文档库 最新最全的文档下载
当前位置:文档库 › 基于导电高分子纳米复合材料应用分析

基于导电高分子纳米复合材料应用分析

基于导电高分子纳米复合材料应用分析
基于导电高分子纳米复合材料应用分析

基于导电高分子纳米复合材料应用分析摘要:对于导电高分子中纳米复合材料的研究是从上个世纪八十年代才逐渐进入高潮的。发展至今,纳米复合技术已经成为了研究功能高分子技术的重要课题。与此同时,导电高分子技术特别是纳米复合技术在生活生产中的应用也越来也普遍,越来越重要。本文就来分析一下导电高分子中纳米复合类材料的应用。

关键词:导电高分子纳米复合材料应用

确切来说,聚乙炔具有导电功能的发现是在上个世纪的1977年,距今也才四十五年的时间;而纳米技术融合到导电高分子技术中的发展更短,不到二十年的时间,在这么短的时间里,导电高分子的研究已经取得了飞跃的发展,同时导电高分子材料也被应用在了众多的领域众多的产品中,给我们的生活生产起着重要的作用;从这项技术的发展中可以看出,其应用的背景远不止目前这些。顾名思义,导电高分子中纳米复合材料应该具备有两个特点,一个是纳米功能,另一个是导电性;本文主要探讨导电高分子技术中的纳米复合材料的应用现状,同时对其发展略表看法。

一、导电高分子中纳米复合材料的应用

在导电高分子技术领域中,纳米复合材料的优点非常多。从产品的特点来说,其具有高弹性、高可塑性、低密度、耐腐蚀性、质量轻、柔软和加工性能好等特点,另外其电导率的范围非常宽,具有半导体的特点;从经济层面上来说,这种材料的价格也很便宜。

导电高分子

导电高分子材料的介绍及研究进展 高分子091 5701109015 李涛 摘要:导电聚合物的突出优点是既具有金属和无机半导体的电学和光学特性,又具有有机聚合物柔韧的机械性能和可加工性,还具有电化学氧化还原活性。经过多年世界范围内的广泛研究,导电聚合物在新能源材料方面的应用已获得了很大的发展。 关键词:导电高分子机理理论研究进展 一、背景及意义 高分子导电材料具有密度小、易加工、耐腐蚀、可大面积成膜以及电导率可在十多个数量级的范围内进行调节等特点,不仅可作为多种金属材料和无机导电材料的代用品,而且已成为许多先进工业部门和尖端技术领域不可缺少的一类材料。高分子材料长期以来被作为优良的电绝缘体,直至1977年,日本白川英树等人才发现用五氟化砷或碘掺杂的聚乙炔薄膜具有金属导电的性质,电导率达到10S/m。这是第一个导电的高分子材料。以后,相继开发出了聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺、聚噻吩等能导电的高分子材料。 经过多年世界范围内的广泛研究,导电聚合物在新能源材料方面的应用已获得了很大的发展,但离实际大规模应用还有一定的距离。这主要是因为其加工性不好和稳定性不高造成的。 二、导电高分子材料分类及导电机理

高分子导电材料通常分为复合型和结构型两大类: ①复合型高分子导电材料。由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。 复合型导电高分子材料(Conducting Polymer Composites)是指经物理改性后具有导电性的高分子复合材料,它以非导电型高分子材料为基体,加入一定数量的导电材料(如碳黑、石墨、碳纤维、金属粉、金属纤维、金属氧化物等)组合而成。复合方法主要有两种,一种是对已经成型的塑料壳体进行表面处理的表面导电膜形成法,包括金属喷镀、真空镀、溅射镀、贴金属箔、湿法化学镀或电镀等;另一种称为导电填料机械加工共混复合法,即将导电填料均匀分散于聚合物基体中制成导电涂料或导电塑料。 复合型导电高分子材料的导电机理比较复杂。一般可分为导电回路如何形成,以及回路形成后如何导电两个方面。部分科学家认为高分子树脂基体与导电填料之间的界面效应对复合体系中导电回路的形成具有很大的影响。复合型导电高分子形成导电回路后,导电性主要取决于分布于高分子树脂基体中的导电填料的电子传输。总的说来,其导电性能主要是三种导电机理(导电通道效应、隧道效应、场致效应)相互竞争的作用。在不同情况下出现以其中一种机理为主导

