文档库 最新最全的文档下载
当前位置:文档库 › 青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应

青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应

青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应
青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应

气候变化对青藏高原高寒草地生态系统草丛-地境界面微生物的影响研究进展

第22卷第2期草地学报2014年3月V01.22No.2ACTAAGRESTIA SINICAMar.2014doi:10.11733/j.issn.1007—0435.2014.02.004 气候变化对青藏高原高寒草地生态系统 草丛一地境界面微生物的影响研究进展 芦光新1,陈秀蓉孙,王军邦¨,吴楚4 (1.青海大学农牧学院,青海西宁810016;2.甘肃农业大学草业学院,甘肃兰州730070; 3.中国科学院地理科学与资源研究所,北京100094;4.长江大学园艺园林学院,湖北荆州434025)摘要:由于自然因素或人类因素驱动,以COz浓度增加、气候变暖、大气氮沉降等为主要特征的生态效应对草地生态系统产生了复杂的影响。草丛一地境界面中草地植被和土壤环境对全球变化的响应十分敏感,土壤微生物与草地植被和土壤环境之间的关系密切,不同层面上微生物对全球变化的响应特征不同。气候变化的各个因素对土壤微生物有直接或间接的作用,且目前作用机制尚不明确。本文综述了全球变化因子,包括CO。浓度、气温及氮沉降等因素对草地土壤微生物影响的相关研究进展,在此基础上分析评述了全球变化对草地生态系统微生物多样性的影响及微生物的响应机制,并对未来研究需关注的问题和方向进行了探讨和展望。 关键词:全球变化;草地生态系统;微生物群落多样性;草丛一地境界面 中图分类号:Q948文献标识码:A文章编号:1007—0435(2014)02—0234~09 ResearchProgressesontheEffectsofGlobalChangeontheMicrobesofPlant—siteInterfaceinAlpineGrasslandEcosystem LUGuang—xinl,CHENXiu—rong弘,WANGJun—bang¨,WUChu4 (1.AgricultureandAnimalHusbandryCollege,QinghaiUniversity,Xining,QinghaiProvince810016,China; 2.PratacuhuralCollege,GansuAgriculturalUniversity,Lanzhou,GansuProvince730070,China: 3.InstituteofGeographicSciencesandNatureResourcesResearch,CAS,Beijing100101,China; 4.CollegeofHorticultureandGardening,YangtzeUniversity,Jingzhou,HubeiProvince434025,China) Abstract:Theeffectsofglobalchangesongrasslandecosystemshavebecomeafocusofgreatconcerninthewholeworldduetonaturalfactorsandhumanactivities.Theecologicaleffectsofglobalchanges。in—eludingelevatedC02,warming,andincreasednitrogendeposition,ongrasslandecosystemsarecomplex. Theresponsesofthegrasslandvegetationandsoilenvironmentofplant—siteinterfacetoglobalchanges arevery sensitive,andthereiSacloserelationshipbetweensoilmicrobialcommunitiesandtheplant—siteinter—faceofgrasslandecosystem.Theresponsemechanismsofmicroorganismstoglobalchangesdifferfromdifferentlevels.Thefactorsofclimatechangeshavedirectorindirecteffectsonsoilmicroorganisms.butthemechanismsarestillnotclear.Theeffectsofglobalchanges,includingelevatedC02,warming,andincreasednitrogendeposition,onthesoilmicrobialcommunitydiversitiesofgrasslandecosystemsandtheresponsemechanismsofgrasslandmicroorganismstoglobalchangesarereviewedinthispaper.Andtheis-suesandresearchtrendsarediscussed. Keywords:Globalchanges;Grasslandecosystems;Microbialcommunitydiversity;Plant—siteinterface 人类的生存依赖于地球环境及其资源的可持续利用和发展。但近年来,由于自然因素或人类因素驱动,以CO。浓度增加、气候变暖、大气氮沉降等为主要特征的生态效应对生态系统产生了复杂的影响,在全球范围逐步引发了地球环境的变化或与全球环境有重要关联的区域环境的变化¨2|。草地是 收稿日期:2013-06—29;修回日期:2013一11—10 基金项目:国家自然科学基金“青藏高原草地耐低温纤维素分解真菌多样性研究”(41261064);“退化高寒草甸碳吸收和释放对气候变化的响应对比研究”(31270520)资助 作者简介:芦光新(1974一),男,青海湟中人,博士,教授,主要从事草地微生物多样性及功能利用研究,E—mail:lugx74@qq.com;*通信作者Authorofcorrespondence,E—mail:jbwang@igsnrr.ac.cn;chenxiurong@gsau.edu.ca

