文档库 最新最全的文档下载
当前位置:文档库 › 山西天星煤气化有限公司120万吨年选煤厂重介工艺参数测控系统(精)

山西天星煤气化有限公司120万吨年选煤厂重介工艺参数测控系统(精)

山西天星煤气化有限公司120万吨年选煤厂重介工艺参数测控系统(精)
山西天星煤气化有限公司120万吨年选煤厂重介工艺参数测控系统(精)

山西天星煤气化有限公司

120万吨/年选煤厂

重介工艺参数测控系统

唐山瑞安普科技有限公司

2011年4月

一.概述

天星煤气化选煤厂主选设备选用三产品重介旋流器进行分选,最终的产品为精煤、中煤和矸石三种产品。在重介选煤系统中,影响设备分选效果的因素是多方面的,主要包括悬浮液密度、悬浮液煤泥含量、旋流器入口压力及介质桶液位等,且由于各因素之间互相影响相互制约,加之入选原煤煤质变化的影响,很难单凭选煤司机手动调节使系统稳定运行。为了提高分选精度,减少人为因素对分选效果的影响,充分发挥重介选煤的优势,能够最大限度的稳定生产高质量的精煤产品,必须对生产过程中的各种主要工艺参数进行实时监测和自动控制。二.控制原理

1. 根据三产品重介质旋流器选煤过程的工艺特点,为了保证选煤

过程的正常生产条件,并且有效地提高分选效率和稳定产品质量,需要对原煤分选过程中悬浮液的密度、旋流器入口压力、煤泥含量、合格介质桶液位等工艺参数进行在线监测和自动控制。

2. 系统主要功能及技术指标:

⑴重介质悬浮液密度的在线检测及自动化控制,在正常生产时,当重介质悬浮液的密度大于生产所设定的悬浮液的密度时,加水阀门打开,加入循环水,使重介质悬浮液的密度减小;当重介质悬浮液的密度小于生产所设定的悬浮液的密度时,加水阀门减小开度,减少加入的循环水,使重介质悬浮液的密度增加。悬浮液

的密度控制精度小于±0.01Kg/L。

⑵旋流器入口压力的检测。

⑶合格介质桶液位的在线检测和上、下限报警。

⑷精煤磁尾桶、中矸磁尾桶、循环水池等液位的在线检测和就地显示。

⑸合格介质悬浮液磁性物含量的在线检测及煤泥含量的控制。⑹系统具有仪表系统(现场级)及工控机+PLC系统双重显示、控制功能以及系统间切换、A/M切换和现场就地操作功能。

3. 主要监测回路的基本原理

3.1悬浮液密度控制

在重介选煤过程中,重介质悬浮液密度是重介质选煤的一个重要的工艺参数,悬浮液密度的稳定与否直接影响着产品的质量和经济效益。在合格介质泵和旋流器之间上升管道安装RYC-3000型差压式密度计以监测合格介质的密度。通过安装于合格介质桶上的加水阀门自动调节合格悬浮液的补水量以保证悬浮液密度的稳定。

3.2旋流器入口压力的检测、显示和控制

在以旋流器为主洗设备的重介质选煤过程中,旋流器入口压力的变化对分选效果也起着很重要的作用。旋流器入口压力的检测是通过安装于旋流器入口处的压力变送器进行的,本系统选用带就地显示功能的压力变送器,能够方便的在现场实时观测旋流器入口的压力值,同时检测信号送至密控室,以提供生产人员随

时了解该值的变化,并可以通过修改合格介质泵变频器的工作频率控制旋流器入口的压力。

3.3悬浮液煤泥含量的计算和控制

合格分选悬浮液的成分为水、煤泥和磁铁粉,按照一定的比例混合成密度稳定的分选悬浮液。由于煤泥的比重较低,磁铁粉的比重较高,在重介选煤过程中,如果煤泥的含量过高时,分选悬浮液中煤泥的体积浓度就大,分选悬浮液的粘度就大,这时再混入大量的原煤就势必造成原煤在旋流器中分选不充分,结果就是精煤中混有中煤和矸石,中煤中混有精煤,影响精煤的质量和回收率,同时,煤泥含量过高还会给产品脱介带来困难,污染精煤产品,增大介耗;煤泥含量过低则会加速悬浮液沉淀速度,造成悬浮液的密度无法稳定,同样会影响系统的分选效果。因此,检测和控制悬浮液中煤泥含量的大小也是很重要的。目前,尚无直接检测悬浮液煤泥含量的仪器仪表,合格介质悬浮液中煤泥含量是借助于密度计和磁性物含量计分别测出悬浮液的密度和磁性物含量,由PLC或上位机计算得到。对煤泥含量的调控是通过调节精煤弧形筛下分流箱的分流量来实现的,当煤泥量过大时,通过加大分流箱的分流量,加大去往磁选机的流量,使更多的煤泥随磁选机尾矿排出,从而降低重介分选系统中悬浮液的煤泥含量。

3.4合格介质桶液位的检测和显示

合格介质桶的液位是保证正常生产的必要条件,随着生产不

断的进行,产品中必然会带走部分水分和介质,导致系统中水和介质的总量不断减少,合格介质桶液位不断下降,在控制系统中设计了对合格介质桶液位的实时检测和超限报警,以供选煤操作工随时掌握合格介质桶液位的变化情况,当液位降至报警下限时,报警功能可提醒选煤操作工向系统中补充介质和水,同时减小分流,是合格介质桶的液位上升,以维持生产正常进行。