浅谈导电高分子材料的应用

浅谈导电高分子材料的应用 摘要:与传统材料相比,导电高分子材料有着易加工、密度小、结构易变、耐 腐蚀、可大面积成膜的优势,本文主要针对导电高分子材料的类型与应用展开分析。 关键词:导电高分子材料;类型;应用 0 引言 导电高分子材料是一种具有导电功能的聚合物材料,它具有密度小、可加工性好的特性,并且具有良好的耐腐蚀性,可以大面积成膜。这些良好的特性,使导电高分子材料可以在某 些领域替代多种金属材料和无机导电材料,有效降低成本。经过几十年的发展,高分子材料 作为优良的电绝缘体,已经成为许多先进工业部门和尖端技术领域里一种重要的材料。 1 导电高分子材料的分类 按照材料的结构,导电高分子材料可以分为复合型导电高分子材料和结构性导电高分子 材料两种类型。 1.1 复合型导电高分子材料 复合型导电高分子材料是利用不同的加工手段,将各种不同的导电材料填充到聚合物基 体当中,制作成一种新型的导电材料。最常采用的方法就是把各种高效导电粒子或者导电纤 维等作为填充物,如金属粉末、各种金属纤维直径在7毫米左右的材料等。从技术上来说, 复合型导电高分子材料的加工工艺更为成熟,产品使用更为普及。 1.2 结构型导电高分子材料 结构性导电高分子材料,采用具有一定的导电性材料,通过对自身进行一定比例的掺杂,提高导电性能的聚合物。按照导电状态下的载流子种类可以将结构型高分子材料分为离子型 和电子型两种类型。离子型导电高分子的导电载流子是离子,有的学者也称它为高分子固体 电解质;电子型高分子的载流子为电子,它以共轭高分子为主体。离子型导电高分子材料是 目前世界上的重点开发内容。 2 导电高分子材料的应用 导电高分子材料在很多应用领域比金属材料有着更为优越的性能,如它的可塑性好、耐 腐蚀性、电导率较高、可逆氧化还原性等。主要应用在导电衬料、光电显示材料、信息记忆 材料等多个方面。 2.1 在电子元器件开发中的应用 (1)导电高分子材料在防静电和电磁屏蔽上的应用 导电高分子材料最早是应用在防静电和电磁屏蔽方面。具体操作是将SDBS和TSOH混合,掺杂PANI和ABS,制备出杂多酸掺杂PANI/ABS复合材料。经过试验证明复合材料的屏蔽性 能跟PANI的含量有着直接的关系,PANI的含量越高,复合材料的屏蔽性能越好。 (2)导电高分子材料在芯片开发中有着重要作用 由于导电高分子材料可塑性好,质量轻、体积小,广泛地应用到了带有微芯片的卡片以 及条码读取设备中。这一技术的发明,为计算机制造技术带来了重大变革,有效减小了计算 机的体积,并且在很大程度上提高了计算机的运行速度。 (3)导电高分子材料在显示材料中的应用 在半导体有机膜两端安装电极以后就制成了有机发光二极管。在它的两端加上少量电压,是电子在其上面进行移动,当两个相对运用的政府电荷载体相遇以后,就形成了“电子—空穴对”,此时能量就以发光的形式释放出来。发光二极管发出的光强度高、色彩绚丽,广泛用到了手机、手掌电脑等电子产品的显示屏上。另外还可以自动调光玻璃等产品,受到了电子产 业的广泛关注。 2.2 导电高分子材料在塑料薄膜太阳能电池开发中的应用 面对资源快速消耗的问题,能源科研人员一直在寻找一种能够替代矿物燃料的能源。然 而传统的硅太阳能加工成本昂贵,在生产过程中也消耗的大量的能源,不是理想的新能源材料。而塑料薄膜电池生产成本低廉、加工过程简单节能,加工工艺一旦成熟,就能够进行大 批量生产,将会是以后一种非常好的新能源。

导电高分子

1. 概述 1.1 导电高分子的基本概念 物质按电学性能分类可分为绝缘体、半导体、导体和超导体四类。高分子材料通常属于绝缘体的范畴。但1977年美国科学家黑格(A.J.Heeger)、麦克迪尔米德和日本科学家 白川英树(H.Shirakawa)发现掺杂聚乙炔具有金属导电特性以来,有机高分子不能作为导电材料的概念被彻底改变。 导电性聚乙炔的出现不仅打破了高分子仅为绝缘体的传统观念,而且为低维固体电子学和分子电子学的建立打下基础,而具有重要的科学意义。上述三位科学家因此分享2000年诺贝尔化学奖。所谓导电高分子是由具有共轭π键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。它完全不同于由金属或碳粉末与高分子共混而制成的导电塑料。 通常导电高分子的结构特征是由有高分子链结构和与链非键合的一价阴离子或阳离子共同组成。即在导电高分子结构中,除了具有高分子链外,还含有由“掺杂”而引入的一价对阴离子(p型掺杂)或对阳离子(n型掺杂)。导电高分子不仅具有由于掺杂而带来的金属特性(高电导率)和半导体(p和n型)特性之外,还具有高分子结构的可分子设计性,可加工性和密度小等特点。为此,从广义的角度来看,导电高分子可归为功能高分子的范畴。 导电高分子具有特殊的结构和优异的物理化学性能使它在能源、光电子器件、信息、传感器、分子导线和分子器件、电磁屏蔽、金属防腐和隐身技术方面有着广泛、诱人的应用前景。导电高分子自发现之日起就成为材料科学的研究热点。经过近三十年的研究,导电高分子无论在分子设计和材料合成、掺杂方法和掺杂机理、导电机理、加工性能、物理性能以及应用技术探索都已取得重要的研究进展,并且正在向实用化的方向迈进。本章主要介绍导电高分子的结构特征和基本的物理、化学特性,并评述导电高分子的重要的研究进展。 迄今为止,国内外对结构型导电高分子研究得较为深入的品种有聚乙炔、聚对苯硫醚、聚苯胺、聚吡咯、聚噻吩以及TCNQ传荷络合聚合物等。其中以掺杂型聚乙炔具有最高的导电性,其电导率可达5×103~104Ω-1·cm-1(金属铜的电导率为105Ω-1·cm-1) 目前,对结构型导电高分子的导电机理、聚合物结构与导电性关系的理论研究十分活跃。应用性研究也取得很大进展,如用导电高分子制作的大功率聚合物蓄电池、高能量密度电容器、微波吸收材料、电致变色材料,都已获得成功。 但总的来说,结构型导电高分子的实际应用尚不普遍,关键的技术问题在于大多数结构型导电高分子在空气中不稳定,导电性随时间明显衰减。此外,导电高分子的加工性往往不

