。 6.缓冲器/放大器/选择器/分配器 模拟视频信号在传输和处理的过程中,通常需要一些缓冲/放大/选择/分配等处理。 在这些电路设计时,着重需要考虑的问题:

常见的视频传输方式

常见的视频传输方式 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易 升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能 力和可扩展性都提高不少。 5、双绞线传输(平衡传输):也是视频基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控图像1Km内传输,电磁环境相对复杂、场合比较好的解决方式,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输; 双绞线传输高频分量衰减较大,图像颜色会受到很大损失。 6、宽频共缆传输:视频采用调幅调制、伴音调频搭载、FSK数据信号调制等技术,将数十路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的资源空间,三十路音视频及控制信号在同一根电缆中双向传输、实

相关文档
相关文档 最新文档