4. 控制系统的硬件配置

密度控制系统硬件主要由现场检测显示仪表、执行机构和控制系统等组成,其中现场检测显示仪表包括RYC-3000型差压式密度计、液位计、MN1型磁性物含量检测仪、压力变送器等,执行机构包括GX-1000型电动加水阀门、FLX型线性分流箱控制装置和加介控制等,控制系统包括PLC、工业控制计算机和相关仪表、模块等组成。PLC选用西门子公司的S7-300系列,工业控制计算机选用台湾研华系列产品。在条件允许的情况下,为了降低整套系统的造价也可以与集中控制系统共用PLC和工业控制计算机系统。

5. 控制系统的软件环境和基本功能

⑴软件环境

PLC软件开发平台选用与PLC配套的STEP-7,工艺控制计算机运行平台选用WIN-CC或组态王等,利用VB或VC语言编制功能构件及用户程序。

⑵基本功能

根据重介质选煤过程自动化测控系统的特点和生产需要,该计算机系统包括以下主要功能:

● 生产工艺流程图和生产过程中主要工艺参数的实时显示。● 工艺参数的列表显示。列表实时显示重介质选煤过程中工

艺参数的测量值、设定值。

● 工艺参数历史记录。该系统程序运行后,对工艺参数每间

隔一定时间,进行记录,操作人员可以根据需要,任意设置记录时间间隔。通过菜单选择,操作人员可以查阅任意时间生产工艺参数历史数据。

● 工艺参数的趋势曲线。工艺参数趋势曲线可以显示当日工

艺参数变化的趋势曲线,也可以查阅过去某日工艺参数变化的历史记录,用于协助相关人员分析洗选效果、确定工艺参数的最佳设定值。

● 测控系统参数修改。通过计算机键盘和鼠标可以设置或修

改各控制回路的控制参数,以不断改进控制效果。

50万吨年煤气化生产工艺

咸阳职业技术学院生化工程系毕业论文(设计) 50wt/年煤气化工艺设计 1.引言 煤是由古代植物转变而来的大分子有机化合物。我国煤炭储量丰富,分布面广,品种齐全。据中国第二次煤田预测资料,埋深在1000m以浅的煤炭总资源量为2.6万亿t。其中大别山—秦岭—昆仑山一线以北地区资源量约2.45万亿t,占全国总资源量的94%;其余的广大地区仅占6%左右。其中新疆、内蒙古、山西和陕西等四省区占全国资源总量的81.3%,东北三省占 1.6%,华东七省占2.8%,江南九省占1.6%。 煤气化是煤炭的一个热化学加工过程,它是以煤或煤焦原料,以氧气(空气或富氧)、水蒸气或氢气等作气化剂,在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为可燃性的气体的过程。气化时所得的可燃性气体称为煤气,所用的设备称为煤气发生炉。 煤气化技术开发较早,在20世纪20年代,世界上就有了常压固定层煤气发生炉。20世纪30年代至50年代,用于煤气化的加压固定床鲁奇炉、常压温克勒沸腾炉和常压气流床K-T炉先后实现了工业化,这批煤气化炉型一般称为第一代煤气化技术。第二代煤气化技术开发始于20世纪60年代,由于当时国际上石油和天然气资源开采及利用于制取合成气技术进步很快,大大降低了制造合成

气的投资和生产成本,导致世界上制取合成气的原料转向了天然气和石油为主,使煤气化新技术开发的进程受阻,20世纪70年代全球出现石油危机后,又促进了煤气化新技术开发工作的进程,到20世纪80年代,开发的煤气化新技术,有的实现了工业化,有的完成了示范厂的试验,具有代表性的炉型有德士古加压水煤浆气化炉、熔渣鲁奇炉、高温温克勒炉(ETIW)及干粉煤加压气化炉等。 近年来国外煤气化技术的开发和发展,有倾向于以煤粉和水煤浆为原料、以高温高压操作的气流床和流化床炉型为主的趋势。 2.煤气化过程 2.1煤气化的定义 煤与氧气或(富氧空气)发生不完全燃烧反应,生成一氧化碳和氢气的过程称为煤气化。煤气化按气化剂可分为水蒸气气化、空气(富氧空气)气化、空气—水蒸气气化和氢气气化;按操作压力分为:常压气化和加压气化。由于加压气化具有生产强度高,对燃气输配和后续化学加工具有明显的经济性等优点。所以近代气化技术十分注重加压气化技术的开发。目前,将气化压力在P>2MPa 情况下的气化,统称为加压气化技术;按残渣排出形式可分为固态排渣和液态排渣。气化残渣以固体形态排出气化炉外的称固态排渣。气化残渣以液态方式排出经急冷后变成熔渣排出气化炉外的称液态排渣;按加热方式、原料粒度、汽化程度等还有多种分类方法。常用的是按气化炉内煤料与气化剂的接触方式区分,主要有固定床气化、流化床气化、气流床气化和熔浴床床气化。 2.2 主要反应 煤的气化包括煤的热解和煤的气化反应两部分。煤在加热时会发生一系列的物理变化和化学变化。气化炉中的气化反应,是一个十分复杂的体系,这里所讨论的气化反应主要是指煤中的碳与气化剂中的氧气、水蒸汽和氢气的反应,也包括碳与反应产物之间进行的反应。 习惯上将气化反应分为三种类型:碳—氧之间的反应、水蒸汽分解反应和甲烷生产反应。 2.2.1碳—氧间的反应 碳与氧之间的反应有: C+O2=CO2(1)

