文档库 最新最全的文档下载
当前位置:文档库 › 数学物理方法复习题

数学物理方法复习题

数学物理方法复习题
数学物理方法复习题

1.用留数定理计算定积分dx a x mx

x ?

-+2

22sin )0,0(>>a m 。 解:

2.用留数定理计算定积分dx a x x

?

-+2

22)(sin

3.用拉普拉斯变换求解微分方程

t e t y dt dy

dt

y d 2222=+-, ()000==

=t dt dy y 解:对该方程施行拉普拉斯变换得: ()()()()3212

2-=+-p p y p y p p y p

()()

()

5

5

1!4!

4212

-?=

-=

p p p y

()t

e t t y 412

1=

4.

5.

6.

7.

8.

9.

10. 在圆域a <ρ上求解xy u -=?,边界条件是0==a u ρ。

解:???=-=?=0a

u xy u ρ

设特解 ()

?ρ2sin 24

11214

33-=+-

=xy y x v

令w v u += 则?ρ2sin 24

104

a w w a ?????==?=

()()

∑∞

=+++=1

00sin cos ln ,m m m m m B m A D C w ??ρρ?ρ()∑∞

=-++1

sin cos m m m m m D m C ??ρ

w 在圆内应处处有限,所以0,0,00===m m D C D

()()∑∞

=+=0sin cos ,m m m m m B m A w ??ρ?ρ代入边界条件得

()()????2sin 24

1sin cos ,4

a m B m A a a w m m m m =

+=∑∞= ()2,0,24

1,02

2≠===m B a B A m m ()?ρ?ρ2sin 24

1,2

2a w =

()

?ρρ2sin 24

122

2-=+=a w v u

11. 在00=x 的邻域上求解埃尔米特方程

()012=-+'-''y y x y λ

解:0,0)(20==-+'-''x y y x y λ

()()10,00-==λq p 0x ∴是方程的常点。

∑∞==0

k k

k x a y ()()∑∞

=+++=''0

221k k k x a k k y

∑∞

=-='-1

22k k

k x ka y x

∑∞

=-=-0

)1()1(k k k x a y λλ

()()

k k a k k k a 12)12(2++-+=

() +-?-+-+

=4

20!

4)5()1(!2)1(1x x x y λλλ ()() +----+

k

x k k 2!234)5)(1(λλλ

() +-?-+-+

=5

31!

7)7()3(!3)3(x x x x y λλλ

()()()() ++----+12!

121473k x k k λλλ ()()()x y a x y a x y 1100+= ∞=R

12.以勒让德多项式为基,在区间[-1,1]上把f(x)=2x 3+3x+4展开成广义傅里叶级数。

解:由于f(x)是三次多项式,应该表示为P 0(x),P 1(x),P 2(x),和P 3(x)的线性组合:

2x 3+3x+4= f 0P 0(x)+f 1P 1(x)+f 2P 2(x)+f 3P 3(x)

=f 0+f 1x+f 2(3x 2-1)/2+f 3(5x 3-3x)/2=f 0-f 2/2+(f 1-3/2f 3)x+3f 2x 2/2+5f 3 x 3/2 比较等式两边同幂项,即得

f 0-f 2/2=4,(f 1-3/2f 3)=3,3f 2/2=0,5f 3 /2=2 由此解得

f 0=4,f 1=21/5,f 2=0,f 3=4/5 因此,

f(x)=2x 3+3x+4= 4P 0(x)+21P 1(x)/5+ 4P 3(x)/5

13. 在球0r r =的内部求解0=?u 使满足边界条件θ2cos 0

==r r u

解:0=?u θ2c o s 0

==r r u

解:()()θθcos ,0

1l l l l l l P r B r A r u ∑∞

=+??

?

??+

= 因在球内求解, ==0r u 有限值,故0=l B

()()θθcos ,0l l l l P r A r u ∑∞

== 代入边界条件

()220

cos cos x P r

A l l

l l ==∑∞

=θθ

()()x p x p x 2023

2

31+=

代入上式得 ()2,0,0,1

32,3120

20≠=?==l A r A A l

()()θθcos 13231,22

2

0p r r r u ?+=

14.用拉普拉斯变换求解微分方程

t

e t y dt dy dt

y d 2222=+-, ()000==

=t dt dy y ,022=dt y d 解:对该方程施行拉普拉斯变换得:

y p y py y p dt

y

d 222

2)0(')0(=--= y p y y p dt

dy =-=)0( y y = ,3

2)

1(2

-=p e t t

所以 ()()()()3

2122-=+-p p y p y p p y p

()()

()

5

5

1!4!4212

-?=

-=

p p p y

()t

e t t y 412

1=

15.用拉普拉斯变换求解微分方程cht y dt

y d 30922=+, () 30=y ,0=dt dy

解:对该方程施行拉普拉斯变换得:

p y p y py y p dt

y

d 3)0(')0(222

2-=--= y y = ,)1

1

11(21++-=p p cht

15932=+-y p y p )1

111(

++-p p 932+=

p p y +)

