文档库 最新最全的文档下载
当前位置:文档库 › 存在流体介质夹层时瑞利波频散曲线的完整求解

存在流体介质夹层时瑞利波频散曲线的完整求解

存在流体介质夹层时瑞利波频散曲线的完整求解
存在流体介质夹层时瑞利波频散曲线的完整求解

(完整版)面波频散特征和地层结构

四、面波频散特征和地层结构 面波沿地表传播波速的频散现象,反映了与其波长相应的深度范围内的地层弹性分布。地层的弹性参数分布越不均匀,面波频散的表现也越复杂。对于横向均匀的分层地层,面波表现出可以区分和识别的频散特征,从而划分出不同的地层弹性分层类型。 面波频散数据的图示方式 面波的频散规律可以表示为频率(F)和相速度(Vc)二维座标图形中的一系列数据点,也可以由频率和相速度换算出该频率的波长(L=Vc/F),将频散数据表示在以半波长(L/2)和相速度(Vc)为座标轴的二维图形中。 下面用同一地层模型正演的频散数据,显示在两种数据座标图形中供比较。 左图是此组面波频散数据在频率(F)/相速度(Vc)座标中的图形。横座标是频率轴,纵座标是相速度轴。各个模态的正演频散数据表示为绿色曲线,由基阶向高阶绿色调逐阶变亮。 这是频散数据最基本的图示方式,可以表现出相速度随频率变化的趋势。 左图是同一组面波频散数据在半波长(L/2)/相速度(Vc)座标中的图形。横座标是相速度轴,纵座标是半波长轴。基阶频散数据表示为其中的兰色点,各个模态的正演频散数据表示为绿色曲线,由基阶向高阶绿色调逐阶变亮。 如果需要显示此组频散数据代表的地层参数,就可以把横座标作为剪切波速 (Vs)轴,纵坐标当作深度(Z)轴,用同样的比例尺作出地层剪切波速断面作对比。由于面波由地表向下的波动影响深度和它的半波长关系密切,利用这种对比显示,往往可以找出地层断面在频散数据中反映出的特征。当然如此对比绝不是意味着半波长就是深度,或者相速度就等于剪切波速。 这种频散数据显示方式,可以由频散数据预先估计地层波速断面的轮廓,并且在反演后和地层参数直观的对比。 此外,如果将频散数据换算成相应的频率和波数(K = F/Vc),还可以在频率波数谱图中,标出各个模态频散数据在能量谱中的座标位置,比较各模态在不同频段的相对能量。 按面波频散特征划分地层结构类型 面波的频散现象反映了地层沿深度弹性波速的差异。在横向稳定的弹性分层地层上,面波的频散包含可以区分的多个模态,表现出各自的特征,反映在以下三个方面: 1.各模态面波的相速度随频率的变化规律。

面波的频散特征和地层分层

四、面波频散特征和地层结构 面波沿地表传播波速的频散现象,反映了与其波长相应的深度范围内的地层 弹性分布。地层的弹性参数分布越不均匀,面波频散的表现也越复杂。对于横 向均匀的分层地层,面波表现出可以区分和识别的频散特征,从而划分出不同的 地层弹性分层类型。 面波频散数据的图示方式 面波的频散规律可以表示为频率(F)和相速度(Vc)二维座标图形中的一系列 数据点,也可以由频率和相速度换算出该频率的波长(L=Vc/F),将频散数据表 示在以半波长(L/2)和相速度(Vc)为座标轴的二维图形中。 下面用同一地层模型正演的频散数据,显示在两种数据座标图形中供比较。 左图是此组面波频散数据在频率(F)/相速度(Vc)座标中的图形。横座标 是频率轴,纵座标是相速度轴。各个模 态的正演频散数据表示为绿色曲线,由 基阶向高阶绿色调逐阶变亮。 这是频散数据最基本的 图示方式,可以表现出相速度随频率变化的趋势。 左图是同一组面波频散数据在半波长(L/2)/相速度(Vc)座标中的图形。 横座标是相速度轴,纵座标是半波长轴。基阶频散数据表示为其中的兰色点, 各个模态的正演频散数据表示为绿色曲线,由基阶向高阶绿色调逐阶变亮。 如果需要显示此组频散数据代表的地层参数,就可以把横座标作为剪切波速 (Vs)轴,纵坐标当作深度(Z)轴,