煤气化工艺流程

煤气化工艺流程 1、主要产品生产工艺煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之有效的方法之一,同时也方便群众生活,节约时间,提高整个城市的社会效率和经济效益。作为一项环保工程,(其一期工程)每年还可减少向大气排放烟尘万吨、二氧化硫万吨、一氧化碳万吨,对改善河南西部地区城市大气质量将起到重要作用。 甲醇是一种重要的基本有机化工原料,除用作溶剂外,还可用于制造甲醛、醋酸、氯甲烷、甲胺、硫酸二甲酯、对苯二甲酸二甲酯、丙烯酸甲酯等一系列有机化工产品,此外,还可掺入汽油或代替汽油作为动力燃料,或进一步合成汽油,在燃料方面的应用,甲醇是一种易燃液体,燃烧性能良好,抗爆性能好,被称为新一代燃料。甲醇掺烧汽油,在国外一般向汽油中掺混甲醇5?15勉高汽油的辛烷值,避免了添加四乙基酮对大气的污染。 河南省煤气(集团)有限责任公司义马气化厂围绕义马至洛阳、洛阳至郑州煤气管线及豫西地区工业及居民用气需求输出清洁能源,对循环经济建设,把煤化工打造成河南省支柱产业起到重要作用。 2、工艺总流程简介: 原煤经破碎、筛分后,将其中5?50mm级块煤送入鲁奇加压气化炉,在炉内与氧气和水蒸气反应生成粗煤气,粗煤气经冷却后,进入低温甲醇洗净化装置,除去煤气中的CO2和H2S净化后的煤气分为两大部分,一部分去甲醇合成系统,合成气再经压缩机加压至,进入甲醇反应器生成粗甲醇,粗甲醇再送入甲醇精馏系统,制得精甲醇产品存入贮罐;另一部分去净煤气变换装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25 C后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分

煤气化工艺的优缺点及比较

13种煤气化工艺的优缺点及比较 我国是一个缺油、少气、煤炭资源相对而言比较丰富的国家,如何利用我国煤炭资源相对比较丰富的优势发展煤化工已成为大家关心的问题。近年来,我国掀起了煤制甲醇热、煤制油热、煤制烯烃热、煤制二甲醚热、煤制天然气热。有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。现就适合于大型煤化工的比较成熟的几种煤加压气化技术作评述,供大家参考。 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm 粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常

煤气化工艺流程

精心整理 煤气化工艺流程 1、主要产品生产工艺 煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之 化碳 15%提 作用。 2 。净化 装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25℃后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分装置提供气化用氧气和全厂公用氮气。仪表空压站为全厂仪表提供合格的仪表空气。 小于5mm粉煤,作为锅炉燃料,送至锅炉装置生产蒸汽,产出的蒸汽一部分供工艺装置用汽

,一部分供发电站发电。 3、主要装置工艺流程 3.1备煤装置工艺流程简述 备煤工艺流程分为三个系统: (1)原煤破碎筛分贮存系统,汽运原煤至受煤坑经1#、2#、3#皮带转载至筛分楼、经节肢筛、破碎机、驰张筛加工后,6~50mm块煤由7#皮带运至块煤仓,小于6mm末煤经6#、11#皮带近至末煤仓。 缓 可 能周期性地加至气化炉中。 当煤锁法兰温度超过350℃时,气化炉将联锁停车,这种情况仅发生在供煤短缺时。在供煤短缺时,气化炉应在煤锁法兰温度到停车温度之前手动停车。 气化炉:鲁奇加压气化炉可归入移动床气化炉,并配有旋转炉篦排灰装置。气化炉为双层压力容器,内表层为水夹套,外表面为承压壁,在正常情况下,外表面设计压力为3600KPa(g),内夹套与气化炉之间压差只有50KPa(g)。 在正常操作下,中压锅炉给水冷却气化炉壁,并产生中压饱和蒸汽经夹套蒸汽气液分离器1

煤气化工艺资料

煤化工是以煤为原料,经过化学加工使煤转化为气体,液体,固体燃料以及化学品的过程,生产出各种化工产品的工业。 煤化工包括煤的一次化学加工、二次化学加工和深度化学加工。煤的气化、液化、焦化,煤的合成气化工、焦油化工和电石乙炔化工等,都属于煤化工的范围。而煤的气化、液化、焦化(干馏)又是煤化工中非常重要的三种加工方式。 煤的气化、液化和焦化概要流程图 一.煤炭气化

煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。 煤的气化的一般流程图 煤炭气化包含一系列物理、化学变化。而化学变化是煤炭气化的主要方式,主要的化学反应有: 1、水蒸气转化反应C+H2O=CO+H2 2、水煤气变换反应CO+ H2O =CO2+H2 3、部分氧化反应C+0.5 O2=CO 4、完全氧化(燃烧)反应C+O2=CO2 5、甲烷化反应CO+2H2=CH4 6、Boudouard反应C+CO2=2CO 其中1、6为放热反应,2、3、4、5为吸热反应。 煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。 煤炭气化按气化炉内煤料与气化剂的接触方式区分,主要有: 1) 固定床气化:在气化过程中,煤由气化炉顶部加入,气化剂由气化炉底部加入,煤料与气化剂逆流接触,相对于气体的上升速度而言,煤料下降速度很慢,甚至可视为固定不动,因此称之为固定床气化;而实际上,煤料在气化过程中是以很慢的速度向下移动的,比