导电聚合物复合材料

导电聚合物复合材料综述 及其在金属管道防腐方面的应用 摘要 本文主要讨论了复合型导电聚合物材料的分类情况、研究现状和存在问题等,并对于用于金属管道防腐方面的导电聚合物涂料的研究和制备提出了初步的思路和设计方案。 关键字:导电;聚合物;复合材料 引言 聚合物材料易成型,易加工,耐腐蚀,比强度高,由于具有优良的特性,在新一代材料中的应用受到了极大的重视,但由于其本身电阻率多处于10-10-lO-20S/m之间,属于绝缘体材料,使其在电子材料领域的应用受到限制,为使其电阻率得到可观规模的下降,并可以广泛应用于能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术中,有关新型的、具有导电性能的聚合物材料研究具有深刻意义。 1.导电聚合物材料的分类 按照结构与组成,导电聚合物材料可分为两大类:一类是本身或经过掺杂处理后具有导电功能的聚合物材料,称为结构型导电高分子材料;另一类是以聚合物材料为基体添加具有高导电性能的有机、无机、金属等导电填料,经过各种手段使其在基体中分散从而形成具有导电性的复合材料,称为复合型导电聚合物材料,又称导电聚合物复合材料。 对于结构型导电聚合物材料,由于分子主链上刚性共轭双键结构和分子间强范德华力作用力,使结构型导电聚合物通常不熔化不溶解。这些特殊的物理性质导致其加工性能差,限制了其的使用和生产。相比之下,导电复合材料可在较大尺度上控制材料性能,而且成本低、品种繁多,易加工和工业化生产,已经被广泛应用于电子、电器、纺织和煤炭开采等领域。此外,导电聚合物复合材料还具有一些特殊的物理现象,如绝缘体向半导体的突变,电阻率对温度、压力、气体浓度敏感性,电流-电压非线性行为,电流噪音等,从而得到广泛的研究与应用。 导电聚合物复合材料主要是由高电导率的导电填料和绝缘性的聚合物基体组成,其中导电填料提供载流子,通过导电填料之间的相互作用来实现载流子在聚合物复合材料中的迁移。将导体或半导体无机材料分散到高分子材料基体中,

导电高分子材料的应用、研究状况及发展趋势(精)

导电高分子材料的应用、研究状况及发展趋势 熊伟 武汉纺织大学化工学院 摘要:与传统导电材料相比较 , 导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键字:导电高分子分类制备现状 Abstract : Compared with conventional conductive materials, conductive polymer material has many unique properties. Conducting polymers can be us ed as radar absorbing materials, electromagnetic shielding materials, antistatic materials. Describes the structure of conductive polymer materials, types and conducting mechanism, synthesis methods, the application of conductive poly mer materials, research status and development trend. Keywords : conductive polymer categories preparation status 1 导电高分子的结构、种类 按照材料结构和制备方法的不同可将导电高分子材料分为两大类 :一类是结构型 (或本征型导电高分子材料,另一类是复合型导电高分子材料 [3]。 结构型导电高分子材料是指高分子本身或少量掺杂后具有导电性质的高分子材料。 根据加入基体聚合物中导电成分的不同 , 复合型导电高分子材料可分为两类 :填充复合型导电高分子材料和共混复合型导电高分子材料 [5]。

复合型导电高分子材料的应用及发展前景

复合型导电高分子材料的应用及发展前景 【摘要】介绍了复合型导电高分子的特性、共混和填充复合型导电高分子的制备方法、开发现状及其技术进展。 【关键词】复合型导电高分子;导电性能;共混;填充 1、前言 通常,高分子材料的体积电阻率约为1010~1020Ω〃cm 之间,因而被大量用作绝缘材料。随着现代电子工业和作息技术等产业革命迅速发展,越来越需要具有导电功能高分子材料。导电高分子由于其具有重量轻、易加工各种复杂形状以及电阻率在较大范围内可调等特点,在防静电、电磁屏蔽、微波吸收、电化学及催化等领域得到广泛的应用(1)。导电高分子按其结构组成和制备方法的不同可分为结构型和复合型两大类。目前,复合型导电高分子材料所采用的复合方法主要有两种:一种是将亲水性聚合物或结构导电高分子与基本高分子进行共混,另一种则是将各种导电填料填充到基体高分子中(2)。 2、共混复合型高分子 2.1 与亲水性聚合物共混 作为亲水性聚合物,目前以聚氧化乙烯(PEO)的共聚物占多数,这可能与PEO 同基体高分子相容性较好有关。此外,还有降乙二醇-甲基丙烯酸酯类共聚物等.(3)日本Asahi 公司将ABS、Hips 与亲水性PA 共混制得两种高性能抗静电复合材料AdionA 和AdionH,尤其是后者在相对湿度较低的条件下也表现出较强的抗静电能力,且不受水洗和擦试等影响。在相对湿度为50%温度为23℃的环境中保存4 年后,抗静电性能无变化,机械性能不低于普通HIPS,其它性能则与普通HIPS 相同(4)。三洋化成工业公司开发的以聚醚为主的特殊嵌段共聚物与PMMA、ABS和PA 等基本高分子组成的共混物也具有永久抗静电效果,且相溶性较Goodrich 公司研制的永久性抗静电母料STAT-RITE C.2300非常引人注目,其化学组成可能是以PEP-ECH(表氯醇)共聚物为主要成分的高分子合金。当添加量为15%-20%时,与PVC/PC、PET 及PS系列基体高分子制成的复合材料具有永久性抗静电能力,且价格低廉,热稳定性好(5)。 许多学者研究了基本高分子与亲水性聚合物PEO(或其共聚物)组成的共混体系的形态结构。结果表明,亲水性聚合物在特殊相溶剂存在下,经较低的剪切拉伸后,在基体高分子表面形成微细的筋状,即层状分散结构,而中心结构则接近球状分布(6)。 2.2 与结构型导电高分子共混 这种共混技术就是采用机械或化学方法将结构型导电高分子和基本高分子进行复合,这是一条使结构型导电高分子走向实用体的有效途径。若将结构型导电高分子和基体高分子达到微观尺度内的共混,则可以获得具有互穿或部分互穿网络结构的复合型导电高分子,通常采用化学法或电化学法进行制备(10)。 3、填充复合导电高分子 这种导电高分子通常是将不同的无机导电填料掺入到普通的基体高分子中,经各种成型加工方法复合制得。导电填料的品种很多,常用的可分成炭系和金属系两大类。炭系填料包括炭黑、石墨和碳纤维等;金属系主要有铝、铜、镍、铁等金属粉末、金属片和金属纤维。此外,还有镀金属的纤维和云母片等。目前研究和应用较多的是由炭黑颗粒和金属纤维填充制成的复合型导电高分子(11)。3.1 炭黑填充型导电高分子