用同样的比例尺作出地层剪切波速断面作对比。由于面波由地表向下的波动影响深度和它的半波长关系密切,利用这种对比显示,往往可以找出地层断面在频散数据中反映出的特征。当然如此对比绝不是意味着半波长就是深度,或者相速度就等于剪切波速。 这种频散数据显示方式,可以由频散数据预先估计地层波速断面的轮廓,并且在反演后和地层参数直观的对比。 此外,如果将频散数据换算成相应的频率和波数(K = F/Vc),还可以在频率波数谱图中,标出各个模态频散数据在能量谱中的座标位置,比较各模态在不同频段的相对能量。 按面波频散特征划分地层结构类型 面波的频散现象反映了地层沿深度弹性波速的差异。在横向稳定的弹性分层地层上,面波的频散包含可以区分的多个模态,表现出各自的特征,反映在以下三个方面: 1.各模态面波的相速度随频率的变化规律。 2.各模态面波所传播弹性能量的相对比重。 3.各模态面波的振幅沿地表传播的变化规律。 这些特征的具体表现完全取决于当地地层分层的弹性参数。按照频散模态特征的不同,可以划分出三种地层分层结构类型: A.波速由表层向底层逐层增高。 B.底层波速最高,中部含低速层。 C.高波速表层复盖下部低速地层。 在这些类型的地层上激发的面波,具有不同的模态特征,分别用实例说明如下。 A.波速由表层向底层逐层增高 将这种地层上取得的面波地震记录,在频率波数域提取基阶频散数据,经过反演得到地层断面,再由此地层参数正演出多阶频散数据。此外,还采用相邻道作互相关求振幅相位谱的方法,经相位校正,得出主频率区段各相邻道间(相当于不同传播距离)的相速度数据。显示在下面的各个图中:

Matlab绘制频散曲线程序代码(20210119130722)

Matlab绘制频散曲线 程序代码 -CAL-FENGHAI-(2020YEAR-YI function disper %绘制平板频散曲线 %tic

clc;clear; cl=5790;%材料纵波波速(钢板) cs=3200;%材料横波波速(钢板) dfd=*le3; fdO=:dfd/le3:2O)*le3;%频厚积(MHz*mm) d_Q235二6; cps_mi n二2700; cpa_min=100; cp_max=10000; mode=3;%绘制的模式数 precision=le-8; cpa=zeros(length(fdO),mode); cps=zeros(le ng th(fdO),mode); for i=l:length(fdO) fd=fdO(i); [cpl2 n]=ss(cps_min/cp_max/fd/cl,cs,mode); for j=l:n cpl=cpl2(j,l); cp2=cpl2(j,2); cps(i,j)=serfe n(cpl,cp2,fctcl£S'precisi on); end [cpl2 n]=aa(cpa_min,cp_max/fd/cl/cs,mode); for j=l:n cpl=cpl2(j,l); cp2=cpl2(j,2); cpa(ij)=aerfe n(cpbcp2,fd£l‘cs,precisi on); end end h=zeros(mode,2); %相速度 figure(l) for j=l:2 ifj==l cp=cps; color=,b,; else cp=cpa; color二T; end for i=l:mode cpp=cp(:,i); in d=fi nd(cpp==0); if ^isempty(ind) h(i/j)=plot((fdO(ind(end)+l:end))/d_Q235/cpp(ind(end)+l:end),color); else h(i/j)=plot(fdO/d_Q235,cpp/color); end hold on end ifj==2 xlabel('f/(KHz)') ylabel('C_{p}/(km-sA{-l})')

折射波勘探实验报告全解

《浅层折射波勘探》实验报告

《浅层折射波勘探》实验成绩评定表班级姓名学号

一、实验名称:浅层折射波勘探 二、实验目的 加深对地震勘探基本概念的理解,巩固已学的理论知识,了解数字地震仪的使用和仪器工作参数的选择;了解地震勘探人工震源激发,检波器的安置条件;地震折射波法野外资料的采集技术及方法,并进行资料的整理与解释;了解地震勘探野外工作施工的过程以及组织管理工作。 三、实验原理 1、折射波法基本原理 以水平界面的两层介质进行简要的说明,假设地下深度为h ,有一个水平的速度分界面R ,上、下两层的速度分别为V 1和V 2,且V 2>V 1。 如图1所示。从激发点O 至地面某一接收点D 的距离为X ,折射波旅行的路程为OK 、KE 、ED 之和,则它的旅行时t 为: 图1 水平两层介质折射波时距曲线 1 21V ED V KE V OK t ++= 式1 为了简便起见,先作如下证明:从O ,D 两点分别作界面R 的垂线,则OA =DG =h ,再自A 、G 分别作OK ,ED 的垂线,几何上不难证明∠BAK =∠EGF =i ,因