青藏高原高寒湿地温室气体释放对水位变化的响应

青藏高原高寒湿地温室气体释放对水位变化的响应 王冬雪,高永恒*,安小娟,王瑞,谢青琰 【摘要】摘要:为了探究水位变化对青藏高原高寒湿地温室气体释放的影响,以高原东部若尔盖典型高寒湿地为研究对象,采用“中型实验生态系”的技术手段,研究了两种不同水位情形[稳定水位(SW,0 cm)和波动水位(DW,从0 cm下降到45 cm,再复原到0 cm)] 对高寒湿地二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)三种温室气体释放的影响。结果表明,1)高寒湿地水位变化对土壤(0~10 cm)可溶性有机碳(DOC)没有显著影响;水位从0 cm下降到45 cm,再复原到0 cm,对铵态氮(NH4+-N)和硝态氮(NO3--N)的转化起到了促进作用;2)水位变化对高寒湿地CO2释放影响不显著,SW和DW处理下CO2累积释放量分别为235.2和209.7 g/m2;3)水位变化对CH4释放有显著影响,CH4累积释放量从SW处理的1.79 g/m2下降到DW处理的0.86 g/m2,下降了52.18%;4)水位波动处理抑制了N2O的释放,其在SW和DW条件下的累积释放量分别是6.72和-7.36 mg/m2;5)高寒湿地土壤温度在10 ℃以上,CO2和CH4释放量与其呈显著正相关性,水位下降提高了CO2和CH4释放与温度的拟合度。 【期刊名称】草业学报 【年(卷),期】2016(025)008 【总页数】9 【关键词】高寒湿地;水位;温室气体;DOC;全球变化 湿地是水体与陆地生态系统之间的过渡形态,降水、径流以及地形等因素使得湿地地表常年或者季节性积水,滞水条件限制有机质分解作用的发生,使得湿

青藏高原退化高寒草地生态系统恢复和可持续发展探讨_武高林

青藏高原退化高寒草地生态系统恢复和可持续发展探讨* 武高林① 杜国祯② ①博士,②教授,兰州大学干旱与草地生态教育部重点实验室,兰州大学生命科学学院,兰州730000 *基金项目:国家自然科学重大研究计划西部专项项目(90202009) 关键词 青藏高原 高寒草地 退化 恢复 可持续发展 近年来,青藏高原草地生态环境安全引起人们的高度重视,但是其生态环境仍处于不断恶化的状态。本文分析了青藏高原高寒草地生态系统的草地退化现状、退化因素和改良技术研究等,并针对其现状和恢复目标,为高寒草地生态系统和草地畜牧业的可持续发展提出了一些建议:加强高寒草地生态系统的基础研究,建立综合的草地改良和恢复技术体系,加强草地生态系统的管理,建立合理的草地放牧制度体系,并建立高效的饲草供应人工草地,在退化草地上建立集约化的高效社区模式草地畜牧业体系,改变退化草地生态功能,是实现退化高寒草地生态恢复、生物多样性保护和经济可持续发展的最佳措施。 1青藏高原高寒草地生态系统退化现状青藏高原高寒草地是世界上海拔最高、面积最大、类型最为独特的草地生态系统,自古以来就是我国重要的牧区之一,是广大藏族同胞赖以生存的基础。其次,青藏高原是北半球气候的启动区和调节区,高寒草地生态系统是否稳定不仅对我国的东部和西南部的气候产生巨大的影响,而且也对北半球甚至全球的气候产生明显的影响。青藏高原是我国黄河、长江等主要水系的发源地,高寒草地在涵养水源、保持水土方面发挥着重要的生态作用。从某种意义上讲,它是黄河、长江等下游地区各民族生存与发展的根基。高寒草地植被也是“世界第三极”地区重要的碳库,对该地区生态系统的碳源-碳库的平衡起着一定调节作用。随着全球CO2浓度的提高和气候变化的影响,高寒草地固定碳源、影响气候变化的作用越来越引起人们的重视。由此可见,青藏高原的环境效应不仅直接塑造了中华民族辉煌的过去,也必将继续对中华民族未来的发展和千秋万代的根本利益产生深刻的影响。另外,作为青藏高原向黄土高原和内陆盆地的过渡,青藏高原东部的高寒草地生物资源异常丰富,蕴育着众多世界上独特的土著生物和种质资源。高寒草地是世界唯一的高寒生物种质资源库,其生物种类丰富,青藏高原已记录的真菌5000种,维管束植物12000种,脊椎动物约为1300种,昆虫4100种。但随着人类活动加剧以及对生物资源开发力度的加大,生物种质资源受到破坏,生物多样性降低。因此,该地区是我国生物多样性保护的关键地区之一。由于环境条件的恶化,资源短缺,使动植物失去生存环境,造成物种减少,生物多样性降低。高寒草地生态系统资源丰富,草质柔软、营养丰富,具有高蛋白、高脂肪、高碳水化合物以及纤维素含量低、热值含量高等特点,是发展高原草地畜牧业的物质基础。但是,由于长期忽视了对草地资源的科学管理,粗放经营,超载过牧,以及对草地资源不合理的开发利用,使人类生存最关键的生物多样性受到严重威胁,濒危动植物名录不断增加,许多珍稀动植物不断消失,草地植物群落结构发生变化,优良牧草丧失竞争和更新能力而逐渐减少,同时毒杂草比例增加,整个草场植被组成以家畜不喜食或有毒、有害的杂类草为优势。可以归结为两个方面:从结构上来看,要么形成黑土滩甚至沙化,要么恶性杂草的比例增加,降低草场质量;从功能上来看,生态系统生产力降低,生物多样性和生态系统功能的严重丧失。人类在从事社会活动过程中,其目的是促进经济的发展,但是在经济发展的现阶段,较多地运用经济尺度来衡量其活动价值,而在一定程度上忽略了生态尺度。草地生态破坏的经济损失是难以估量的。以青海省为例,生态破坏经济损失的18.3966亿元总值中,以草地生态破坏损失值最大,为9.7076亿元,占总损失值的52.76%[1]。掠夺式经营、过度放牧、鼠虫危害以及人类活动的干扰,使草地严重 · 159 ·