9)(1(302

2+-p p p

932+=

p p y +931322+-

-p p p p =132-p p

=)1111(23++-p p )(2

3t t

e e y -+=

16. 用拉普拉斯变换求出积分dx a

x tx

t I ?∞

+=

022cos )( 解:对该积分施行拉普拉斯变换得:

dx x p p a x t I 220221)(++=?∞

=dx x p a x a

p p )1

1(2202222+-+-?∞

=

2

2a

p p

-)22(p a ππ-=))((a p a p p +-a 2π-))((1a p a p +-2π

=)11(

21a p a p ++-a 2π-)11(21a p a p a +--2

π

)(4)(at at e e a

t I -+=

π

-

)(4at at e e a

--π

=

at e a

-2π

17.求原函数1

32

-=

p p

y 解:)1

1

11(23132

++-=-=

p p p p y 对上式进行逆拉普拉斯变换,得

)(2

3t t

e e y -+=

18. )(x δ复数形式的傅里叶积分是,)(x δ= ,

()=ax δ ,

()=-?∞

-)(0

t

f τδτ

19.

()()()[]()[]()1

, 0.

2

A F F A ωδωωδωωω-=++->设求F

【解】

()[]()1

i 1

d 2πt

F F e ωωωω

+∞

--∞

=

?

F

()()0

i i 00i i 01 d d 221 cos 2π22π

t

t t t

A e e A A

e e t ωωωωδωωωδωωωπω+∞

+∞

-∞-∞

-=?++-=

+????

?????=????

20.计算下列定积分dx x mx I 25

cos 2

+=

?

解:上面的积分可以化为标准形式

dx x e dx x mx I imx

2225Re 2

125cos 21+=+=??∞∞-∞∞-

被积函数满足定理的条件,上半平面内有单极点z=5i ,对应的留数为:

m

i

z imz

e i

z

e i

f 551012)5(s Re -==

=

m m e e i i I 5510

)101(2Re{21--==

ππ 21. 将函数()()()

321

--=

z z z f ,在3>z 的环域上展开为洛朗级数,则

()=z f

22.将函数()z z f ln =在i z =0邻域上展开为泰勒级数。

23.求幂级数()k

k k

z

z f ∑∞

==1)(的收敛圆。

数学物理方法综合试题及答案

复变函数与积分变换 综合试题(一) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设cos z i =,则( ) A . Im 0z = B .Re z π= C .0z = D .argz π= 2.复数3(cos ,sin )55z i ππ =--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .44 3(cos ,sin )55i ππ D .44 3(cos ,sin )55 i ππ-- 3.设C 为正向圆周|z|=1,则积分 ?c z dz ||等于( ) A .0 B .2πi C .2π D .-2π 4.设函数()0z f z e d ζ ζζ=?,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答: 5.1z =-是函数 4 1) (z z cot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4 z π << 保角映射成单位圆内部|w|<1的为( ) A .4411z w z +=- B .44-11z w z =+ C .44z i w z i -=+ D .44z i w z i +=- 7. 线性变换[]i i z z i z a e z i z i z a θω---= =-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 8.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )x v x y e y y x y =+,则(,)uxy = ( ) A.(cos sin )y e y y x y -) B.(cos sin )x e x y x y - C.(cos sin )x e y y y y - D.(cos sin )x e x y y y -

扬州大学数学物理方法期末试卷A

院 系 班级 学号 姓名 --------------------------------------装---------------------------------------订-------------------------------------------线----------------------------------------------- 扬州大学试题纸 ( 2010-2011学年第 二 学期) 物 理 学院 微电、物理09级 课程 数学物理方法(A )卷 题目 一 二 三 四 总分 得分 一、填空题(共20分,2分/题) 1. 数量场23 2 2+=x z y z u 在点)1,0,2(-M 处沿24 23=-+ l xi xy j z k 方向 的方向导数为 . 2. 设 A 为一矢性函数, ?表示哈密顿算符, 则()????= A . 3. 在三维直角坐标系中,矢径=++ r xi yj zk ,r r = ,?表示哈密顿算符, 则当0≠r 时,有3?? ??? ??= r r . 4. 在二维平面极坐标系下,调和量?=u . 5.考虑长为l 的均匀细杆的导热问题,若杆0x =的一端保持为恒温零度, l x =的一端绝热,用u 表示温度,则对应的边界条件为 . 6.方程20,(,0)tt xx u a u x t -=-∞<<∞>的通解可以表示为 ()u x,t = . 7. l 阶勒让德多项式的微分表示式为)(x P l = . 8. 设)(x P l 为l 阶勒让德多项式,则积分1 21002001()()-=?x P x P x dx . 9. 常微分方程22(9)0'''++-=x y xy x y 为 阶Bessel 方程. 10. 利用Bessel 函数的递推公式,计算积分1 210()=?x J x dx .