已知2 1 sin V V i = ,所以: 2 1 V V EG EF AK BK == 式2 即 21V AK V BK = 和 2 1V EG V EF = 式3 上式说明,波以速度V 1旅行BK (或EF )路程与以速度V 2旅行AK (或EC )路程所需的时间是相等的。将式3的关系和式1作等效置换,并经变换后可得: 2 121222122cos 2V V V V h V x V i h V x t -+=+= 式4 这就是水平两层介质的折射波时距曲线方程。它表示时距曲线是一条直线,若令x =0,则可得时距曲线的截距时间t 0(时距曲线延长与t 轴相交处的时间值) 2 12122102cos 2V V V V h V i h t -== 式5 式5表示出界面深度h 和截距时间t0之间的关系,当已知V 1和V 2时,可以求出界面的深度h 。 2、折射波分层解释的t 0法 折射波t 0解释法是常用的地震折射波解释方法,它是针相遇时距曲线观测系统采集发展起来的解释方法。 t 0法解释的主要原理与方法如下: t 0法又称为t 0差数时距曲线法,是解释折射波相遇时距曲线最常用的方法之一。当折射界面的曲率半径比其埋深大得很多的情况下,t 0法通常能取得很好的效果,且具有简便快速的优点。 如图2所示,设有折射波相遇的时距曲线S 1和S 2,两者的激发点分别是O 1 和O 2,

Matlab绘制频散曲线程序代码

function disper %绘制平板频散曲线 %tic clc;clear; cl=5790;%材料纵波波速(钢板) cs=3200;%材料横波波速(钢板) dfd=0.01*1e3; fd0=(0.01:dfd/1e3:20)*1e3;%频厚积(MHz*mm)d_Q235=6; cps_min=2700; cpa_min=100; cp_max=10000; mode=3;%绘制的模式数 precision=1e-8; cpa=zeros(length(fd0),mode); cps=zeros(length(fd0),mode); for i=1:length(fd0) fd=fd0(i); [cp12 n]=ss(cps_min,cp_max,fd,cl,cs,mode); for j=1:n cp1=cp12(j,1); cp2=cp12(j,2); cps(i,j)=serfen(cp1,cp2,fd,cl,cs,precision); end [cp12 n]=aa(cpa_min,cp_max,fd,cl,cs,mode); for j=1:n cp1=cp12(j,1); cp2=cp12(j,2); cpa(i,j)=aerfen(cp1,cp2,fd,cl,cs,precision); end end h=zeros(mode,2); %相速度 figure(1) for j=1:2 if j==1 cp=cps; color='b'; else cp=cpa; color='r'; end for i=1:mode cpp=cp(:,i); ind=find(cpp==0);

面波勘探技术分析

面波勘探技术分析 近年来,由于地震的频繁发生,对浅层地球物理勘探技术有了更高的要求,面波勘探技术就是在此情况下应运而生的新的勘探技术,其以简便、快速、高分辨率等特点而在许多领域得以应用,并取得了很好的效果。本文对面波勘探技术进行了具体的介绍,同时分析了面波勘探技术在野外方法,以及面波勘探技术在工程及应用过程中存在的问题进行了具体的阐述。 标签:面波;勘探;瞬态法 1 概述 随着近几年对浅层地震研究的深入,面波勘探随之发展起来,成为国内外在勘探浅层地震中普遍采取的一种方法。在面波中有瑞利波(R波)和拉夫波(L 波)之分,在进行面波勘探时通常称为R波,因其在同组波组中具有较强的能量、同时振幅也高于其他波,频率也处于最低点,在测量时很容易识别。 同时面波勘探技术对于面波还有另外一种分法,稳态法、瞬态法和无源法,这种分类法主要是根据产生面波的震源不同进行分类的,但其在测试时的原理是一样的。 2 面波勘探技术 面波是一种特殊的地震波,它与地震勘探中常用的纵波(P波)和横波(S 波)不同,它是一种地滚波。在各向均匀半无限空间弹性介质表面上,当一个圆形基础上下运动时,由它产生的弹性波入射能量的分配率已由Miller(1955年)出来,即P波占7%、S波占26%、R波占67%,亦就是说,R波的能量占全部激振能量的2/3,因此利用R波作为勘探方法,其信噪比会大大提高。 综合分析表明R波具有如下特点: (1)在地震波形记录中振幅和波组周期最大,频率最小,能量最强。 (2)在不均匀介质中R波相速度(VR)具有频散特性,此点是面波勘探的理论基础。 (3)由P波初至到R波初至之间的1/3处为S波组初至,且VR与VS具有很好的相关性,其相关式为: VR=VS·(0.87+1.12μ)/(1+μ);式中:μ为泊松比; 此关系奠定了R波在测定岩土体物理力学参数中的应用。