土壤性质的测定.

含水量的测定 1、测定原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 2、仪器、设备 土钻、土壤筛(孔径1mm;)、铝盒:小型的直径约40mm,高约20mm;大型的直径约55mm,高约28mm;分析天平:感量为0.001g和0.01g;小型电热恒温烘箱;干燥器:内盛变色硅胶或无水氯化钙。 3、试样的选取和制备 3.1 风干土样:选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 3.2新鲜土样:在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g,捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。 4测定步骤 4.1 风干土样水分的测定:取小型铝盒在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重,准确至0.001g。用角勺将风干土样拌匀,舀取约5g,均匀地平铺在铝盒中,盖好,称重,准确至0.001g。将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h。取出,盖好,移入干燥器内冷却至室温(约需20min),立即称重。风干土样水分的测定应做两份平行测定。 4.2 新鲜土样水分的测定:将盛有新鲜土样的大型铝盒在分析天平上称重,准确至0.01g。揭开盒盖,放在盒底下,置于已预热至105±2℃的烘烤箱中烘烤12h。取出,盖好,在干燥器中冷却至室温(约需30min),立即称重。新鲜土样水分的测定应做三份平行测定。 注:烘烤规定时间后一次称重,即达“恒重”。 5计算公式 水分(分析基),%=〔(m1-m2)/(m1-m0)〕×100 (1) 水分(干基),%=〔(m1-m2)/(m2-m0)〕×100 (2) 式中:m0── 烘干空铝盒质量,g;m1── 烘干前铝盒及土样质量,g;m2── 烘干后铝盒及土样质量,g。平行测定的结果用算术平均值表示,保留小数后一位。平行测定结果的相差,水分小于5%的风干土样不得超过0.2%,水分为5~25%的潮湿土样不得超过0.3%,水分大于15%的大粒(粒径约10mm)粘重潮湿土样不得超过0.7%(相当于相对相差不大于5%)。