数学物理方法第三章答案完整版

第三章答案 1. (6分)已知齐次状态方程Ax x =&的状态转移矩阵)(t Φ如下,求其逆矩阵)(1 t -Φ和系统矩阵A 。 ??? ???+-+---=Φ--------2t t 2t t 2t t 2t t 3e 2e 3e 3e 2e 2e 2e 3e )t (。 解: ??????+-+---=-Φ=Φ-2t t 2t t 2t t 2t t 1 3e 2e 3e 3e 2e 2e 2e 3e )t ()t ( (3分) ? ? ? ? ??=Φ==4-3-21|)t (A 0t & (3分) 2. (8分)求定常控制系统的状态响应。 ()()()()()()0101,0,0,11210x t x t u t t x u t t ??????=+≥== ? ? ?--?????? & 解:11t t t At t t t t t t e te te e e t t te e te -------+??+??== ? ?----?? ?? (4分) 0()()(0)()()10t t t t t x t t x Bu t d e te e d te e e ττττττ τττ------=Φ+Φ-????+??=+=??????--?????? ?? (4分) 3.(3分) 已知齐次状态方程Ax x =&的状态转移矩阵)(t Φ如下,求其系统矩阵A 。 ?? ? ???+-+---=Φ--------2t t 2t t 2t t 2t t 3e 2e 3e 3e 2e 2e 2e 3e )t (。 解:? ? ? ? ??=Φ==4-3-21|)t (A 0t & (3分) 4.(8分)已知系统的状态方程为: u x x ?? ????+??????=111101&, 初始条件为1)0(1=x ,0)0(2=x 。求系统在单位阶跃输入作用下的响应。 解:解法1:?? ? ???=??? ? ????????---=Φ--t t t e te e s s L t 01101)(1 1; (4分) ?? ????-=??????-+??????=??? ?????????-+????????????=?---t t t t t t t t t t t t t te e te e te e d e e t e e te e x 212111)(00100τττττ。 (4分) 解法2: ?? ????--=??????--+??????--=+-=-s s s s s s s s s s x s Bu A s s x 21)1(1 11)1(11)1(1)}0()({)I ()(22221 ;

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

北邮数学物理方法18-19期末试题B

北京邮电大学2018-2019学年第一学期 《数学物理方法》期末试题(B ) 注意:本试卷共5 道大题。答题时不必抄题,要注明题号,所有答案一律写在答题纸上,否则不计成绩。 一、 解答下列各题(每题6分,共36分) 1、 写出三类基本方程的最简单形式。 2、求解下列本征值问题的本征值和本征函数 ()()()()()() 02,2?λ??π??π?''Φ+Φ=???''Φ+=ΦΦ+=Φ??3、将Bessel 方程 222()0x y xy x m y λ'''++-= 化成Sturm-Liouville 型方程,并指出其核函数和权函数。 4、用达朗贝尔公式求下列定解问题的解 ()()()20,0,,0cos ,,0. tt xx x t u a u x t u x x u x e ?-=-∞<<∞>??==??5、设()f x 在区间[-1,1]上的有界且连续,并设 ()()()0Legendre n n n n f x f P x P x ∞ ==∑其中是多项式 试证明 ()()11 212n n n f P x f x dx -+= ?. 6、已知Bessel 函数的递推公式1[()]()m m m m d x J x x J x dx -=,试计算30()x J x dx ?。

二、研究细杆上的热传导问题。设杆上的初始温度是均匀的为0,u 然后保持杆的一端的温度为不变的0,u 而另一端则有强度为恒定的热流0q 进入,即求解定解问题 22200000,,,.x x x l t u u a t x q u u u k u u ===???=?????==???=?? (25分) 三、 求解下列定解问题 ()222220001,0,0,,,0.b t t u u u a b t u u u u f t ρρρρρρρ====??????=+<

武大数学物理方法期末考试试题-2008

2008年数学物理方法期末试卷 一、求解下列各题(10分*4=40分) 1. 长为l 的均匀杆,其侧表面绝热,沿杆长方向有温差,杆的一段温度为零,另一端有热量流入,其热流密度为t 2sin 。设开始时杆内温度沿杆长方向呈2 x 分布,写出该杆的热传导问题的定解问题。 2. 利用达朗贝尔公式求解一维无界波动问题 ?????=-=>+∞<<-∞=-==2||)0,(040 0t t t xx tt u x u t x u u 并画出t=2时的波形。 3. 定解问题???? ???≤≤==∞<<==<<<<=+====) 0( 0,sin )0( 0 ,)0 ,0( ,000a x u x B u y u ay u b y a x u u b y y a x x yy xx ,若要使边界条件齐次化,,求其辅助函数,并写出相应的定解问题 4. 计算积分?-+=1 11)()(dx x P x xP I l l 二、(本题15分)用分离变量法求解定解问题 ?????+===><<=-===x x u u u t x u a u t x x x xx t 3sin 4sin 20 ,0)0,0( 0002ππ 三、(本题15分)设有一单位球壳,其球壳的电位分布12cos |1+==θr u ,求球内、外的电位分布 四、(本题15分)计算和证明下列各题 1.)(0ax J dx d 2.C x x xJ x x xJ xdx x J +-=? cos )(sin )(sin )(100 五、(本题15分)圆柱形空腔内电磁振荡满足如下定解问题