地震波运动学理论

第二章地震波运动学理论 一、名词解释 1. 地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传播时间的关系,即研究波的传播规律,以及这种时空关系与地下地质构造的关系。 2. 地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征的及其变化规律,以及这些变化规律与地下的地层结构,岩石性质及流体性质之间存在的联系。 3. 地震波:是一种在岩层中传播的,频率较低(与天然地震的频率相近)的波,弹性波在 岩层中传播的一种通俗说法。地震波由一个震源激发。 4. 地震子波:爆炸产生的是一个延续时间很短的尖脉冲,这一尖脉冲造成破坏圈、塑性带,最后使离震源较远的介质产生弹性形变,形成地震波,地震波向外传播一定距离后,波形逐渐稳定,成为一个具有2-3个相位(极值)、延续时间60-100毫秒的地震波,称为地震子波。地震子波看作组成一道地震记录的基本元素。 5.波前:振动刚开始与静止时的分界面,即刚要开始振动的那一时刻。 6.射线:是用来描述波的传播路线的一种表示。在一定条件下,认为波及其能量是沿着一条“路径”从波源传到所观测的一点P。这是一条假想的路径,也叫波线。射线总是与波阵面垂直,波动经过每一点都可以设想有这么一条波线。 7. 振动图和波剖面:某点振动随时间的变化的曲线称为振动曲线,也称振动图。地震勘探中,沿测线画出的波形曲线,也称波剖面。 8. 折射波:当入射波大于临界角时,出现滑行波和全反射。在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。在地震勘探中,由滑行波引起的波叫折射波,也叫做首波。入射波以临界角或大于临界角入射高速介质所产生的波 9.滑行波:由透射定律可知,如果V2>V1 ,即sinθ2 > sinθ1 ,θ2 > θ1。当θ1还没到90o时,θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。 10.同相轴和等相位面:同向轴是一组地震道上整齐排列的相位,表示一个新的地震波的到达,由地震记录上系统的相位或振幅变化表示。 11.地震视速度:当波的传播方向与观测方向不一致(夹角θ)时,观测到的速度并不是波前的真速度V,而是视速度Va。即波沿测线方向传播速度。 12 波阻抗:指的是介质(地层)的密度和波的速度的乘积(Zi=ρiVi,i为地层),在声学中称为声阻抗,在地震学中称波阻抗。波的反射和透射与分界面两边介质的波阻抗有关。只有在Z1≠ Z2的条件下,地震波才会发生反射,差别越大,反射也越强。 13.纵波:质点振动方向与波的传播方向一致,传播速度最快。又称压缩波、膨胀波、纵波或P-波。 14.横波:质点振动方向与波的传播方向垂直,速度比纵波慢,也称剪切波、旋转波、横波或S-波,速度小于纵波约倍。横波分为SV和SH波两种形式。 15.体波:波在无穷大均匀介质(固体)中传播时有两种类型的波(纵波和横波),它们在介质的整个立体空间中传播,合称体波。 16共炮点反射道集:在同一炮点激发,不同接收点上接收的反射波记录,称为共炮点道集。 在野外的数据采集原始记录中,常以这种记录形式。可分单边放炮和中间放炮。 17.面波:波在自由表面或岩体分界面上传播的一种类型的波。 18.纵测线和非纵测线:激发点与接收点在同一条直线上,这样的测线称为纵测线。