导电高分子的应用(精)

导电高分子的应用 学校名称:华南农业大学 院系名称:材料与能源学院 时间:2017年2月27日

由于导电高分子具有特殊的结构和优异的物化性能, 使其在电子工业、信息工程、国防工程及其新技术的开发和发展方面都具有重大的意义。其中因聚苯胺具有原料易得、合成工艺简单、化学及环境稳定性好等特点而得到了更加广泛的研究和开发, 并在许多领域显示出了广阔的应用前景。 1在电子元器件开发中的应用 1.1用于防静电和电磁屏蔽方面 导电高聚物最先应用是从防静电开始 的。将特定比例的十二烷基苯磺酸和对甲苯磺酸混合酸掺杂的PANI与聚(丙烯腈-丁二烯-苯乙烯)树脂(ABS)共混挤出,制备了杂多酸掺杂PANI/ABS复合材料,通过现场聚合的方法在透明聚酯表面聚合了一层导电PANI,表面电阻可控制在 106-109Ω。通过对复合材料EMI屏蔽的研究,发现在101 GHz下,复合材料的屏蔽效能随其中PANI含量的增大而增大。 1.2 导电高分子材料在芯片开发上的运用 在各种带有微芯片的卡片以及条码读取设备 上,高分子聚合物逐渐取代硅材料。塑料芯片的 价格仅为硅芯片的1%-10%,并且由于其具有可溶 性的特性而更易于加工处理。目前国际上已经研 制出集成了几百个电子元器件的塑料芯片,采用 这种导电塑料制造的新款芯片可以大大缩小计算 机的体积,提高计算机的运算速度。 1.3 显示材料中的导电高分子材料 有机发光二极管是由一层或多层半导体有机膜,加上两头电极封装而成。在发光二极管的两端加上3伏-5伏电压,负极上的电子向有机膜移动,相反,

与有机膜相连的正极上的电子向负极移动,这样产生了相反运动方向的正负电荷载体,两对电荷载体相遇,形成了“电子-空穴对”,并以发光的形式将能量释放。由于它发光强度高、色彩亮丽,光线角几乎达到180度,可用于制造新一代的薄壁显示器,应用在手机、掌上电脑等低压电器上,也应用于金融信息显示上,使图像生动形象,并可图文通显。利用电致变色机理,还可用于制造电致变色显示器、自动调光窗玻璃等。 2在塑料薄膜太阳能电池开发中的应用 传统的硅太阳能电池不仅价格昂 贵,而且生产过程中消耗大量能源, 因此成本昂贵,无法成为替代矿物燃 料的能源,而塑料薄膜电池最大的特 点就是生产成本低、耗能少。一旦技 术成熟,可以在流水线上批量生产, 使用范围也很广。制造塑料薄膜太阳 能电池需要具有半导体性能的塑料。奥地利科学家用聚苯乙烯和碳掺杂形成富勒式结构的材料,再将它们加工成极薄的膜,然后在膜层上下两面蒸发涂上铟锡氧化物或铝作为电极。由于聚苯乙烯受到光照时会释放出电子,而富勒式结构则会吸收电子,如果将灯泡接在这两个电极上,电子开始流动就会使灯泡发光。 3在生物材料开发中的应用 在生命科学领域,导电高分子材料可制成智能材料,用于医疗和机器人制造方面。由于导电有机聚合物在微电流刺激下可以收缩或扩张,因而具备将电能转化为机械能的潜力,这类导电聚合物组成的装置在较小电流刺激下同样表现出明显的弯曲或伸张/收缩能力。为了把聚合物变成伸屈的手指活动,加上了含PPY 的三层复合膜[PPY/缘塑料膜/PPY],其中一层PPY供给正电荷,另一层PPY供给负电荷。机器人手指工作:提供正电荷的一侧凹陷进去,即体积收缩;提供负电

导电高分子纳米复合材料的浅析

导电高分子纳米复合材料的浅析 本文首先简单介绍导电高分子纳米复合材料的发展历史以及发展前景,接下来详细介绍了导电高分子纳米复合材料的物理性能以及各方面特点,综述了导电高分子纳米复合材料的最新研究进展,最后结合当下科技发展形势,给出了导电高分子纳米复合材料的发展前景以及应用领域的扩展。 标签:导电高分子;纳米复合材料;聚苯胺 1 引言 随着科技的发展,导电高分子纳米复合材料的应用也日益广泛,本文简单介绍一下导电高分子纳米复合材料的发展历史和主要特点,通过查阅相关文献得知,导电高分子纳米复合材料根据导电高分子的特殊性能,可以把导电高分子纳米复合材料分为导电材料、导电以及导磁材料、光合催化材料、微波用的吸收材料、生物吸附材料以及防腐材料等,这些导电高分子纳米复合材料在各自的应用领域发挥着越来越大的作用,本文总结各种材料的共同特点,给出导电高分子复合材料的基本特点。 2 导电高分子纳米复合材料的性能 导电高分子材料有很多基本性能,其中比较重要的性能主要有导电性能、导电导磁性能、光学性能、生物吸附功能、微波吸收功能、防腐性能等,接下里详细介绍这些性能。 导电性能 导电性能是导电高分子纳米复合材料最基本的性能,也是最重要的性能,当前,很多科学家把提高高分子纳米复合材料的单位导电性作为一个重要的课题,并取得了很多成果,当前最热的研究领域就是利用纳米分子掺杂技术来提高高分子的导电能力,实际证明,通过纳米分子掺杂技术可以成百上千的增加高分子的导电性能,通过提高高分子的导电性能可以大大扩展导电高分子的应用领域,现在提的比较多的纳米掺杂高分子材料主要有金属氧化物纳米复合材料、蒙脱土纳米复合材料、碳纳米管复合材料、稀土氧化物納米复合材料、金属盐纳米复合材料等,这些复合材料由于掺杂了纳米复合材料,大大增强了性能。 导电导磁性能 导电导磁性能也是导电高分子纳米复合材料的重要特点之一,由于其特殊的“双导”特点,大大增加了导电导磁材料的应用范围,现在已经广泛应用于电池、电显示器件、分子电器件、非线性光学材料、传感器以及微波吸收等领域,其中导磁高分子复合材料在分子电器件领域占据了绝对优势地位,据不完全统计,在分子电器件领域,导磁高分子复合材料占80%以上的市场份额。