土壤各理化指标检测方法

土壤各理化指标检测方法 颗粒分布——比重法 原理: 土样经化学和物理方法处理成悬浮液定容后,根据司笃克斯(Stokes)定律及土壤比重计浮泡在悬浮液中所处的平均有效深度,静置不同时间后,用土壤比重计直接读出每升悬浮液中所含各级颗粒的质量,计算其百分含量,并定出土壤质地名称。并定出土壤质地名称。比重计法操作较简便,但精度较差,可根据需要选择使用。 仪器: 土壤比重计(甲种比重计或鲍式比重计),刻度0-60g/l;量筒,1000ML;锥形瓶500ML;烧杯50ML;洗筛(直径6㎝孔径0.25㎜),土壤筛(孔径2/1/0.5㎜)搅拌棒 试剂: 1、氢氧化钠溶液0.5mol/L(20g氢氧化钠,加水溶解稀释至1000ml) 2、六偏磷酸钠溶液0.5mol/L(51g六偏磷酸钠,加水溶解稀释至1000ml) 3、草酸钠溶液0.5mol/L(33.5g草酸钠,加水溶解稀释至1000ml) 步骤: ①称取通过2mm 筛孔的10g(精确至0.001g)风干土样置于已知质量的50m L 烧杯(精确至0.001g)中,放入烘箱,在105℃烘6h,再在干燥器中冷却后称至恒量(精确至0.001g),计算土壤水分换算系数。 ②称取通过2mm 筛孔的50g(精确至0.01g)风干土样(粘土或壤土50g,砂土100g)置于500m L锥形瓶中。 ③分散土样:根据土壤的p H 值,于锥形瓶中加入50m L 0.5mol/L 氢氧化钠溶液(酸性土壤)、50m L 0.5mol/L 六偏磷酸钠溶液(碱性土壤)或50m L 0.5mol/L 草酸钠溶液(中性土壤),然后加水使悬浮液体积达到250m L 左右,充分摇匀。在锥形瓶上放小漏斗,置于电热板上加热微沸1h,并经常摇动锥形瓶,以防止土粒沉积瓶底成硬块。 ④分离2~0.25mm 粒级与制备悬浮液 大于0.25mm 粒级颗粒用筛分法测定,小于0.25mm 颗粒用比重计法测定。在1000m L 量筒上放一大漏斗,将孔径0.25mm 洗筛放在大漏斗内。待悬浮液冷却后,充分摇动锥形瓶中的悬浮液,通过0.25mm 洗筛,用水洗入量筒中。留在锥形瓶内的土粒,用水全部洗入洗筛内,洗筛内的土粒用橡皮头玻璃棒轻轻地洗擦和用水冲洗,直到滤下的水不再混浊为止。同时应注意勿使量筒内的悬液体积超过1000m L,最后将量筒内的悬浮液用水加至1000m L。 将盛有悬浮液的1000m L 量筒放在温度变化较小的平稳试验台上,避免振动,避免阳光直接照射。 将留在洗筛内的砂粒(2~0.25mm)用水洗入已知质量的50m L 烧杯(精确至0.001g)中,烧杯置于低温电热板上蒸去大部分水分,然后放入烘箱中,于105℃烘6h,再在干燥器中冷却后称至恒量(精确至0.001g)。再将0.25mm 以上的砂粒,通过1.0 及0.5mm 孔径土壤筛筛分,分别称出其烘干质量(精确至0.001g)。 ⑤测定悬浮液温度:取温度计悬挂在盛有1000m L 水的1000m L 量筒中,并将量筒与待测悬浮液量筒放在一起,记录水温(℃),即代表悬浮液的温度。

第四章 土壤物理性质

第四章土壤物理性质 主要教学目标:本章将要求学生掌握土壤物理性质如土壤质地、土壤结构以及土壤孔隙等内容。并在学习的基础上掌握改良不太适宜林业生产的某些土壤物理性质的一些方法。如客土、土壤耕作、施用化学肥料和土壤结构改良剂等。 第一节土壤质地 一、几个概念 1、单粒:相对稳定的土壤矿物的基本颗粒,不包括有机质单粒; 2、复粒(团聚体):由若干单粒团聚而成的次生颗粒为复粒或团聚体。 3、粒级:按一定的直径范围,将土划分为若干组。 土壤中单粒的直径是一个连续的变量,只是为了测定和划分的方便,进行了人为分组。土壤中颗粒的大小不同,成分和性质各异;根据土粒的特性并按其粒径大小划分为若干组,使同一组土粒的成分和性质基本一致,组间则的差异较明显。 4、土壤的机械组成:又叫土壤的颗粒组成,土壤中各种粒级所占的重量百分比。 5、土壤质地:将土壤的颗粒组成区分为几种不同的组合,并给每个组合一定的名称,这种分类命名称为土壤质地。如:砂土、砂壤土、轻壤土、中壤土、重壤土、粘土等 二、粒级划分标准: 我国土粒分级主要有2个 1、前苏联卡庆斯基制土粒分级(简明系统) 将0.01mm作为划分的界限,直径>0.01mm的颗粒,称为物理性砂粒;而<0.01mm的颗粒,称为物理性粘粒。 2、现在我国常用的分级标准是: 这个标准是1995年制定的。 共8级: 2~1mm极粗砂;1~0.5mm粗砂;0.5~0.25mm中砂;0.25~0.10mm细砂; 0.10~0.05mm极细砂;0.05~0.02mm粗粉粒;0.02~0.002mm细粉粒;小于0.002mm粘粒 三、各粒级组的性质 石砾:主要成分是各种岩屑 砂粒:主要成分为原生矿物如石英。比表面积小,养分少,保水保肥性差,通透性强。 粘粒:主要成分是粘土矿物。比表面积大,养分含量高,保肥保水能力强,但通透性差。粉粒:性质介于砂粒和粘粒之间。 四、土壤质地分类 1、国际三级制,根据砂粒(2—0.02mm)、粉砂粒(0.02mm—0.002mm)和粘粒(<0.002mm)的含量确定,用三角坐标图。 2、简明系统二级制,根据物理性粘粒的数量确定。考虑到土壤条件对物理性质的影响,对不同土类定下不同的质地分类标准。在我国较常用。 3、我国土壤质地分类系统: 结合我国土壤的特点,在农业生产中主要采用前苏联的卡庆斯基的质地分类。对石砾含量较高的土壤制定了石砾性土壤质地分类标准。将砾质土壤分为无砾质、少砾质和多砾质三级,可在土壤质地前冠以少砾质或多砾质的名称。 五、土壤质地与土壤肥力性状关系 从两个方面来论述 1、土壤质地与土壤营养条件的关系 肥力性状砂土壤土粘土 保持养分能力小中等大 供给养分能力小中等大