???????===<<<<=+=?===0 00),(0,00),(0),(0l z z z z a u u z u l z a z u z u ρρρρλρ 其中2)(c ω λ=,为光速为电磁震荡,c ω。 (1) 若令)()(),(z Z R z u ρρ=,写出分离变量后关于)()(z Z R 和ρ满足的方程; (2) 关于)()(z Z R 和ρ的本征值问题,写出本征值和本征函数; (3) 证明该电磁振荡的固有频率为 ,3,2,1;,2,1,0 ,)()(220==+=m n l n a x c m mn πω 其中0m x 为零阶Bessel 函数的零点。 参考公式 (1) 柱坐标中Laplace 算符的表达式 (2) Legendre 多项式 (3) Legendre 多项式的递推公式 (4) Legendre 多项式的正交关系 (5) 整数阶Bessel 函数 (6) Bessel 函数的递推关系

数学物理方法

数学物理方法 Mathematical Methods in Physics 课程编号:22189906 总学时:72学分:4 课程性质:专业必修课 课程内容:数学是物理学的表述语言。复变函数论和数学物理方程是学习理论物理课程的重要的数学基础。该课程包括复变函数论和数学物理方程两部分。复变函数论部分 介绍复变函数的微积分,级数展开,留数及其应用以及积分变换等内容。数学物 理方程部分包括物理学中常用的几种数学物理方程的导入、解数学物理方程的分 离变量法、作为勒让德方程的解的勒让德多项式和作为贝塞尔方程的解的贝塞尔 函数及其性质以及格林函数的基本知识。该课程有着逻辑推理抽象严谨的特点, 同时与物理以及工程又有着紧密的联系,是理工科学生必备的数学基础知识。我 们将把抽象的数学知识和在物理学中的应用结合起来,使学生不但能学习数学本 身,同时还能提高学生运用所学数学知识解决实际问题的能力。 先修课程:高等数学 参考书目:《数学物理方法》(陆全康、赵蕙芬编),第二版高等教育出版社《数学物理方法》(吴崇试)第二版,北京大学出版社 力学和热学 (1)与(2) Mechanics and Thermal Physics (1) and (2) 课程编号:22189936、22189937 总学时:28、72 学分:2、4 课程性质:专业必修课 课程内容:本课程由力学和热学两大部分组成。力学和热学都是大学物理的基础部分,是物理学各门课程的重要基础课程。力学的主要内容包括三方面:在牛顿力学方面, 主要学习牛顿定律、动量定理和动量守恒定律、动能原理及机械能守恒定律;在 刚体定轴转动方面,主要学习转动定律和角动量守恒;在振动和波方面,主要学 习简谐振动和平面简谐波。热学的主要内容包括分子物理学和热力学,主要学习 温度,热力学第一定律、第二定律,热机效率及熵增加;气体分子运动论的基本 方法,气体压强公式,分子平均动能,气体分子的麦克斯韦速率分布律,能量均 分定理。 先修课程:高等数学A(1) 参考书目:《力学》,漆安慎、杜婵英,高等教育出版社,1997年;《热学教程》(第二版),黄淑清、聂宜如、申先甲编,高等教育出版社,1994年

数学物理方法试题

数学物理方法试卷 一、选择题(每题4分,共20分) 1.柯西问题指的是( ) A .微分方程和边界条件. B. 微分方程和初始条件. C .微分方程和初始边界条件. D. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( ) A .存在性和唯一性. B. 唯一性和稳定性. C. 存在性和稳定性. D. 存在性、唯一性和稳定性. 3.牛曼内问题 ?????=??=?Γ f n u u ,02 有解的必要条件是( ) A .0=f . B .0=Γu . C .0=?ΓdS f . D .0=?Γ dS u . 4.用分离变量法求解偏微分方程中,特征值问题???==<<=+0 )()0(0 ,0)()(''l X X l x x X x X λ 的解是( ) A .) cos , (2x l n l n ππ??? ??. B .) sin , (2 x l n l n ππ?? ? ??. C .) 2)12(cos ,2)12( (2x l n l n ππ-??? ??-. D .) 2)12(sin ,2)12( (2x l n l n ππ-?? ? ??-. 5.指出下列微分方程哪个是双曲型的( ) A .0254=++++y x yy xy xx u u u u u . B .044=+-yy xy xx u u u . C .02222=++++y x yy xy xx u y xyu u y xyu u x . D .023=+-yy xy xx u u u . 二、填空题(每题4分,共20分)