导电复合材料

导电复合材料

导电复合材料的制备及应用浅析 摘要:随着电子工业及信息技术等产业的迅速发展,对于具有导电功能的高分子材料的需求越来越迫切。本文详细介绍了导电高分子材料的分类,介绍了导电复合材料的导电填料的种类及性质,总结了复合型导电高分子材料的制备方法和应用情况。 关键词:复合型;导电高分子材料;制备及应用; 1.前言 通常高分子材料的体积电阻率都非常高,约在1010-1020Ω·cm之间,作为电器绝缘材料使用无疑是非常优良的。但是,随着科学技术的进步,特别是电子工业、信息技术的迅速发展,对于具有导电功能的高分子材料需求愈来愈迫切。世界各国无论是学术界还是产业界都在积极地对这一新兴功能材料进行研究与开发。 关于导电高分子的定义,到目前为止国内外尚无统一的标准,一般是将体 积电阻率ρ V 小于1010Ω·cm的高分子材料统称为高分子导电材料。其中将ρ V 在106-1010Ω·cm之间的复合材料称为高分子抗静电材料;将ρ V 在100-106Ω·cm 之间的称为高分子半导电材料;将ρ V 小于100Ω·cm的称为高分子导电材料。 按照结构和制备方法的差异又可将导电高分子材料分为结构型导电高分子材料和复合型导电高分子材料两大类。结构型导电高分子材料(或称本征高分子导电材料)是指分子结构本身能导电或经过掺杂处理之后具有导电功能的共扼聚合物,如聚乙炔、聚苯胺、聚毗咯、聚噬吩、聚吠喃等。复合型导电高分子材料是指以聚合物为基体,通过加入各种导电性填料(如炭黑、金属粉末、金属片、碳纤维等),并采用物理化学方法复合制得的既具有一定导电功能又具有良好力学性能的多相复合材料。目前结构型导电高分子材料由于结构的特殊性与制备及提纯的困难,大多还处于实验室研究阶段,获得实际应用的较少,而且多数为半导体材料。复合型导电高分子材料,因加工成型与一般高分子材料基本相同,制备方便,有较强的实用性,故已较为广泛应用。本论文主要研究了复合型导电高分子材料的制备以及应用。 2.复合型导电高分子材料 2.1复合型导电高分子材料概述 复合型导电高分子材料在工业上的应用始于20世纪60年代。复合型导电高分子材料是采用各种复合技术将导电性物质与树脂复合而成的。按照复合技术分类有:导电表面膜形成法、导电填料分散复合法、导电填料层压复合法三种。 复合型导电高分子材料的分类方法有多种。根据电阻值的不同,可划分为半导电体、除静电体、导电体、高导电体。根据导电填料的不同,可划分为碳系(炭

导电高分子综述

导电高分子材料及其应用 摘要: 导电高分子材料具有密度小、易加工、耐腐蚀、可大面积成膜,以及电导率可 在绝缘体- 半导体- 金属态(10-9 到105 S/cm)的范围里变化。所以自从1977 年来,导电高分子材料的研究受到了普遍的重视和发展。本文介绍了国内外导 电高分子材料的分类、特点、应用及近年来研究发展的概况。同时还展望了导 电高分子有待发展的方向。 关键词:导电高分子;分类;应用 1导电高分子简介 20 世纪70 年代,白川英树、Heeger 和MacDiarmid等人首次合成了聚乙炔薄膜,后来又经掺杂发现了可导电的高聚物,这就是导电高分子材料。经过40 多年的发展,导电高分子材料也从最初的聚乙炔发展到聚苯胺、聚吡咯、聚噻吩等数十种高分子材料,成为 金属材料和无机导电材料的优良替代品。[1]但是导电高分子在变形过程中不仅仅存在弯曲 移动,而且还会产生蠕动现象,在器件的层间会发生快速分层的行为,溶剂易于挥发,使 用寿命有限、低的能量转换效率等等缺点使其在应用中具有难以突破的难点技术。[2] 2 高分子材料的分类及导电机理 导电高分子材料通常是指一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10-6S/cm 以上的聚合物材料。按照材料结构和制备方法的不同可把导电高分子材料分为结构型(或本征型)导电高分子材料和复合型导电高分子材料两大类。 2.1结构型高分子导电材料 结构型高分子导电材料。是指高分子结构本身或经过掺杂之后具有导电功能的高分子 材料。最早发现的结构型高分子聚合物是用碘掺杂后形成的聚乙炔。这种掺杂后的聚乙炔 的电导率高达105 S/cm。后来人们又相继开发出了聚苯硫醚、聚吡咯、聚噻吩、聚苯胺等导电高分子材料。这些材料掺杂后电导率可达到半导体甚至金属导体的导电水平。结构型 高分子导电材料用于试制轻质塑料蓄电池、太阳能电池、传感器件、微波吸收材料以及试 制半导体元器件等[3] 。但目前这类材料由于还存在稳定性差(特别是掺杂后的材料在空气中的氧化稳定性差)以及加工成型性、机械性能方面的问题,尚未进入实用阶段。 2.1.1 聚乙炔( PA) 纯净聚乙炔掺进施主杂质(碱金属(Li、Na、K)等)或受主杂质(卤素、AsF5、PF5 等)后才能导电。与半导体不同的是,掺杂聚乙炔导电载流子是孤子。聚乙炔是目前世界