第二章 土壤矿物质

第二章土壤矿物质 【教学目标】 ●土壤矿物 1.了解土壤原生矿物的种类。 2.重点掌握次生矿物的种类及特性。 ●矿物质土粒 1.了解矿物质土粒的分类系统。 2.掌握矿物质土粒水分物理特性。 ●土壤质地 1. 了解土壤质地的分类系统。 2.掌握不同质地土壤的水分物理特性。 1 土壤矿物 土壤母质来源于岩石、矿物的风化产物,岩石是由矿物所构成,是矿物的天然集合体。 ? 1.1 几种主要岩石类型与特性 地壳中的岩石可分为岩浆岩(火成岩)、沉积岩和变质岩三大类。 岩浆岩(火成岩)由岩浆冷却凝固形成,如花岗岩、闪长岩、玄武岩等,它们含有石英、长石、深色矿物(如黑云母、辉石、角闪石等原生矿物)。 沉积岩是由岩石风化物经搬运、沉积再胶结而形成的,如花岗岩风化形成的石英沙沉入海底经地质变化胶结成的岩石,称为沙岩。 变质岩是火成岩或沉积岩在高温、高压下发生质变而形成的,如花岗岩变质形成片麻岩、沙岩和页岩变质形成石英岩和板岩,石灰岩变质可形成大理岩。 1.1.1 岩浆岩 (1)花岗岩为粗粒、中粒或细粒全晶质的岩石,呈红色、灰色或浅灰色。主要矿物有石英、正长石、黑云母,也有角闪石、斜长石,由于矿物结晶颗粒较大,组成复杂,容易发生物理风化。在干旱地区崩解成砂粒,在湿润地区暗色矿物被分解为含水氧化铁次生矿物,长石类矿物分解为高岭石,石英以砂粒残留于风化物中。 (2)流纹岩:化学成分与花岗岩基本相似,灰白、浅黄或浅红色。斑状结构,斑晶为圆柱状的石英和长方形透长石。因结晶颗粒较小,难以发生物理风化。在温暖湿润地区所形成深厚的风化层,多呈红色的粘壤土或砂质粘壤土。 (3)正长岩:其矿物组成以正长石和角闪石为主,不含石英,有少量的磷灰石,磁铁矿,色浅红,呈块状或粒状构造。风化后形成砂壤或壤质土壤,通气性良好,富含磷、钾、钙、镁等营养元素。土壤多为中性至微酸性反应。 (4)玄武岩:是基性喷出岩,在地壳中分布较广。化学成分与辉长岩相当。色暗近似黑色,隐晶质结构,常有气孔构造,风化后质地较黏,含盐基物质较多。 (5)橄榄岩:主要由橄榄石和辉石组成,一般为暗绿色或黑绿色,全晶质粗粒或中粒 结构,容易风化。 1.1.2 沉积岩