1.求定解问题???? ?????≤≤==>-==><<=??-??====πππx 0 ,cos 2 ,00 t ,sin 2 ,sin 20 ,0 ,00002222x u u t u t u t x x u t u t t t x x 的解是( ) 2.对于如下的二阶线性偏微分方程 0),(),(2),(=++++-fu eu du u y x c u y x b u y x a y x yy xy xx 其特征方程为( ). 3.二阶常微分方程0)()4341()(1)(2'''=-++ x y x x y x x y 的任一特解=y ( ). 4.二维拉普拉斯方程的基本解为( r 1ln ),三维拉普拉斯方程的基本解为( ). 5.已知x x x J x x x J cos 2)( ,sin 2)(2 121ππ== -,利用Bessel 函数递推公式求 =)(2 3x J ( ). 三、(20分)用分离变量法求解如下定解问题 222220 000, 0, 00, 0, t 0, 0, 0x .x x l t t t u u a x l t t x u u x x u x u l ====???-=<<>???????==>?????==≤≤?? 解:

数学物理方法__武汉大学(5)--期中考试试卷

物理科学与技术学院2011级数学物理方法期中考试 专业 ; 学号 ; 姓名; 1、填空或选择填空(20分) 1、长为l 温度为0T 的均匀杆,一端温度保持为零度,另一端有其热流密度为)(t f 的热量流入,则该杆的热传导的定解问题为[ ] 2、函数)4(2-=z Ln w 的支点为[ ], 它有[ ]叶里曼面; 而函数3 2--z z 的支点为[ ], 它有[ ]叶里曼面;3、由Γ函数的相关知识,可得积分 dx e x x 206-∞ ?=[ ]; [以下两题,分别请在A,B,C,D四答案中选择一个你认为正确的答案填入空内] 4.设)(z f 在单连通区域σ内处处解析且不为零,l 为σ内的任何一条闭合围道,则积分 =+'+''?dz z f z f z f z f l ) ()()(2)([ ];A.i π2 B.i π2- C. 0 D.不能确定 5.∞=z 为z z f sin 1)(=的:[ ]A.一阶极点 B.本性奇点 C.解析点 D.非孤立奇点 二、(20分)验证xy y x y x u +-=22),(为调和函数,并求一满足条件0)0(=f 的解析函数iv u z f +=)(三、(20分)试分别用科希积分理论和留数理论计算下列函数和围道积分之值(要求写出 主要步骤的依据)1、设 ?=--=23)(z d z e z f ζζπζζ,求)(i f ; 2、计算? =-+23) 1)(1(1z dz z z z ;四、(20分)试将函数61)(2-+=z z z f 按以下要求展开为泰勒或罗朗级数,并指出所展开的级数的收敛域及类型(是泰勒还是罗朗)。 1、以0=z 为中心展开; 2、在2=z 的去心领域中展开 五、(20分)利用留数定理计算下列实积分:

【】数学物理方法试卷(全答案)

嘉应学院物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 # 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 > 4、什么是解析函数其特征有哪些(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 |

4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型(6分) 数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数 231i +的三角形式和指数形式(8分) ¥ 三角形式:()3 sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2

姚端正《数学物理方法》(第三版)部分勘误表

姚端正《数理方法》(第三版)勘误表(部分) P9,“(3)若()f x 在闭区域……”应更正为“(3)若()f z 在闭区域……” P33,中部“任意一条分段光滑的曲线”应更正为“任意一条分段光滑的封闭曲线” P66,习题3.5第2(2)题:“0||z b R <-<”应更正为“||z b R -<” P85,倒数第6行、第7行“1res ()n k f z =∑”应更正为“1res ()n k k f z =∑” P86,例3的计算过程中“||1a <”应更正为“01a <<”,但计算结果仍然对“||1a <”范围成立,即该例题的讨论过程不够完整。 P87,第10行“d[(π)]θ--”应更正为“d(π)θ-” P88,第4行“如图5.4”应更正为“如图5.4(b )”;第4题需补充条件:01x <<; 第5题:“适当围道计算”应更正为“适当围道(图5.4(a ))计算”。 P107,第3行“稳定状态”应更正为“稳恒状态”;“则热量将停止流动”应去掉这段文字。 倒数第3行“F 为单位长度……”应更正为“F 为单位体积……” P108,第6行“通过介面”应更正为“单位时间通过介面” P111,第6行“k h E =”应更正为“k h EA =” P120,第1行“//at x a c at x a c ++--? ”应准确写为“()/()()/()at x a c at x a c ++--? ” P121,第4-5行“则在τ?这段时间内”应更正为“则在τ?这段时间以后”; 第6行“t τττ<<+?”应更正为“t τ<” P124,第4大题中“()x ψ”应更正为“(,)x y ψ”;“()x ?”应更正为“(,)x y ?”; 解的表达式应更正为 ()01(,,)2π1 d 2πM M at at M a t t u x y t a t a τσσστ-???=+??????+?????????? P146,第2行“I 2I u xx u a u =”应更正为“I 2I tt xx u a u =” P271,第1行“2(2)(1)lim lim 1(1)(1) k k k k c k k R c l l k k →∞→∞+++===+-+”应更正为 “1k k R ===” P274,习题14.1第2题“0y xy ''-=”应更正为“0y xy ''-=” P280,习题14.2第6题“介电常数为ε”应更正为“相对介电常数为ε” P286,习题14.3第3题(1) ”