较准确的称其为移动床气化。 2) 流化床气化:它是以粒度为0-10mm的小颗粒煤为气化原料,在气化炉内使其悬浮分散在垂直上升的气流中,煤粒在沸腾状态进行气化反应,从而使得煤料层内温度均一,易于控制,提高气化效率。 3) 气流床气化。它是一种并流气化,用气化剂将粒度为100um以下的煤粉带入气化炉内,也可将煤粉先制成水煤浆,然后用泵打入气化炉内。煤料在高于其灰熔点的温度下与气化剂发生燃烧反应和气化反应,灰渣以液态形式排出气化炉。 4) 熔浴床气化。它是将粉煤和气化剂以切线方向高速喷入一温度较高且高度稳定的熔池内,把一部分动能传给熔渣,使池内熔融物做螺旋状的旋转运动并气化。目前此气化工艺已不再发展。 以上均为地面气化,还有地下气化工艺。 根据采用的气化剂和煤气成分的不同,可以把煤气分为四类:1.以空气作为气化剂的空气煤气;2.以空气及蒸汽作为气化剂的混合煤气,也被称为发生炉煤气;3.以水蒸气和氧气作为气化剂的水煤气;4.以蒸汽及空气作为气化剂的半水煤气,也可是空气煤气和水煤气的混合气。 几种重要的煤气化技术及其技术性能比较 1.Lurgi炉固定床加压气化法对煤质要求较高,只能用弱粘结块煤,冷煤气效率最高,气化强度高,粗煤气中甲烷含量较高,但净化系统复杂,焦油、污水等处理困难。 鲁奇煤气化工艺流程图

煤气化技术及其工业应用

煤气化技术及其工业应用 摘要:我国是一个以煤炭为主要能源的国家,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。本文介绍了我国的煤化工行业的发展现状以及煤气化技术的工业应用。 关键词:煤化工,煤气化技术,工业应用 我国是一个以煤炭为主要能源的国家。近几十年来,煤炭在我国的一次能源消费中始终占据主要地位,以煤为主的能源格局在相当长的时间内难以改变。中国传统的煤炭燃烧技术存在综合利用效率低,能耗高、煤炭生产效率低、成本高、环境污染严重等问题,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。 以煤气化为基础的能源及化工系统,不仅能较好的提高煤转化效率和降低污染排放,而且能生产液体燃料和氢气等能源产品,有效缓解交通能源紧张。煤气化技术正在成为世界范围内高效、清洁、经济地开发和利用煤炭的热点技术和重要发展方向。煤炭的气化和液化技术、煤气化联合循环发电技术等都已得到工业应用。 煤气化技术包括:备煤技术、气化炉技术、气化后工艺技术三部分,其核心是气化炉。按照煤在气化炉内的运动方式,气化方法可划分为三类,即固定床气化法、流化床气化法和气流床气化法,必须根据煤的性质和对气体产物的要求选用合适的煤气化方法。 1煤气化工艺概述 煤炭气化是煤洁净利用的关键技术之一,它可以有效的提高碳转化率、冷煤气效率,降低气化过程的氧耗及煤耗。煤气化工艺是以煤或煤焦为原料,氧气(空气、富氧、纯氧)、水蒸气或氢气等作气化剂(或称气化介质),在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为煤气的热化学加工过程。 目前世界正在应用和开发的煤气化技术有数十种之多,气化炉也是多种多样,最有发展前途的有10余种。所有煤气化技术都有一个共同的特征,即气化炉内煤炭在高温下与气化剂反应,使固体煤炭转化为气体燃料,剩下的含灰残渣排出炉外。气化剂为水蒸气、纯氧、空气、CO2和H2。煤气化的全过程热平衡说明总的气化反应是吸热的,因此必须给气化炉供给足够的热量,才能保持煤气化过程的连续进行。 煤气化根据供热原理大致可分为3种: (1)热分解(约500-1000℃):加热使煤放出挥发分,再由挥发分得到焦油和燃气(CO、CO2、H2、CH4),必须由外部供热,残留的固态炭(粉焦和焦炭等)作它用; (2)部分燃烧气化(约900-1600℃):煤在氧气中部分燃烧产生高温,并加入气化剂(H2O、CO2等),产生可燃气(CO、CO2、H2)和灰分;

煤化工工艺流程

煤化工工艺流程 典型的焦化厂一般有备煤车间、炼焦车间、回收车间、焦油加工车间、苯加工车间、脱硫车间和废水处理车间等。 焦化厂生产工艺流程 1.备煤与洗煤 原煤一般含有较高的灰分和硫分,洗选加工的目的是降低煤的灰分,使混杂在煤中的矸石、煤矸共生的夹矸煤与煤炭按照其相对密度、外形及物理性状方面的差异加以分离,同时,降低原煤中的无机硫含量,以满足不同用户对煤炭质量的指标要求。 由于洗煤厂动力设备繁多,控制过程复杂,用分散型控制系统DCS改造传统洗煤工艺,这对于提高洗煤过程的自动化,减轻工人的劳动强度,提高产品产量和质量以及安全生产都具有重要意义。

洗煤厂工艺流程图 控制方案 洗煤厂电机顺序启动/停止控制流程框图 联锁/解锁方案:在运行解锁状态下,允许对每台设备进行单独启动或停止;当设置为联锁状态时,按下启动按纽,设备顺序启动,后一设备的启动以前一设备的启动为条件(设备间的延时启动时间可设置),如果前一设备未启动成功,后一设备不能启动,按停止键,则设备顺序停止,在运行过程中,如果其中一台设备故障停止,例如设备2停止,则系统会把设备3和设备4停止,但设备1保持运行。

2.焦炉与冷鼓 以100万吨/年-144孔-双炉-4集气管-1个大回流炼焦装置为例,其工艺流程简介如下:

100万吨/年焦炉_冷鼓工艺流程图 控制方案 典型的炼焦过程可分为焦炉和冷鼓两个工段。这两个工段既有分工又相互联系,两者在地理位置上也距离较远,为了避免仪表的长距离走线,设置一个冷鼓远程站及给水远程站,以使仪表线能现场就近进入DCS控制柜,更重要的是,在集气管压力调节中,两个站之间有着重要的联锁及其排队关系,这样的网络结构形式便于可以实现复杂的控制算法。

各种煤气化工艺的优缺点

各种煤气化工艺的优缺点 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001 年单炉配套20kt/a 合成氨工业性示范装置成功运 行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉, 床层温度达1100C左右,中心局部高温区达到1200-1300C,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200C,所以可以气化褐煤、低化 学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常压,单炉气化能力较低,产品中CH4含量较高(1%-2%,环境污染及飞灰综合利用问题有待进 一步解决。此技术适用于中小氮肥厂利用就地或就近的煤炭资源改变原料路线。 5、恩德粉煤气化技术 恩德炉实际上属于改进后的温克勒沸腾层煤气化炉,适用于气化褐煤和长焰煤,要求

煤气化工艺流程

煤气化工艺流程 1、主要产品生产工艺 煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之有效的方法之一,同时也方便群众生活,节约时间,提高整个城市的社会效率和经济效益。作为一项环保工程,(其一期工程)每年还可减少向大气排放烟尘1.86万吨、二氧化硫3.05万吨、一氧化碳0.46万吨,对改善河南西部地区城市大气质量将起到重要作用。 甲醇是一种重要的基本有机化工原料,除用作溶剂外,还可用于制造甲醛、醋酸、氯甲烷、甲胺、硫酸二甲酯、对苯二甲酸二甲酯、丙烯酸甲酯等一系列有机化工产品,此外,还可掺入汽油或代替汽油作为动力燃料,或进一步合成汽油,在燃料方面的应用,甲醇是一种易燃液体,燃烧性能良好,抗爆性能好,被称为新一代燃料。甲醇掺烧汽油,在国外一般向汽油中掺混甲醇5~15%提高汽油的辛烷值,避免了添加四乙基酮对大气的污染。 河南省煤气(集团)有限责任公司义马气化厂围绕义马至洛阳、洛阳至郑州煤气管线及豫西地区工业及居民用气需求输出清洁能源,对循环经济建设,把煤化工打造成河南省支柱产业起到重要作用。 2、工艺总流程简介: 原煤经破碎、筛分后,将其中5~50mm级块煤送入鲁奇加压气化炉,在炉内与氧气和水蒸气反应生成粗煤气,粗煤气经冷却后,进入低温甲醇洗净化装置

,除去煤气中的CO2和H2S。净化后的煤气分为两大部分,一部分去甲醇合成系统,合成气再经压缩机加压至5.3MPa,进入甲醇反应器生成粗甲醇,粗甲醇再送入甲醇精馏系统,制得精甲醇产品存入贮罐;另一部分去净煤气变换装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25℃后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分装置提供气化用氧气和全厂公用氮气。仪表空压站为全厂仪表提供合格的仪表空气。 小于5mm粉煤,作为锅炉燃料,送至锅炉装置生产蒸汽,产出的蒸汽一部分供工艺装置用汽,一部分供发电站发电。 3、主要装置工艺流程 3.1备煤装置工艺流程简述 备煤工艺流程分为三个系统: (1)原煤破碎筛分贮存系统,汽运原煤至受煤坑经1#、2#、3#皮带转载至筛分楼、经节肢筛、破碎机、驰张筛加工后,6~50mm块煤由7#皮带运至块煤仓,小于6mm末煤经6#、11#皮带近至末煤仓。 (2)最终筛分系统:块煤仓内块煤经8#、9#皮带运至最终筛分楼驰张筛进行检查性筛分。大于6mm块煤经10#皮带送至200#煤斗,筛下小于6mm末煤经14#皮带送至缓冲仓。 (3)电厂上煤系统:末煤仓内末煤经12#、13#皮带转至5#点后经16#皮

几种常用煤气化技术的优缺点

几种煤气化技术介绍 煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。 一 Texaco水煤浆加压气化技术 德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。 Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石(助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。 其优点如下: (1)适用于加压下(中、高压)气化,成功的工业化气化压力一般在4.0MPa 和6.5Mpa。在较高气化压力下,可以降低合成气压缩能耗。 (2)气化炉进料稳定,由于气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。便于气化炉的负荷调节,使装置具有较大的操作弹性。 (3)工艺技术成熟可靠,设备国产化率高。同等生产规模,装置投资少。 该技术的缺点是: (1)由于气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。而且,煤种的选择面也受到了限制,不能实现原料采购本地化。 (2)烧嘴的使用寿命短,停车更换烧嘴频繁(一般45~60天更换一次),为稳定后工序生产必须设置备用炉。无形中就增加了建设投资。 (3)一般一年至一年半更换一次炉内耐火砖。 二多喷嘴对置式水煤浆加压气化技术 该技术由华东理工大学洁净煤技术研究所于遵宏教授带领的科研团队,经过20多年的研究,和兖矿集团有限公司合作,成功开发的具有完全自主知识产权、国际首创的多喷嘴对置式水煤浆气化技术,并成功地实现了产业化,拥有近20项发明专利和实用新型专利。目前在山东德州和鲁南均有工业化装置成功运行。