面波

面波勘探是近年发展起来的一种新的浅层地球物理勘探方法,具有简便、快速、经济、分辨率高、成果直观、适用场地小等优点,已在许多领域得到应用,并取得了良好的应用效果。文章介绍了面波勘探技术的发展概况、探测原理、主要特点及其野外测试方法,对其应用范围及目前存在的问题作了说明,并给出一个应用实例。 关键词:瑞利面波地震勘探瞬态法频散曲线 1 前言 面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。 人们根据激振震源的不同,又把面波勘探分为①稳态法、②瞬态法、③无源法。它们的测试原理是相同的,只是产生面波的震源不同罢了。 1938年德国土力学协会首次尝试用稳态振动来检测岩土的各种弹性力学参数。1960年美国密西西比陆军工程队水陆试验所开始开发类似的技术方法,但由于当时技术条件的限制,均未获得成功。70年代初美国F·K·Chang等人利用瞬态激振产生的瑞利波来研究浅部地质问题,并于1973年在第42届国际地球物理勘探年会上发表了“Rayleigh Wave Dispersion Technique for Rapid Subsurface Explorati on”(瞬态面波在浅层勘探中的应用)论文,报道了有关的研究成果。在稳态方面,直到80年代初,日本的VIC株式会社经过多年的研究试制,推出了GR-810佐藤式全自动地下勘探机,才使该项物探技术在浅层工程勘察工作中得以应用。通过几年的实践和初步研究,R波在岩土工程勘察中的应用大致分为以下几个方面: ⑴查明工程区地下介质速度结构并进行地层划分; ⑵对岩土体的物理力学参数进行原位测试; ⑶工业与民用建筑的地基基础勘察; ⑷地下管道及埋藏物的探测; ⑸地下空洞、岩溶、古墓及废弃矿井的埋深、范围等探测; ⑹软土地基加固处理效果评价及饱和砂土层的液化判别; ⑺公路、机场跑道质量的无损检测; ⑻江河、水库大坝(堤)中软弱夹层的探测和加固效果评价等; ⑼场地土类别划分及滑坡调查等;

多道瞬态面波勘察规范标准

多道瞬态面波勘察规范 4 总则 4.1 应用条件 1 勘察对象与周围介质应存在明显物性(速度)差异. 2 勘察目标体尺寸,相对于埋藏深度应具有一定的规模. 3 目标体的物性异常能从干扰背景中清晰分辨出. 4 场地条件满足开展面波勘察的要求. 5 面波勘察方法满足任务的目的要求. 4.2 应用领域 1探查覆盖层厚度,划分松散地层沉积层序; 2 探查基岩埋深和基岩面起伏形态,划分基岩的风化带; 3 探测构造破碎带; 4 探测地下隐埋物体、古墓遗址、洞穴和采空区; 5 探测地下非金属管道; 6 探测滑坡体的滑坡带和滑坡面起伏形态; 7 地基动力测试,地基加固效果检验、评价等。 4.3 应用能力 普遍采用5-K变换法提取瑞雷面波、多道加权平均或直接从5-K 域获取的频散曲线作为该排列的中心点处频散曲线,采用阻尼最小二乘法反演横波速度,从而降低了瑞雷波法探测的纵横向分辨率。无法探测小规模和局部异常,难以满足高精度探测的要求。 5 工作设计 5.1 工作任务 5.1.1 应根据主管部门或委托方下达的任务书或有关合同(协议)明确工作任务与技术要求,确定项目负责人,编写设计书。 5.1.2 工作任务书内容应包含以下内容: 1 工程名称、工程地点、工程编号及范围;

2 要求提交的成果资料和期限; 3 工作区的地形、地貌及地质概况; 4 与任务有关的已知地质资料及地形图。 5.2 资料收集与踏勘 5.2.1 现场探勘应包括以下内容:测区地形、地貌、交通及工作条件;核对已收集的地质、物化探及测绘资料; 5.2.2 设计书编写之前应由项目负责人组织收集和分析工区有关资料,包括以下内容: 1 场地的岩土工程勘察资料 2 场地建(构)筑物的平面图等; 3 场地及其临近的干扰震源; 4 有关的地质、钻探、物探及其他技术资料 5.3 方法有效性试验 5.3.1 野外施测之前,必须进行方法的有效性试验工作; 5.3.2 试验工作应根据测区具体的地质条件、地貌单元规定,每种条件下不少于1个试验面波点; 5.3.3 试验点应布置在有代表性的地段上,与生产测线重合,并通过已知地质资料的地段、试验成果作为生产成果的一部分; 5.3.4 试验工作遵循从简单到复杂、试验因素单一变化的原则。 5.4 测线与观测系统的选择 5.4.1 应结合探测目的和已知资料,通过试验确定观测系统布置方式、采集参数和激发方式。现场工作应符合下列规定: 1 应视探测对象布置成测线或测网;多道接收时,测线应呈直线布置; 2 应采用向前滚动观测方式,滚动点距应满足横向分辨率要求; 3 测点间距应根据探测任务和现场条件确定,每条测线上不得少于3个测点。