北京航空航天大学 数学物理方法 模拟试题

数理试卷 1. 设有半径为a 的导体球壳被一过球心的水平绝缘层分割成两个半球壳,若上下各半球壳 各充电到V 1、V 2,则球壳内的电势所满足的定解问题是 2. 初值问题 U tt -a 2U xx =0(-∞<<=-===0|0||0) t l,x (0 sin 002t t l x x x x xx t U U U wt A U a U

信息学院2015-2016学年数学物理方法期末考试试题_A

兰州大学2015~2016 学年第1学期 期末考试试卷(A卷) 课程名称:数学物理方法任课教师: 学院:信息学院专业:年级:姓名:校园卡号: 一、填空(共24分,每空2分) 1. = ; 2. 由柯西公式可得= ,其中要求函数是函数; 3.幂级数收敛半径是; 4.积分= ; 5. 是f(z)的奇点,根据洛朗级数展开负幂项的个数可以将奇点分为三类,分别是、、。 6.已知函数f(x, y, z),对于边界,则相应的第一类齐次边界条件可以表示 为。 7. 和,可以构成,与本征值相应的解称为。 8.一般情况下的求解域并不是规则形状,则可以采用法使得求解 域成为规则图形以简化求解。 二、简单计算(共26分,第1、2题每题6分,第3、4题每题7分) 1.在1<|z|<的环域上将函数f(z)= (z+1)/(z2-1)展开为洛朗级数。

2. 以勒让德多项式为基,在区间[-1, 1]上将函数展开为广义 傅里叶级数。 注: 3. 利用留数定理求。 4. 解析函数知识在求解某些势函数时有很大的帮助。我们已知复势表达式为 ,并且 , ,求复势 , 并写成关于z 的表达式。 三、 简答(共23分,前3题每题5分,第4题8分) 1. 简述解析函数的性质。 2. 施图姆-刘维尔型方程为 拉盖尔方程表示为施图姆-刘维尔型如下式所示 与勒让德方程相似,拉盖尔方程的解可以由拉盖尔多项式 表出。试根据 所学过的施图姆-刘维尔本征值问题的相关性质,最少写出拉盖尔方程的三条性质。 3. 写出柱坐标系下的Bessel 方程,Bessel 方程一般有哪几种解的形式,并写出方程的一种通解。 4. 在电路中会经常使用到矩形脉冲信号 试在初始边界条件f (0)=0的条件下,利用傅里叶积分的知识进行计算,简要说明如何通过简单的正弦信号获得该信号。 四、 综合题(共27分,第1题15分,第2题12分) 1. 有一个沿z 轴无限长的矩形波导,如右图所示,横截 面长为a ,宽为b ,左、右、底面三面接地,顶面电 a

数学物理方法期末考试试题典型汇总

Mathematical methods for physics 一、 单项选择题(每小题2分) 1.齐次边界条件0),(),0(==t u t u x x π的本征函数是_______。 A)Λ3,2,1 sin =n nx B) Λ,2,1,0 cos =n nx C)Λ2,1,0 )21sin(=+n x n D) Λ2,1,0 )2 1cos(=+n x n 2.描述无源空间静电势满足的方程是________。 A) 波动方程 B)热传导方程 C) Poisson 方程 D)Laplace 方程 3.半径为R 的圆形膜,边缘固定,其定解问题是???? ?????====?-??===)(| ),(|0|0),(),(0t 02222ρψρ?ρρρt t R u u u t u a t t u 其解的形式为∑∞ ==100)()(),(m m m k J t T t u ρρ,下列哪一个结论是错误的______。 A) )()()()(20222 t T k a t T dt d t T m m m m -=满足方程 B )圆形膜固有振动模式是)sin(0t ak m 和)cos(0t ak m C )0m k 是零阶Bessel 函数的第m 个零点。 D ))()(00ρρm m k J R =满足方程0)(2202=+'+''R k R R m ρρρ 4.)(5x P 是下列哪一个方程的解_________。 A )0202)1(2=+'-''-y y x y x B )0252)1(2=+'-''-y y x y x C )0302)1(2=+'-''-y y x y x D )052)1(2=+'-''-y y x y x 5.根据整数阶Bessel 函数的递推公式,下列结论哪一个是正确的________。 A ))(2)()(120x J x J x J '=- B ))()()(1 11x J x x J x xJ '=+ C ))(2)()(210x J x x J x J = - D ))(2)()(120x J x x J x J '=+ 二、 填空题(每题3分)