煤气化工艺方案的选择

初探煤气化工艺方案的选择 1 几种煤气化工艺及特点介绍 煤气化是煤化工的龙头技术,是煤洁净利用技术的重要环节,C1化学的基础。煤气化技术是发展煤基化学品、煤基液体燃料、联合循环发电、多联产系统、制氢、燃料电池等过程工业的基础,是这些行业的共性技术、关键技术和龙头技术,对我国经济和保障国家安全具有重要的战略意义。 煤气化过程采用的气化炉炉型,目前主要有以下3种: 固定床﹙UGI、鲁奇﹚; 流化床﹙灰熔聚、UGAS、鲁奇CFB、温克勒、KBR、恩德等﹚; 气流床﹙Texaco、Shell、GSP、PRENFLOW、国产新型水煤浆、二段干煤粉、航天炉等﹚。 1.1固定床制气工艺 1.1.1常压固定床间歇制气工艺 工艺特点是:常压气化,固体加料10-50mm,固体排渣,间歇气化,空气和蒸汽作气化剂,吹风和制气阶段交替进行,适用原料白煤和焦碳,气化温度800~1000℃。代表炉型有美国的U.G.I型和前苏联的U.G.Ⅱ型。工艺过程都比较熟悉,这里从略。 技术优点:历史悠久,技术成熟,设备简单,投资省,生产经验丰富。

技术缺点:技术落后,原料动力消耗高,炭转化率低70~75%,产品成本高,生产强度低,程控阀门多,维修工作量大,废气、废水排放多,污染严重,面临淘汰。 1.1.2常压固定床连续制气 常压固定床连续制气工艺的技术特点:常压气化,固体加料,床体排渣,连续制气,富氧空气﹙氧占50%﹚或氧气加蒸汽做气化剂,无废气排放,适用煤种白煤和焦碳。 技术优点是:连续制气,炉床温度稳定,约为900~1150℃,操作简单,程控阀门少,维修费用低,生产强度大,碳转化率高,约80~84% 。 技术缺点:需要空分装置,投资比较大。 固定床连续制气工艺的技术突破在于以氧气或富氧空气加蒸汽做气化剂,由于气化剂中氧含量的增加,气化反应过程中,燃烧产生的热量与煤的气化和蒸汽分解所需要的热量能够实现平衡,可以得到稳定的反应温度和固定的反应床层,可以实现连续制气,不用专门吹风,无废气排放,生产强度和能源利用率都有了很大的提高。 1.1.3 固定床加压气化工艺:前西德鲁奇公司(Lurgi)开发。 工艺特点:加压气化,固体加料,固体排渣,连续气化,氧气和蒸汽作气化剂,设有加压的煤锁斗和灰储斗,适用煤种:褐煤、次烟煤、活性好的弱粘结煤。 技术优点:加压气化3.1 MPa,生产强度大,碳转化率高约90%。 技术缺点:反应温度略低700~1100 ℃,甲烷含量较高,煤气当中含有焦油和酚类物质,气体净化和废水处理复杂,流程较长,投资比较大。 1.2 流化床工化工艺 流化床气化工艺的总体特点是:以粉煤或小颗粒的碎煤为原料气化,气化剂以一定的速度通过物料层,物料颗粒在气化剂的带动下悬浮起来,形成流化床,由于物料层处于流化状态,煤粉和气化剂之间混合更允分,接触面积更大,煤粉和气化剂迅速地进行气化反应,反应产生的煤气出气化炉后去废热回收和除尘洗涤系统,反应产生的灰渣由炉底排出。气流床反应物料之间的传热和传质速率更快,过程更容易控制,生产能力也有了较大的提高。下面就流化床气化工艺发展过程中的几种工艺的技术特点分别作一下介绍。

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 1 煤制甲醇工艺 气化 a)煤浆制备 由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~ 53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。 闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。 洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环