瞬态面波勘探及应用

瞬态面波勘探及应用 摘要:面波勘探是近年发展起来的一种新的浅层地球物理勘探方法,具有简便、快速、经济、分辨率高、成果直观、适用场地小等优点,已在许多领域得到应用,并取得了良好的应用效果。文章介绍了面波勘探技术的发展概况、探测原理、主要特点及其野外测试方法,对其应用范围及目前存在的问题作了说明,并给出一个应用实例。 关键词:瑞利面波地震勘探瞬态法频散曲线 1 前言 面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。 人们根据激振震源的不同,又把面波勘探分为①稳态法、②瞬态法、③无源法。它们的测试原理是相同的,只是产生面波的震源不同罢了。 1938年德国土力学协会首次尝试用稳态振动来检测岩土的各种弹性力学参数。1960年美国密西西比陆军工程队水陆试验所开始开发类似的技术方法,但由于当时技术条件的限制,均未获得成功。70年代初美国F·K·Chang等人利用瞬态激振产生的瑞利波来研究浅部地质问题,并于1973年在第42届国际地球物理勘探年会上发表了“Rayleigh Wave Dispersion Technique for Rapid Subsurface Exploration”(瞬态面波在浅层勘探中的应用)论文');">论文,报道了有关的研究成果。在稳态方面,直到80年代初,日本的VIC株式会社经过多年的研究试制,推出了GR-810佐藤式全自动地下勘探机,才使该项物探技术在浅层工程勘察工作中得以应用。通过几年的实践和初步研究,R波在岩土工程勘察中的应用大致分为以下几个方面: ⑴查明工程区地下介质速度结构并进行地层划分; ⑵对岩土体的物理力学参数进行原位测试; ⑶工业与民用建筑的地基基础勘察; ⑷地下管道及埋藏物的探测; ⑸地下空洞、岩溶、古墓及废弃矿井的埋深、范围等探测; ⑹软土地基加固处理效果评价及饱和砂土层的液化判别; ⑺公路、机场跑道质量的无损检测; ⑻江河、水库大坝(堤)中软弱夹层的探测和加固效果评价等; ⑼场地土类别划分及滑坡调查等; ⑽断层及其它构造带的测定与追踪等。 2 勘探原理 面波是一种特殊的地震波,它与地震勘探中常用的纵波(P波)和横波(S波)不同,它是一种地滚波。弹性波理论分析表明,在层状介质中,拉夫波是由SH波与P波干涉而形成,而瑞利波是由SV波与P波干涉而形成,且R波的能量主要集中在介质自由表面附近,其能量的衰减与r-1/2成正比,因此比体波(P、S波∝r-1)的衰减要慢得多。在传播过程中,介质的质点运动轨迹呈现一椭圆极化,长轴垂直于地面,旋转方向为逆时针方向,传播时以波前面约为一个高度为λR(R波长)的圆柱体向外扩散。 在各向均匀半无限空间弹性介质表面上,当一个圆形基础上下运动时,由它产生的弹性波入射能量的分配率已由Miller(1955年)计算出来,即P波占7%、S波占26%、R波占67%,亦就是说,R波的能量占全部激振能量的2/3,因此利用R波作为勘探方法,其信噪比会大大提高。

地震勘探原理课件—— 地震波的时距曲线

第二章 地震波的时距曲线 在地震勘探工作中,每激发一次人工地震,都要在多个检波点接收地震信号。炮点和检波点都沿一条直测线布置,炮点到任意检波点的距离称炮检距x ,相邻检波点的距离叫道间距Δx ,来自同一界面的地震波沿不同路径先后到达各检波点,从而形成一张如图所示的地震记录。 图中横坐标表示地震波旅行时间t ,纵坐标表示炮点到任意检波点的距离称 炮检距x ,每一条波动曲线是一道地震记录,它反映出一个检波点的振动过程。来自同一界面的反射波(或折射波)以一定的视速度规律依次到达个检波点,在地震记录中表现为振动极值的规则排列,各道地震记录波按一定规则排列,形成同相轴(它是相同相位点的连线形成的图形)。 同相轴反映出地震波的旅行时间t 与炮检距x 的函数关系。将它表示在t-x 直角坐标系中,称为地震波的时距曲线。不同种类的地震波,其时距曲线的形状不同。如图中的直达波、反射波、折射波、地滚波、声波等都有自己特有的形状。每一类特定的时距曲线,其曲线参数与地下介质的纵波速度v 及地震界面的产状有着直接的关系。 第一节 反射波的时距曲线 一、 两层介质的直达波和反射波时距曲线 (一)直达波的时距曲线 从震源出发,不经过反射或折射而直线前进到各检波点的地震波成为直达波。当震源深度为零时,直达波沿测线传播,旅行时间t 与炮检距x 的函数关系为 )1.1.2(1v x t ±= 是两条经过原点的、斜率为1/v 1的两条直线。如图2.1-1,根据直达波时距曲 线的斜率,可以求取界面上层介质的波速v 1。