青藏高原高寒草地3米深度土壤无机碳库及分布特征_张蓓蓓

植物生态学报 2016, 40 (2): 93–101 doi: 10.17521/cjpe.2015.0406 Chinese Journal of Plant Ecology https://www.wendangku.net/doc/5c13090122.html, 青藏高原高寒草地3米深度土壤无机碳库及分布特征张蓓蓓1,2刘芳1丁金枝2,3房凯2,3杨贵彪2,3刘莉2,3陈永亮2 李飞2,3杨元合2* 1内蒙古工业大学能源与动力工程学院, 呼和浩特 010051; 2中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093; 3中国科学院大学, 北京 100049 摘 要准确评估土壤无机碳库的大小及其分布特征有助于全面理解陆地生态系统碳循环与气候变暖之间的反馈关系。然 而, 由于深层土壤剖面信息匮乏, 使得目前学术界对深层土壤无机碳库的了解十分有限。该研究基于342个3 m深度和177个50 cm深度的土壤剖面信息, 采用克里格插值方法估算了青藏高原高寒草地不同深度的土壤无机碳库大小, 并在此基础上分析 了该地区土壤无机碳密度的分布特征。结果显示, 青藏高原高寒草地0–50 cm、0–1 m、0–2 m和0–3 m深度的土壤无机碳库大 小分别为8.26、17.82、36.33和54.29 Pg C, 对应的土壤无机碳密度分别为7.22、15.58、31.76和47.46 kg C·m–2。研究区土壤无 机碳密度总体呈现由东南向西北增加的趋势; 高寒草原土壤的无机碳密度显著大于高寒草甸的无机碳密度。整体上, 不同深 度的高寒草原无机碳库约占整个研究区无机碳库的63%–66%。此外, 深层土壤中储存了大量无机碳, 1 m以下土壤无机碳库是 1 m以内无机碳库的2倍。两种草地类型土壤无机碳的垂直分布存在差异: 对高寒草原而言, 0–50 cm土壤无机碳所占的比例最 大; 但对高寒草甸而言, 在100–150 cm深度土壤无机碳出现富集。这些结果表明青藏高原深层土壤是一个重要的无机碳库, 需在未来碳循环研究中予以重视。 关键词碳库; 克里格插值; 土壤无机碳; 3 m土钻; 青藏高原 引用格式: 张蓓蓓, 刘芳, 丁金枝, 房凯, 杨贵彪, 刘莉, 陈永亮, 李飞, 杨元合 (2016). 青藏高原高寒草地3米深度土壤无机碳库及分布特征. 植物生 态学报, 40, 93–101. doi: 10.17521/cjpe.2015.0406 Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: An updated evaluation using deep cores ZHANG Bei-Bei1,2, LIU Fang1, DING Jin-Zhi2,3, FANG Kai2,3, YANG Gui-Biao2,3, LIU Li2,3, CHEN Yong-Liang2, LI Fei2,3, and YANG Yuan-He2* 1College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; 2State Key Laboratory of Vegetation and Envi-ronmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; and 3University of Chinese Academy of Sciences, Beijing 100049, China Abstract Aims To estimate the size and spatial patterns of 3-m-deep soil inorganic carbon (SIC) stock across alpine grass-lands on the Qinghai-Xizang Plateau. Methods We conducted a comprehensive investigation and collected soil samples from 342 3-m-deep cores and 177 50-cm-deep pits across the study area. Using Kriging interpolation, we interpolated site-level observations to the regional level. The distribution of SIC density was then overlaid with the regional vegetation map at a scale of 1:1000000 to calculate SIC stock of the alpine steppe and alpine meadow. Kruskal-Wallis tests were further con-ducted to examine the differences of SIC density between the two grassland types and among soil depths with 50 cm-depth intervals. Important findings The total SIC stock at depths of 50 cm, 1 m, 2 m and 3 m were estimated at 8.26, 17.82, 36.33 and 54.29 Pg C, with SIC density being 7.22, 15.58, 31.76 and 47.46 kg C·m–2, respectively. SIC density exhibited large spatial variability, with an increasing trend from the southeastern to the northwestern plateau. Much larger SIC stock was observed in the alpine steppe than alpine meadow, with the former accounting for 63%–66% of the total stock at depths of 50 cm, 1 m, 2 m and 3 m. A large amount of SIC stock was found in deep soils (1–3 m), amounting to approximately 2 times as much carbon stored in the top 1-m-deep soil layer. The ver-tical distributions of SIC density differed between the two grassland types. The highest proportions of SIC —————————————————— 收稿日期Received: 2015-11-13 接受日期Accepted: 2016-01-17 * 通信作者Author for correspondence (E-mail: yhyang@https://www.wendangku.net/doc/5c13090122.html,)

实验3 土壤理化性质测定与分析

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 实验3 土壤理化性质测定与分析 实验 3 土壤理化性质测定与分析1 土壤样品的采集和制备土壤样品的采集是否具有代表性,是决定分析结果能否正确反映土壤特性的关键。 因此,采集的土壤样品必须具有代表性,以确保土壤质量分析结果的正确性。 从田间采集来的土壤样品不可直接进行化学分析,需经过筛或风干过筛等处理后方可进行分析。 因此,在风干过筛处理中保持最小的误差是同样的重要。 本实验的目的在于通过土壤样品采集的实践,使学生更好地掌握采集具有代表性土壤样品的技能和合理处理样品的技能。 1.1 土壤样品的采集 1.1.1 耕层混合土壤样品的采集(1)确定采样单元根据有关资料和现场勘查后,将采样区划分为数个采样单元,每个采样单元的图类型,肥力状况和地形等因素要尽可能均匀一致。 (2)确定采样点数及采样点位置采样点数的确定,取决于采样区域的大小、地块的复杂程度和所要求的精密度等因素,一般以 5-20 个为宜。 采样点位置的确定要遵循随机布点的原则,常采用“S”型布点方式,该方式能较好地克服耕作、施肥等农业措施造成的误差。 但在采样单元面积较小,地形变化较小,地力较均匀的情况下 1/ 14