数理方程试题

2013-2014 1 数学物理方程(A ) 数理学院 信计101-2、应数 (答案写在答题纸上,写在试题纸上无效) 一.填空题(每小题3分,共15分) 1.已知非齐次波动方程22 222(,)(0,0) (0,)(,)0 (0)(,0)(,0)0(0) u u a f x t t x l t x u u t l t t x x u u x x x l t ???=+><? ????? ==<<? ??? ?? ==<

数学物理方法期末考试试题-2006

一、单项选择题(每小题2分) 1. 齐次边界条件0),(),0(==t u t u x x π的本征函数是_______。 A) 3,2,1 sin =n nx B) ,2,1,0 cos =n nx C) 2,1,0 )21sin(=+n x n D) 2,1,0 )2 1cos(=+n x n 2. 描述无源空间静电势满足的方程是________。 A) 波动方程 B)热传导方程 C) Poisson 方程 D)Laplace 方程 3. 半径为R 的圆形膜,边缘固定,其定解问题是???? ?????====?-??===) (| ),(|0|0),(),(0t 02222ρψρ?ρρρt t R u u u t u a t t u 其解的形式为∑∞ ==100)()(),(m m m k J t T t u ρρ,下列哪一个结论是错误的______。 A) )()()()(20222 t T k a t T dt d t T m m m m -=满足方程 B )圆形膜固有振动模式是)sin(0t ak m 和)cos(0t ak m C )0m k 是零阶Bessel 函数的第m 个零点。 D ))()(00ρρm m k J R =满足方程0)(2202=+'+''R k R R m ρρρ 4. )(5x P 是下列哪一个方程的解_________。 A )0202)1(2=+'-''-y y x y x B )0252)1(2 =+'-''-y y x y x C )0302)1(2=+'-''-y y x y x D )052)1(2=+'-''-y y x y x 5. 根据整数阶Bessel 函数的递推公式,下列结论哪一个是正确的________。 A ))(2)()(1 20x J x J x J '=- B ))()()(111x J x x J x xJ '=+ C ))(2)()(210x J x x J x J =- D ))(2)()(120x J x x J x J '=+ 二、填空题(每题3分)

济南大学数学物理方法试题

济南大学2009 ~2010 学年第一学期课程考试试卷(补考卷) 课 程 数学物理方法 授课教师 任妙娟 考试时间 2010 年 月 日 考试班级 学 号 姓 名 一、 判断题(每小题2分,共20分) [对者画√,错者画×] [ ] 1.在复数域内,负数也有对数。 [ ]2.可去奇点的留数一定是零。 [ ]3.复变指数函数z e 是无界的周期函数。 [ ]4.实部和虚部都是调和函数的复变函数一定是解析函数。 [ ]5.定义在区域G 上的函数()(,)(,)f z u x y iv x y =+,若 ,u v v u x y x y ????==-???? ,则()f z 是G 上的解析函数。 [ ]6.()n J x 在0x =的值总是零。 [ ]7.格林函数代表一个点源在一定的边界条件和(或)初始条件下所产生的场。 [ ]8.函数2 ()(0,)f x x l =,因为2x 是偶函数,所以只能开拓为周期性偶函数, 展开为Fourier 余弦级数。 [ ]9.只有齐次边界条件才能和相应的方程构成本征值问题。 [ ]10.行波法适用于无界区域的波动方程。 二、选择题(每小题3分,共30分) [ ]1. 复数i 25 8-2516z =的辐角为 A . arctan 21 B .-arctan 21 C .π-arctan 21 D .π+arctan 21 [ ]2.设z=cosi ,则[ ] A .Imz=0 B .Rez=π C .|z|=0 D .argz=π [ ]3. 设C 为正向圆周|z+1|=2,n 为正整数,则积分? +-c n i z dz 1)(等于 A . 1 B .2πi C .0 D .i π21 [ ]4. 3z π=是函数f(z)= π π-3z )3-sin(z 的 A 一阶极点 B .可去奇点 C .一阶零点 D .本性奇点 [ ]5.方程0u 2=?-u a t 是 A 波动方程 B .输运方程 C .分布方程 D .以上都不是 [ ]6.可以用分离变量法求解的必要条件是: A 泛定方程和初始条件为齐次 B .泛定方程和边界条件为齐次 C .边界条件和初始条件为齐次 D .泛定方程、边界条件和初始条件均为齐次 [ ]7. 级数的收敛半径是 A . 2 B. k C k 2 D. 1 [ ]8.本征值问题?? ? ??===+==00' 0' 'l x x X X X X λ 的本征函数是 A . x l n π)21(cos + B. x l n π)21(sin + C x l n πsin D. x l n πcos [ ]9.00=x 是方程02 ''=+y w y 的 A 常点 B .正则奇点 C .非正则奇点 D .以上都不是 …………………………………………装…………………………订…………………………线………………………………………… …… … … … 答 ……… …… 题…… … … …不…… … …… 要 ………… … 超 …… … ……过…………… 此………… …线… … …… ……