图2.1-1 直达波与水平界面反射波时距曲线 (二)水平界面的反射波时距曲线和正常时差 由图2.1-1,若界面埋深为h, 炮点0为激发点,到达界面R 点后反射到地面的s 点,设s 点的炮检距为x ,为计算方便,做炮点0关于界面的镜像点0*,称为虚震源,根据图2.1-1的几何关系,反射波旅行时间t 与炮检距x 的函数关系为 )2.1.2(4102211*x h v v RS t +== 将反射波在炮点的反射时间称为反射回声时间, 102v h t = 则(2.1.1)式可改写为 )2.1.2()(212202212 0′+=+=v x t t v x t t 或 式(2.1.2)就是水平界面反射波的时距曲线,可化简为以下的标准双曲线方程)2.1.2(1422 202′′=?h x t t 综上所述: 1.反射波时距曲线在x-t 坐标系是双曲线,其极小点在炮点正上方; 2.在x 2-t 2坐标系,反射波时距曲线是直线,直线的斜率为1/v 12, 利用直线的斜率可求界面上方介质的速度; 3.反射波时距曲线以直达波时距曲线为其渐近线。 4.根据时距曲线斜率与视速度的倒数关系,在炮点处的视速度为无穷大,在x →∝时,视速度v *=v 1 5.当2h>>x 时,对((2.1.2)式用二项式定理展开,只取前两项,可得 )3.1.2(2202 0v t x t t +≈ 将任一观测点p 的旅行时间t 和同一界面的双程垂直时间t 0的差称为正常时差,用 Δt 表示。即正常时差近似表达式是 )4.1.2(22 02 v t x t ≈Δ

地震波理论时距曲线

1.时距曲线基本概念 2.直达波时距曲线 3. 反射波时距曲线 4. 折射波时距曲线

1. 时距曲线的基本概念 在地面激发了地震波后,根据地下介质的结构和波的类型 (如直达波、折射波和反射波),地震波将具有不同的传播特点。 为了定量地说明不同类型的波在各种介质结构情况下传播的 特点,在地震勘探中主要采用“时距曲线”(时距曲线方程)这个概念。

时距曲线:是表示地震波从震源出发,传播到测线上各观测点的旅行时间t ,同观测点相对于激发点的水平距离x 之间的关系。 1. 时距曲线的基本概念 1.1 时距曲线 图a 自激自收,同相轴形态与界面起伏相对应 图b 多道接收,同相轴形态与界面起伏不对应

1. 时距曲线的基本概念 1.2 共炮点和共反射点时距曲线 按观测方法的不同分为两种情况: 一种是放一炮,在一个多道检波器组成的排列上接收并得到一张地震记录,地下存在反射界面就可以得到相应的反射波时距曲线,称为共炮点反射波时距曲线。 另一种是在许多炮得到的许多张地震记录上,把同属于同一个反射点的道选出来,组成一个共反射点道集,于是可得到界面上某个反射点的共反射点时距曲线。

共炮点记录共反射点记录

1.3 几个基本概念 ?炮检距(offset):炮点到地面各观测点的距离,也称为偏移距。?初至时间(first break):所有波中最先到达检波器(Geophone)并记录下来的地震波第一波峰时间。 ?同相轴(event):各接收点属于同一相位振动的连线。 ?共炮点(common shotpoint):所有接收点具有共同的炮点。?纵测线(inline):激发点和观测点在同一条直线上。 ?非纵测线(offline):激发点不在测线上。