煤化工中焦化废水的污染

煤化工中焦化废水的污染、控制原理与技术应用 韦朝海 ( 华南理工大学环境科学与工程学院,工业聚集区污染控制与生态修复教育部重点实验室,污染控制与生态修复广东省普通高等学校重点实验室,广州,510006) 摘要煤化工废水成分复杂,毒性大,以焦化废水最具代表性,研究废水中典型污染物的控制原理很有必要.从煤制气、煤制焦、煤制油及煤制甲醇4 个方面介绍了煤化工过程在源与经济方面上的地位与特点,分析了煤化工过程水污染特征与水污染控制的共性问题,对水质结构的描述及其变化过程的理解是水处理工艺选择的科学基础.固相微萃取( SPME)GC-MS 结合的分析手段能够快速、准确地获得废水水质的化学结构 特征及浓度水平的信息,基于元素分析可以获知典型污染物的转化与归趋; 结合废水组成反应、降解与转移的定量考察,可以深入了解废水的生成机制及其处理过程的变化; 根据污染物特征选择有效的化学原理如吸附与催化氧化的结合,根据惰性污染物的存在选择生物电化学催化分解,基于协同降解或共基质降解,培养功能微生物,构建基因工程菌,开发功能微生物的应用技术.上述可归纳为根据不同污染物的性质提出相适应的 去除原理,系统考虑废水的成分特征、化学转化、生物转化以及相互协调优化,追求更高平上实现污染物转化与降解的技术目标.最后,根据煤化工焦化废水处理目前暴露的缺陷,提出了未来需要加强研究的若干关键问题. 关键词煤化工废水,典型污染物,生成机制,控制原理,技术应用. 1 煤化工过程 我国煤贮量占世界总贮量的36%,占我国能源总量的70% 以上,目前我国煤化工行业约国民经济总量的16%.因此,在我国,煤化工是燃料化工的主导.煤化工主要包括煤制气、煤制油、煤制焦以及煤制醇醚和煤制烯烃等新型方向. ( 1) 煤制气: 以煤为原料加工制得的含有可燃组分气体的过程.煤气化得到的是水煤气、半水煤气、空气煤气,这些煤气的发热值较低,故又统称为低热值煤气; 煤干馏法中焦化得到的气体称为焦炉煤气,属于中热值煤气,可供城市作民用燃料; 煤气中的CO 和H2是重要的化工原料,可用于合成氨、合成甲醇等.预计到2015 年,我国将形成每年200 亿立方米的煤制天然气产能,将占天然气消量的10% 左右,煤制合成天然气( SNG) 正在成为我国煤化工的新热点.煤气化废水的来源以剩余氨水为主,同时含有产品加工过程中产生的酚水、粗苯冷却水、低温甲醇废水以及地坪冲洗水等.煤气化废水是含芳香族化合物和杂环化合物的典型废水,含有的主要有机物有苯酚、喹啉、苯类、吡啶、吲哚、萘、苯并[a]芘、二噁英等,相当多污染物表现为POPs 的特征,属于有毒难降解有机物 ( 2) 煤制焦: 指烟煤在隔绝空气的条件下加热到950 ℃—1050 ℃,经过干燥、热解、熔融、粘结、固化、收缩等阶段最终制成焦炭.焦炭主要用于高炉炼铁和用于铜、铅、锌、钛、锑、汞等有色金属的鼓风炉冶炼,起还原剂、发热剂和料柱骨架作用.焦炭属于二次能源,是重要的固体燃料,钢铁工业重要的基础原材料.我国一直是世界焦炭第一生产大国、消费大国和出口大国.由焦化所得煤焦油中制取的萘、蒽等稠环化合物是有机化工的重要原料.当前,世界上从煤焦油中分离出来的化工产品约有200 余种,主要用于制防腐剂、塑料助剂、染料、溶剂、香料及橡胶助剂等.2005 年,我国炼焦生产过程中外排COD 总量约12.5 万吨,占全国工业废水COD 排放总量的2.5%左右; 氨氮排放量约1.9 万吨,占全国工业废水氨氮排放总量的4.6%左右; 外排石油类污染物约2065.5 吨,占全国工业石油类污染物排放总量的8.5%10 期韦朝海: 煤化工中焦化废水的污染、控制原理与技术应用14673 焦化废水的生成机制与处理过程变化 3.1 废水水质特征与分析

几种煤气化炉炉型的比较

气化工艺各有千秋 1.常压固定床间歇式无烟煤(或焦炭)气化技术 目前我国氮肥产业主要采用的煤气化技术之一,其特点是采用常压固定床空气、蒸汽间歇制气,要求原料为准25~75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重,属于将逐步淘汰的工艺。 2.常压固定床无烟煤(或焦炭)富氧连续气化技术 其特点是采用富氧为气化剂、连续气化、原料可采用?准8~10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合用于有无烟煤的地方,对已有常压固定层间歇式气化技术进行改进。 3.鲁奇固定床煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。其产生的煤气中焦油、碳氢化合物含量约1%左右,甲烷含量约10%左右。焦油分离、含酚污水处理复杂,不推荐用以生产合成气。 4.灰熔聚煤气化技术 中国科学院山西煤炭化学研究所技术。其特点是煤种适应性宽,属流化床气化炉,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状灰渣排出。可以气化褐煤、低化学活性的烟煤

和无烟煤、石油焦,投资比较少,生产成本低。缺点是操作压力偏低,对环境污染及飞灰堆存和综合利用问题有待进一步解决。此技术适合于中小型氮肥厂利用就地或就近的煤炭资源改变原料路线。 5.恩德粉煤气化技术 属于改进后的温克勒沸腾床煤气化炉,适用于气化褐煤和长焰煤,要求原料煤不粘结或弱粘结性,灰分<25%~30%,灰熔点高、低温化学活性好。在国内已建和在建的装置共有13套22台气化炉,已投产的有16台。属流化床气化炉,床层中部温度1000~1050℃。目前最大的气化炉产气量为4万m3/h半水煤气。缺点是气化压力为常压,单炉气化能力低,产品气中CH4含量高达1.5%~2.0%,飞灰量大、对环境污染及飞灰堆存和综合利用问题有待解决。此技术适合于就近有褐煤的中小型氮肥厂改变原料路线。 6.GE水煤浆加压气化技术 属气流床加压气化技术,原料煤运输、制浆、泵送入炉系统比干粉煤加压气化简单,安全可靠、投资省。单炉生产能力大,目前国际上最大的气化炉投煤量为2000t/d,国内已投产的气化炉能力最大为1000t/d。设计中的气化炉能力最大为1600t/d。对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能用作气化原料。但要求原料煤含灰量较低、还原性气氛下的灰熔点低于1300℃,灰渣粘温特性好。气化系统不需要外供过热蒸汽及输送气化用原料煤的N2或CO2。气化系统总热效率高达94%~96%,高于Shell干粉煤气化热效率(91%~93%)和GSP干粉煤气化热效率(88%~92%)。气化炉结构简单,为耐火砖衬里,制造方便、造价低。煤气除尘简单,无需价格昂贵的高温高压飞灰过滤器,投资省。国外已建成投产6套装置15台气化炉;国内已建成投