二维导电纳米复合材料的制备及其性能研究

二维导电纳米复合材料的制备及其性能研究新型二维纳米材料(石墨烯和MXenes)具有由尺寸效应带来的优异物化性能,目前已在众多领域展现出广阔应用前景。为有效利用石墨烯和MXenes本身纳米尺度上优异性能以满足相关领域具体使用要求,利用逐渐兴起的组装技术,将微观尺寸的纳米片层组装成具有宏观尺寸的功能结构(如一维纤维、二维薄膜、三维气凝胶)无疑是一种最为有效的方法。通过对二维纳米材料组装体进行合理的结构设计和形貌调控,不仅能够更好地利用纳米材料本身优异的电学、光学和力学等性能,而且还能开发材料新的功能特性并拓展其应用范围,因此,研究二维纳米材料的组装策略并以此制备宏观功能材料对实现二维纳米材料实际应用具有重要意义。 本论文针对MXenes和石墨烯宏观组装体制备和使用时仍存在的难点和性能缺陷,如石墨烯薄膜在作为电磁屏蔽材料时屏蔽机制单一、MXenes材料在潮湿环境中易降解、MXenes二维宏观薄膜导电与力学性能难以兼顾以及MXenes三维宏观组装结构难以形成等问题,通过提出新的结构设计思路和组装策略,设计出轻质磁性多孔石墨烯二维薄膜、高强高导电二维MXene薄膜、低密度疏水二维MXene 泡沫薄膜以及低密度、超弹性MXene三维气凝胶,并系统研究其结构与性能关系。本论文主要内容和创新成果如下:(1)针对目前石墨烯薄膜作为电磁屏蔽材料时屏蔽机制单一且性能提高困难的问题,我们采用高效的肼蒸汽还原诱导发泡工艺制备轻质、导电且具有磁性的石墨烯/羰基铁多孔薄膜并研究其超宽频段电磁屏蔽性能。通过引入适量壳聚糖作为界面粘接剂来增强还原氧化石墨烯纳米片之间的层间相互作用,稳固体系内多孔结构,优化宏观组装材料表观形貌和内部结构;利用导电组分和磁性组分对电磁波损耗的协同效应,将磁性片状羰基铁引入到导

导电高分子的应用

导电高分子的应用 学号:1111410118 姓名:赵锦豪

导电高分子的应用 1.简介 1.1导电高分子的定义 导电高聚物是含一价对阴离子的具有非定域π电子共扼体系的高聚物。具有非定域π电子共扼体系的高聚物可以经过化学或电化学“掺杂”的方法使其由绝缘体转变成导电高聚物。它可以通过化学或电化学掺杂的方法使其电导率在绝缘体、半导体和导体范围内变化。该研究领域虽然只有短暂的十余年历史,但是无论在材料的合成、结构的表征、导电机理、结构与性能的关系以及它在技术上的应用探索等方面都取得了重大的进展,展现了广阔的前景。 1.2导电高聚物的“掺杂”的特点 在导电高聚物研究领域中所引用的“掺杂”术语是完全不同于传统的无机半导体的“掺杂”概念。在无机半导体中的掺杂是杂质原子取代主体原子位置的过程而且掺杂度是很低的。导电高聚物的掺杂特点是:(1)是氧化—还原的过程,即导电高聚物的掺杂过程是在高聚物链上有一个电子的得(氧化)失(还原)过程。(2)为了保持体系的电中性,掺杂过程还伴随着一价对阴离子进人高聚物体系的过程,进人高聚物体系的对阴禽子也可以脱离高聚物体系,此过程被称为脱掺杂。(3)掺杂和脱掺杂是完全可逆的过程。(4)掺杂量是大大超过无机半导体的掺杂量的限度。 因此“掺杂”实际上是电荷转移氧化还原过程,高分子链成为高分

子离子,“掺杂”剂成为高分子离子链的对离子,对离子往往插入到高分子链之间的隙缝空间,使链间距增大,有时对离子本身也堆砌成柱。所以导电高聚物的“掺杂”,本质上更相似于石墨的层间插入。“掺杂”应该更合理地称为电荷转移插入。 1.3常见种类 物质的导电过程是载流子在电场作用下定向移动的过程。高分子聚合物导电必须具备两个条件:(1)要能产生足够数量的载流子(电子、空穴或离子等);(2)大分子链内和链间要能够形成导电通道。以下分别介绍两种导电聚合物的导电机理。 1.3.1 复合型导电高聚物 复合型导电高聚物是以高分子材料为基体,添加一定数量的导电物质(如碳黑、石墨、碳纤维、金属粉、金属纤维、金属氧化物等)组合而成。该类聚合物兼有高分子材料的加工特性和金属的导电性。与金属相比较,导电性复合材料具有加工性好、工艺简单、耐腐蚀、电阻率可调范围大、价格低等优点。 由炭黑填充制成的复合型导电高分子是目前用途最广、用量最大的一种导电高分子材料。炭黑填充型导电高分子材料中炭黑通常以粒子形式均匀分散于基体高分子中,随着炭黑填充量的增加,粒子间距缩小,当接近或呈接触状态时,便形成大量导电网络通道,导电性能大大提高,继续增加炭黑用量则对导电性影响不明显。炭黑的导电性能与其结构、比表面积和表面化学性质等因素有关。炭黑的比表面积越大(粒径越小)、表面活性基团含量越少,则导电性能越好。