折射波

折射波 一、特殊情况下的时距曲线 (二)隐伏层 假定下层波速大于上层且有一定层厚度作为产生返回地表的折射波的条件.但实际情况并非都是如此.若地层中出现低速夹层,或速度递增,但其中某层的厚度很小时,折射波不能以初至波的形式出现在地震记录上,用折射法的勘测时不能记录到该层的存在.故称该层为”隐伏层”.有时当某层的速度大于其上下地层的速度时,将出现高速屏蔽。 1.水平层状介质中的低速层 然而 ,如果存在321V V V ??;(且13V V ?)的层状介质,则时距曲线将发生很大变化.由于在21/V V 的分界面上不能产生折射波,没有2V 低速度的初至波的地震记录.并从时距曲线上看只相当于两层介质,即存在低速度 层异常的情况.此时若无钻孔或波速测井等相应的资料来验核,就很容易把三层介质作为两层介质。从而把3V 当作2V ,把02t 当01t ,而造成深度计算上的较大误差。 因此,在有低速层存在的地区进行折射法工程勘测时,应该有钻孔资料,夺震波速测井或其他物探资料配合,才能进行解释,而得出正确的结果。 2.正常速度中的隐伏层 这种隐伏层,是在各层速度的分布满足了n V V V ???Λ21的关系,但基中某层的厚度较小,使得该层与下层介质的分界面产生的折射波不能以初至波的形式出现在记录上,导臻资料处理时地层缺失或深度上的较大误差。我们以三层模型讨论隐伏层的基本特性。如图1

图1 隐伏层地质模型图 所示:在a 图中,第二层足够厚,时距曲线中2V 层就有一定长度的一段初至区与该层相对应。当第二层厚度减小时,时距曲线上与第二层相应的初至区线段长度与变短,图b 所示。如果第二层的厚度进一步减少,如图c 所示,第一层和第三层所对应的时距曲线同时通过了一点,与第二层对应初至区的时距曲线消失了,时距曲线上不能反映第二层介质的存在,故将此厚度定义为盲带。从理论上讲,它是该层不能以初至形式探测到的最大厚度。如图d 所示,第二层的厚度进一步减小时,则定义这样鹌鹑2的地层为隐伏层。因此隐伏层的厚度可以从O 到盲带的最大厚度。 现给出一个三层理论模型的时距曲线,其中V1=500m/s,V2=2V1,V3=5V1,h1=5m,而对h2分别用0.5,1,2,3,4,5,7.5,10m 的不同厚度计算的理论时距曲线。如图2,尽管速度满足了n V V V ???Λ21的正常关系,但第二层的厚度h2不够大(12h h ≤)时,由V1/V2界面产生的折射 波仍然不能以初至波的形式出现在地震记录上,从时距曲线上来看,也只是假两层的情况这种影响和低速带一样,同样不能直接进行解释,对于这种情况除应充分利用钻井资料和汉卡速测井参数外,还必须识别和利用续至波的记录,在有较完整的续至波资料基础上,是有可能从中求了“薄层”的速度,并作进 一步解释。

实验报告 折射波数据处理

折射波法的数据处理 实 验 报 告 专业:勘察技术与工程 学号:060231 33 姓名:郭猛猛

一、实验目的 1.熟悉折射波中波形的识别和对比,能够准确地读取折射波的初至; 2.掌握相遇追逐时距曲线的绘制和t0、差数时距曲线法的自动化解释。 二、实验内容 1.对外业所采集的折射波地震原始波形记录进行整理和评价; 2.对有效波(折射波)进行识别和对比,读取各炮点所对应记录的折射波的初至; 3.对所绘制的时距曲线进行t0、差数时距曲线法的自动化解释。 三、实验步骤 1.地震记录的整理、评价与折射波的识别和对比 (1)地震记录的整理 对外业班报记录进行检查和整理,对外业实验施工排列的炮点位置和放炮顺序 进行确认。对记录地震数据的磁盘应粘贴标签,写明磁盘号、测线号和文件号,确 保与班报对应无误。 (2)地震记录的评价 满足下列条件者,评为“合格”记录: 观测系统正确,符合设计要求;各道工作良好,无不工作道;初至前背景比较平静,折射波初至清晰;班报记录填写正确无误。 (3)折射波的识别和对比 折射波是初至波,在所有地震波中,它最先到达检波器被地震仪所接收,在时距波形记录中,折射波出现的时间总是最小。折射波的对比主要是辩认和追踪折射波的同相轴,有三个标志:①折射波在波形记录上能量较强,振幅随炮检距的增大有规律地衰减;②由于相邻道折射波的传播路径相近,相邻道的波形相似;③折射波同相轴是平滑的直线段或曲线段(折射界 面为曲面时),并总是出现在波形记录上的初至区。 2. t0、差数时距曲线法的自动化解释 利用计算机进行自动化解释,不仅可以大大提高工作效率,而且可消除人工解 释中的种种误差。其自动化解释过程如下: (1)预处理(排列参数设置) 打开或新建一个工程文件(后缀2prj)后,接着就可进行排列参数设置。排列参数设置有以下

相关文档