煤化工废水处理现状

我国能源状况典型特点是“富煤、贫油、少气”,煤炭占我国一次能源消费结构比例达到70%左右,远高于全球30%左右的平均水平。短期内,我国将继续以煤炭为主的能源消费结构,丰富的煤炭资源为我国煤化工产业的发展提供了有力的条件。随着煤制油、煤制气、煤制烯烃等一批关键技术取得突破,我国煤化工正向石油替代产品为主的新型煤化工转变。但是目前环保需求和水资源短缺问题日益严峻,工业水处理尤其是煤化工废水如何处理问题日益凸显,零排放要求该如何解决?煤化工项目具有较大的耗水量和废水排放量,且我国煤化工项目主要位于内蒙古、山西、陕西、宁夏等西北水资源匮乏的地区,对水处理的要求较高。根据测算,水处理投资占煤化工总投资的比例一般在3%-8%,如果按照“十二五”规划期间新增产能来计算,2013-2016年新型煤化工总投资规模约7850-8300亿元,其中预计煤制天然气可形成总投资约2400-2700亿元,煤制烯烃可形成总投资约2400-2550亿元,煤制油可形成总投资约1800亿元,煤制乙二醇可形成投资约300亿元。按8300亿元的总投资规模及5%的水处理投资占比测算,预计水处理占煤化工领域的市场份额约为425亿元。那么什么是水处理呢?水处理,简单来说,是通过物理、化学和生物手段,调整水质,使水质达标,以满足生产和生活需要的全过程。从水处理的应用领域来看,主要分为工业水处理和生活用水处理。从水处理的业务环节来看,主要分为给水处理和废污水处理及回用。近年来,随着环境污染情况的日益加重、我国水资源的日益紧缺和国家对于环境保护要求的日益提高,“工业水处理零排放”技术的应用日渐广泛。该技术的主要设计理念是将工业水处理中各个环节进行整合,在水处理的各个环节形成一个闭式循环体系,将生产过程中产生的废污水经过深度处理再次回用,以减少水资源的用量并最大限度的提高水资源的利用效率,达到“节水、减排”的目的。工业零排放技术需要水处理企业能够提供个性化的设计方案,技术要求较高。零排放技术能够从根本上起到“节水、减排”的效果,是工业水处理未来的发展方向。西北能源金三角的污水排放情况如何呢?煤化工废水处理“近零排放”技术及应用现状目前,对化工废水处理“近零排放”尚没有统一定义,可以将化工废水处理。“近零排放”定义为:所有离开厂区的水都是以湿气的形式或是固化在灰或渣中,或者仅有少量的高浓盐水排至厂外自然蒸发设施,不向地面水体排放任何形式的水。经过多年化工行业专家的探索和实践,2013年鄂尔多斯神华煤制油项目、大唐多伦煤制烯烃项目均宣布打通了废水“近零排放”全流程,实现了大型煤化工项目废水“近零排放”。下面统计了我国目前主要煤化工项目废水“近零排放”技术应用情况。可以看出,对煤化工项目产生的废水进行分类收集、分质处理、分级回用已成为目前煤化工项目废水“近零排放”的趋势。“近零排放”存在问题及建议伴随国内外水处理技术及设备研发水平的进步,废水“近零排放”在技术上是可行的。在实践操作层面,由于工艺装置不稳定、实际操作运行经验匮乏等原因,达到废水“近零排放”的目标还存在一定困难,需要从技术、管理、经济及风险层面进一步优化。技术层面煤化工废水水质波动范围大在煤气化过程中,煤质、物料平衡、反应温度、压力等的变化必然导致废水水量和水质变化,并直接影响废水的末端治理和回用。例如,碎煤加压气化废水COD波动范围一般在3倍以上;某煤直接液化项目COD波动范围甚至达10倍以上。可采取的对策建议包括:(1)增加调节池容积在调节池的停留时间不低于48h;(2)对于碎煤加压气化废水,提高酚氨回收装置的回收率及稳定性;(3)建设大容积的废水暂存池,一般不小于10~15d有机废水存储量;(4)污水处理设置多个系列,多系列并联,设计互备系统。气化废水处理难度大碎煤加压气化废水含有大量的油类、酚、氨氮以及萘、蒽、吡啶等难降解有毒有害物质,且B/C<0.3,难以生物降解,是典型的有毒、难降解有机废水。可采取的对策建议包括:(1)重视预处理。在碎煤加压气化废水进入生化段之前,设置强化预处理措施,尽可能去除对生化系统有害的物质,为后段生化创造条件;强化预处理措施,避免废水波动对生化系统的直接影响。(2)采用改进的生化处理工艺。主要包括两种类型,一种是以PACT、LAB为代表的通过投加活性炭或活性焦,利用其吸附作用为微生物的生长提供食物,加速有机物氧化分解能力;另一种是载体流动床生物膜法,通过在活性污泥池中投加特殊载体填料为微生物生长创造适合的环境,从而形成一定厚度的微生物膜层,提高降解效率。(3)碎煤加压气化和水煤浆气化技术相结合。将碎煤加压气化废水作为水煤浆磨煤用水,但要重视制浆过程中的气味问题、Cl-对水煤浆气化设备的腐蚀问题及碎煤加压气化废水膜浓缩技术的可靠性问题。回用过程膜产生有机污染在污水回用过程中,进水都含有一定浓度的有机物,目前有机物的膜污染是废水“近零排放”应用中难以回避的问题。可采取的对策建

煤气化工艺流程简述

煤气化工艺流程简述 1)气化 a)煤浆制备 由煤运系统送来的原料煤**t/h(干基)(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。 出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。 煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。 用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。 煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。

相关文档