复合型导电高分子的NTC效应

复合型导电高分子的NTC效应 【摘要】复合型导电高分子在温度场中可以表现出正温度系数(PTC)和负温度系数(NTC)效应,相对于NTC效应,PTC效应已经在产生机理、材料制备、影响因素等方面被研究者广泛研究。本文综述了熔融态复合型导电高分子、复合型导电高分子泡沫和各向异性复合型导电高分子的NTC效应,概括了降低或消除NTC效应的方法,并对NTC材料的应用前景进行了展望。 【关键词】导电;高分子;NTC效应;复合材料 导电高分子复合材料(conductive polymer composites, CPCs)对温度场的响应行为主要表现为PTC和NTC效应,PTC材料已经在电路过流保护元件、自限温加热器、装置温度和温敏传感器等领域广泛应用。一方面,PTC材料在熔融态下往往伴随着NTC效应,这限制了PTC材料的推广应用;另一方面,NTC材料可以用来作为灵敏开关与警报装置相连,用于需要温度限制的领域。此,对CPCs 的NTC效应的研究具有重要的意义。本文综述了熔融态CPCs、CPCs泡沫、各向异性CPCs的NTC效应,概括了消除或降低NTC效应的方法,并对CPCs的NTC效应的应用前景进行了展望。 1.各向同性复合型导电高分子的NTC效应 1.1熔融态下复合型导电高分子的NTC效应 复合型导电高分子的电阻率随温度的升高而增大,表现为PTC效应,在高分子转变温度(Tg或Tm)处电阻率达到最大值,然而随着温度的继续升高,电阻率表现为下降的趋势,呈现出NTC效应,其典型的PTC复合材料阻温曲线图一般分为三个明显的区域:随温度的升高,复合材料电阻率逐渐增大;温度继续升高,复合材料电阻率迅速增加(可增大1.5-8个数量级),并达到一个极限值,发生导体到绝缘体的转变,呈现PTC效应;此后,复合材料电阻率随温度升高而下降,呈现NTC效应。 1.2复合型导电高分子泡沫的NTC效应 NTC效应一般发生在熔融态的复合型导电高分子,由于高分子基体粘度的降低,导电填料重新组装形成导电网络,这种NTC效应往往会限制PTC材料的使用。但是利用固态复合型导电高分子中的NTC效应却可以用来制备灵敏开关,用于需要温度限制的领域,当温度过高时,因NTC材料电阻下降,回路产生电流增大,连接警报系统。 研究者已经制备出了具有稳定可重复性NTC效应的碳纳米管(CNTs)/聚氨酯CPCs泡沫,用扫面电镜(SEM)观察到其微观结构是由一系列包裹CO2气体的闭孔泡沫组成。其NTC效应如图2所示。 图2CNTs/PU复合型导电高分子泡沫的NTC效应 研究者对此提出了新的NTC效应机理,加热过程中CO2气体受热膨胀,气体压力增大,挤压泡孔壁导致材料泡孔壁变薄,使其中的CNTs变得更加舒展,更易形成导电网络,因此出现了NTC效应。如果气体分数大,则受热膨胀产生的压力就会更大,如果基体高分子的弹性模量小,受挤压后变形更容易,这样就会产生更强的NTC效应现象。 2.各向异性复合型导电高分子的NTC效应 各向异性CPCs因为其导电填料的取向作用,使复合型导电高分子在沿取向方向的电学、力学等性能得到极大提高,对各向异性CPCs与各向同性CPCs一

碳纳米复合材料

碳纳米管及其复合材料 2007-4-3 14:18:08 【文章字体:大中小]打印收藏关闭 纳米技术是21世纪的前沿科学技术,碳纳米管技术则是该领域中一个强有力的生长点。碳纳米管问世十三年来,日益引起了人们极大的兴趣,其独特的性能正在被认识并加以利用,如何降低成本,大量生产有特定结构的碳纳米管依然是人们的努力方向,含碳纳米管的聚合物复合材料蕴含着巨大的发展潜力。 高聚物/碳纳米管复合材料 碳纳米管于1991年由s.iijima 发现,其直径比碳纤维小数千倍,其性能远优于现今普遍使用的玻璃纤维。其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管基本上可分为单壁型和多壁型两类。虽然他们乍看起来非常相似,但其制作方法和性能不尽相同。纳米管的结构决定它们是具有金属性还是具有半导体性质。大约三分之二的单壁纳米管属于半导体型,三分之一属金属型。至于多壁纳米管,由于各层壳的性能的叠加,难以做出明显区别,但大体上是金属型。单壁型碳纳米管外径一般为1到2nm多壁型纳米管直 径则在8到12nm之间,它的典型长度一般为10微米,最长可达100微米, 长径比至少可达1000: 1。 美国国内纳米管的生产商有Hyperion Catalysis (产品是多壁纤维纳米管)和新登陆的Zyvex Corp (产品有单壁和多壁纳米管)。这两家厂商提供的母料中都含有15%到20%的纳米管。 碳纳米管的力学性能相当突出。现已测出多壁纳米管的平均弹性模量为 1.8TPa。碳纳米管的拉伸强度实验值约为200GPa是钢的100倍,碳纤维的20倍。碳纳米管弯曲强度为14.2GPa,尽管碳纳米管的拉伸强度如此之高,但它们的脆性不象碳纤维那样高。碳纤维在约1^变形时就会断裂,而碳纳米管要到约18%变形时才会断裂。碳纳米管的层间剪切强度高达500MPa比传 统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管用作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加 入的碳黑相比,碳纳米管有高的长径比,因此,其体积含量可比球状碳黑减少很多。多壁碳纳米管的平均长径比约为1000;同时,由于纳米管的本身长度极短而且柔曲性好,它们填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林trinity 学院进行的研究表明,在塑料中含2%-3%勺多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。