也可采用对角线(或梅花)形布点方式。 为从总体上控制采样点的代表性,避免在堆过肥的地方和田埂,沟边以及特殊地形部位采样。 (3)各采样点土样的采集遵循采样“等量”的原则,即每点所采土样的土体的宽度、厚度及深度均相同。 使用采样器采样时应垂直于地面向下至规定的深度。 用取土铲取样应先铲出一个耕层断面,再平行于断面下取土。 (4)混合土样的制备将个点采集的土样集中在一起,尽可能捏碎,混均;如果采集的样品数量过多,可用四分法将多余的土样弃去,以取 1kg 为宜。 其方法是将混均的土样平铺成四方形,划对角线将土样分成四份,将其中一对角线的两份弃去,如所剩样品仍很多,可重复上诉方法处理,知道所需数目为止。 采集含水较多的土样时(如水稻土),四分法很难使用,可将各样点采集的烂泥状样品搅拌均匀后,再取出所需数量。 将采好的土样装袋,土袋最好采用布制的,以保持通气。 (5)制作采样标签及采样记录选用耐浸润的纸签(牛皮纸或硫酸纸),用铅笔在标签上注明采样地点,日期,采样深度,土壤名称,编号及采样人等,一式两份,土袋内外各放一份。 同时做好采样记录。 1.1.2 土壤剖面样品的采集即按土壤发生层次的采样。 首先在能代表研究对象的采样点挖掘1× 1.5m 左右的长方形土

土壤理化性质分析方法

测定土壤理化指标有很多标准文件,部分指标有国家标准,部分用农业行业标准,由于指标太多,故列出土壤测定的一些方法,通过方法可以搜索到行业标准或国家标准的具体内容,供参考: 土壤质地国际制;指测法或密度计法(粒度分布仪法)测定 土壤容重环刀法测定 土壤水分烘干法测定 土壤田间持水量环刀法测定 土壤pH土液比1:2.5,电位法测定 土壤交换酸氯化钾交换——中和滴定法测定 石灰需要量氯化钙交换——中和滴定法测定 土壤阳离子交换量EDTA-乙酸铵盐交换法测定 土壤水溶性盐分总量电导率法或重量法测定 碳酸根和重碳酸根电位滴定法或双指示剂中和法测定 氯离子硝酸银滴定法测定 硫酸根离子硫酸钡比浊法或EDTA间接滴定法测定 钙、镁离子原子吸收分光光度计法测定 钾、钠离子火焰光度法或原子吸收分光光度计法测定 土壤氧化还原电位电位法测定。 土壤有机质油浴加热重铬酸钾氧化容量法测定 土壤全氮凯氏蒸馏法测定 土壤水解性氮碱解扩散法测定 土壤铵态氮氯化钾浸提——靛酚蓝比色法(分光光度法)测定 土壤硝态氮氯化钙浸提——紫外分光光度计法或酚二磺酸比色法(分光光度法)测定 土壤有效磷碳酸氢钠或氟化铵-盐酸浸提——钼锑抗比色法(分光光度法)测定 土壤缓效钾硝酸提取——火焰光度计、原子吸收分光光度计法或ICP法测定 土壤速效钾乙酸铵浸提——火焰光度计、原子吸收分光光度计法或ICP法测定 土壤交换性钙镁乙酸铵交换——原子吸收分光光度计法或ICP法测定 土壤有效硫磷酸盐-乙酸或氯化钙浸提——硫酸钡比浊法测定 土壤有效硅柠檬酸或乙酸缓冲液浸提-硅钼蓝比色法(分光光度法)测定 土壤有效铜、锌、铁、锰DTPA浸提-原子吸收分光光度计法或ICP法测定 土壤有效硼沸水浸提——甲亚胺-H比色法(分光光度法)或姜黄素比色法(分光光度法)或ICP法测定 土壤有效钼草酸-草酸铵浸提——极谱法测定 全量铅、镉、铬干灰化法处理——原子吸收分光光度计法或ICP法测定 全量汞湿灰化处理——冷原子吸收(或荧光)光度计法 全量砷干灰化处理——共价氢化物原子荧光光度法或ICP法测定