数学物理方法期末考试试题典型汇总

Mathematicalmethodsforphysics 一、 单项选择题(每小题2分) 1. 齐次边界条件0),(),0(==t u t u x x π的本征函数是_______。 A) 3,2,1 sin =n nx B) ,2,1,0 cos =n nx C) 2,1,0 )21sin(=+n x n D) 2,1,0 )2 1cos(=+n x n 2. 描述无源空间静电势满足的方程是________。 A)波动方程B)热传导方程 3. A)(t T m B C )0m k D )m R 4. 5P A )1(C )1(5. 根据整数阶Bessel 函数的递推公式,下列结论哪一个是正确的________。 A ))(2)()(120x J x J x J '=- B ))()()(1 11x J x x J x xJ '=+ C ))(2)()(210x J x x J x J = -D ))(2)()(120x J x x J x J '=+ 二、 填空题(每题3分)

1. 定解问题???? ?????====><<=-====0 ,00 ,0)0,0( sin cos 0002t t t l x x x x xx tt u u u u t l x t l x A u a u ωπ用本征函数发展开求解时,关于T(t)满足 的方程是: 2. Legendre 多项式)(x P l 的x 的值域是______________________。 Bessel 函数)(x J n 的x 的值域是______________________。 3. 1) 2) 4. 5. 三、 四、 ,求五、 ?>=t t t )0,0 六、 (15分)用分离变量法求解定解问题 计算积分?-+=1 11)()(dx x P x xP I l l 七、 (15分)有一半径为R 的薄圆盘,若圆盘的上下面绝热,圆盘边缘的温度分布为 ??ρρ2cos 2|),(==R u ,试求圆盘上稳定的温度分布),(?ρu 。 八、 (15分)设有一半径为R 的球壳,其球壳的电位分布θ2cos |==R r u ,写出球外的电位满足

数学物理方法

《数学物理方法(1)》教学大纲 学时:68 学分:4 适用专业:物理学 一、课程的性质、目的和任务 本门课程是学科专业方向课,属物理学专业必修课程。通过本课程的教学,使学生掌握并能运用矢量、张量初步、复变函数论、积分变换、分离变量法和球函数等理论物理的基本数学工具。培养学生严谨的逻辑和推演等理性思维能力,为学习物理系基础理论课量子力学、统计物理和电动力学等打好数学基础。使学生深入理解基本概念,适度锻炼、提高综合分析、解决问题的能力和耐力。 二、课程教学的基本要求 (1)掌握复变函数论的基本理论、微分和积分的方法、了解残数及其在围道积分中的应用;(2)掌握弦振动方程、热传导方程、电报方程的建模过程; (3)初步学会确定边界条件和初始条件; (4)熟练掌握分离变量法、达朗贝尔法和拉普拉斯变换法; (5)了解特殊函数的导出和意义。 三、课程教学内容 (一)矢量分析 1.算子 的运算规则,含算子的常用恒等式 2.梯度、散度、旋度与调和量在正交曲线坐标系表达式 (二)复变函数 1.初等复变函数,多值函数的支点、黎曼面及其单值分支 2.复变函数导数,科希——黎曼方程、解析函数,共轭调和函数 (三)复变函数的积分 1.复变函数的积分 2.单通区域、复通区域上的科希定理与科西积分公式 (四)幂级数展开 1.复数项级数、幂级数、收敛圆与收敛半径 2.泰勒展开、罗朗展开及收敛环域的确定,解析延拓和奇点的分类 (五)留数定理 1.留数定理,极点的留数计算方法和利用留数定理计算实函数(主值)积分的方法

2.多值函数的回路积分 (六)傅立叶变换 1.傅立叶积分、傅立叶变换及其性质 2.狄拉克函数 (七)拉普拉斯变换基础 1.拉普拉斯变换,有理分式反演法,延迟定理,位移定理和卷积定理2.黎曼-梅林反演公式,运算微积方法求解微、积分方程 (八)分离变量法 1.波动方程,热传导方程和拉普拉斯方程等三类方程的分离变量法(九)球函数 1.勒让德多项式,勒让德方程的本征值和本征函数,母函数和递推公式2.具有轴对称性的物理问题等 四、课内实践教学要求 本课程无课内实践要求。 五、考核形式 考试(闭卷) 六、学时分配: 七、本课程与其它课程的联系

相关文档
相关文档 最新文档