导电高分子材料的简介

导电高分子材料的简介、应用和发展前景 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键词:导电高分子制备方法导电机理性能应用发展趋势 1.简介 高分子材料在很长一段时期都被用作电绝缘材料.随着不同应用领域的需要以及为进一步拓宽高分子材料的应用范围,一些高分子材料被赋予某种程度的导电性以致成为导电高分子材料。导电高分子又称导电聚合物,自从1976年,美国宾夕法尼亚大学的化学家Mac Diarmid领导的研究小组首次发现掺杂后的聚乙炔(Poly acetylene,简称PA)具有类似金属的导电性(导电高分子的导电性如图);1977年,日本白川英树等人才发现用五氟化砷或碘掺杂的聚乙炔薄膜具有金属导电的性质,电导率达到10S/m。这是第一个导电的高分子材料。人们对共轭聚合物的结构和认识不断深入。以后,相继开发出了聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺、聚噻吩等能导电的高分子材料。这个新领域的出现不仅打破了高分子仅为绝缘体的传统观念,而且它的发现和发展为低维固体电子学,乃至分子电子学的建立和完善作出重要的贡献,进而为分子电子学的建立打下基础,而具有重要的科学意义。 现有的研究成果表明,发展导电高分子兼具有机高分子材料的性能及半导体和金属的电性能, 具有密度小,易加工成各种复杂的形状,耐腐蚀,可大面积成膜及可在十多个数量级的范围内进行调节等特点,因此高分子导电材料不仅可作为多种金属材料和无机导电材料的代用品,而且已成为许多先进工业部门和尖端技术领域不可缺少的一类材料。 1.1导电高分子材料的分类 按结构和制备方法不同将导电高分子材料分为复合型与结构型两大类。复合型导电材料是由高分子和导电剂(导电填料)通过不同的复合工艺而构成的材料。结构型结构型导电高分子又称本征型导电高分子(Intrinsically conducting polymer,简称ICP),是指高分子材料本身或经过少量掺杂处理而具有导电性能的材料,其电导率可达半导体甚至金属导体的范围。 1.2 高分子导电材料的制备方法 复合型导电高分子所采用的复合方法主要有两种:一种是将亲水性聚合物或结构型导电高分子进行混合,另一种则是将各种导电填料填充到基体高分子中。结构型导电聚合物一般用电子高度离域的共轭聚合物经过适当电子给体或受体进行掺杂后制得。 1.3 导电机理

导电高分子复合材料的导电网络构筑与性能

导电高分子复合材料的导电网络构筑与性能 【论文学科】高分子材料论文 【论文级别】硕士论文,硕士毕业论文,硕士研究生论文 【中文关键词】导电网络论文; 界面张力论文; 自组装论文; 双渗流论文; 桥接作用论文; 渗流阈值论文; 阻温特性论文 【中文题名】导电高分子复合材料的导电网络构筑与性能 【英文题名】Design of the Conductive Network in Conductive Polymer Composites and Its Effect on Electrical Properties 【所属分类】工程科技I,材料科学,复合材料 【英文关键词】Electrical conductive network; Interfacial tension; Self-assemble; Double percolation; Bridging effect; Percolation threshold; Resistivity-temperature character 【中文摘要】降低材料的导电填料含量、提高导电性同时改善材料的电性能稳定性是目前高分子基导电复合材料研究的重要方向。对导电复合材料来说,体系的电性能最终是由其所形成的导电网络所控制。因此,设计有效的导电网络是改善材料电性能的根本途径之一。本文以导电网络的设计与构筑为中心,研究了导电复合材料中导电网络的形成及其对材料电性能的影响。本文首先通过界面张力的选择设计,将热力学诱导的聚合物相自组装和填料选择性分布两者相结合,籍此来构筑填料选择性分布在聚合物相界面的 导电网络。发现在CB或MCNT填充PMMA/EAA/PP体系中,由界面张力所控制,能够实现以PMMA、PP为双连续相,聚合物EAA相分布于PMMA╱PP相界面的“三明治”状三连续相结构。同时,导电填料优先分布在EAA 相中。两者相结合,体系可以形成CB或MCNT选择性分布于PMMA/PP相界面的自组装导电网络。这种特殊的导电网络结构的形成,降低了体系的渗流(来源:ABC论文9c网https://www.wendangku.net/doc/5b9579785.html,)阈值,提高了室温电导率。其次,本文以两种不同形态的导电填料同时填充双组分聚合物体系,考察了导电网络的形成及其对材料室温电阻率和阻温特性的影响。结果表明,由于双渗流导电网络的存在及聚合物导电相区——碳纤维的相互桥接作用,体系的体积电导率得到了提高,NTC效应被抑制,电阻热循环稳定性也更好。(来 源:ABCb636论文网https://www.wendangku.net/doc/5b9579785.html,) 【英文摘要】 One of the major research challenges in the development of conducting polymer composite materials is reducing the filler content as much as possible while improving the electrical conductivity and the stability of electrical properties. In this field, the design of the electrical conductive network plays a key role. This dissertation focuses on the design of the electrical conductive network and studying on its influence of the electrical properties of composite.First, a new approach for the selective localization of filler at the interface of polymers phase was reported. This approach relies upon two aspects: the thermodynamically induced phase self-assembly in ternary polymer blends and the thermodynamically induced selective localization of filler in polymer phase. In CB or MCNT filled PMMA/EAA /PP composites, PP and PMMA form two continuous networks, while EAA incorporated with filler forms a continuous sheath structure at the interface of PP/PMMA. Thus, the conductive filler selectively locates

相关文档
相关文档 最新文档