青藏高原高寒草地生态系统碳氮储量

附件2 论文中英文摘要格式 作者姓名:杨元合 论文题目:青藏高原高寒草地生态系统碳氮储量 作者简介:杨元合,男,1981年08月出生,2003年09月师从于北京大学方精云教授,于2008年07月获博士学位。 中文摘要 准确了解物种多样性与生产力的关系将有助于认识生物多样性的维持机制;准确揭示生物量的大小及其控制因素、阐明其地下与地上分配关系,将有助于预测陆地生态系统对全球变化的响应;准确估算土壤有机碳库、揭示其分布格局及其动态变化将有助于预测陆地生态系统与气候变化之间的反馈关系。但是,目前草地生态系统中关于物种多样性与生产力关系及其形成机制、生物量大小及其分配格局、土壤有机碳库分布及其动态变化等方面的研究主要集中在温带地区,而来自高寒草地的研究相对较少。因此,尚不清楚高寒草地中物种多样性与生产力之间的关系及其形成机制,也不清楚高寒草地生物量的控制因素及其地上-地下分配机制,更不清楚高寒草地土壤有机碳库的时空变化特征。 青藏高原是地球上最高、最大的高原。高寒草地是高原分布最为广泛的植被类型,受人为活动影响相对较少,这些为开展相关生态学研究提供了理想的天然场所。我们于2001-2004年间在青藏高原高寒草地调查了135处样地,共计675个1 × 1 m2的群落样方和405个土壤剖面。此外,我们还于2005年补充调查了29处样地的根系生物量垂直分布特征。利用这些野外调查的群落资料、生物量数据和土壤碳/氮等理化属性以及全国第二次土壤普查资料、遥感(MODIS-EVI、A VHRR-NDVI) 和气候信息等数据,借助II类回归(Reduced Major Axis, RMA)、一般线性模型(General Linear Model, GLM) 等经典统计方法和克立格(kriging) 插值等地统计学手段,研究了青藏高原高寒草地物种丰富度与地上生物量的关系、生物量的大小及其分配机制以及土壤有机碳库的空间分布及其动态变化特征。主要结果如下: (1) 水分是影响高寒草地群落空间分布的主导因素,也是影响高寒草地物种丰富度空间分布的重要因素。高寒草地物种丰富度与其地上生物量呈正相关;而且这种正相关关系不随草地类型而变化。高寒草地物种丰富度和地上生物量沿着水分梯度的共变可能是出现两者之间正相关关系的原因。 (2) 基于实测生物量资料与遥感信息相结合的方法,估算了高寒草地的地上、地下和总生物量,分别为68.8, 366.0 和434.8 g m-2。它们呈现自研究区东南向西北递减的空间分布格局。此外,高寒草地中约有90%的根系分布在表层30 cm,而高寒草甸的根系分布较高寒草原更加集中于土壤表层(96% vs. 86%)。 (3) 高寒草地地上生物量随着生长季温度的增加并未表现出显著变化趋势(r2 = 0.01, P > 0.05),但地上生物量与生长季温度的关系沿着降水梯度而变化。在干旱地区,与生长季温度

实验土壤理化性质测定与分析

实验3 土壤理化性质测定与分析 1土壤样品得采集与制备 上壤样品得采集就是否具有代表性,就是决定分析结杲能否正确反映土壤特性得关键n因此,采集得土壤样品必须具有代表性,以确保上壤质虽分析结果得正确性。从EEI间采集來得上壤样品不可直接进行化学分析?需经过筛或风T?过筛等处理后方可进行分析。因此?在风干过筛处理中保持最小得误差就是同样得重要。木实验得目得在于通过上壤样品采集得实践?使学生更好地学握采集具有代表性土壤样品得技能与合理处理样品得技能。 1、1 土壤样品得采集 1.1.1耕层混合上壤样品得采集 (1)确定采样爪元 根据有关资料与现场妙查后,将采样区划分为数个采样单元.每个采样収元得图类型?肥力状况与地形等因素要尽可能均匀一致。 (2)确定采样点数及采样点位宜 采样点数得确定,取决干采样区域得大小.地块得复朵程度与所要求得精密度等因素,一般以5- 2 0个为宜。采样点位宜得确定耍逍循随机布点得原则?常采用?s‘型布点方式,该方式能较好地克服耕作、施肥等农业措施适成得误差。但在采样爪元面枳较小.地形变化较小?地力较均匀得情况下也可采用对角线(或梅花) 形布点方式。为从总体上控制采样点得代表性、避免在堆过肥得地方与ED顷.沟边以及特殊地形部位采样。 (3)各采样点土样得采集 遵循采样??等坦T得原则卡卩每点所采土样得上体得宽度、厚度及深度均相同。使用采样器采样时应垂直于地面向下至规定得深度。用取土铲取样应先铲出一个耕层断面,再平行于断面下取上。 (4)混合土样得制备 将个点采集得土样集中在一起.尽可能捏碎?混均:如果采集得样品数址过女,可用四分法将笋余得土样弃去,以取1kg 为宜。其方法就是将混均得丄样平铺成四方形?划对角线将上样分成四份?将其中一对角线得两份弃去,如所剩样品仍很女,可重复上诉方法处理?知道所需数目为止。采集含水较多得土样时(如水稻上), 四分法很难使用?可将各样点采集得烂泥状样品搅拌均匀后,再取出所需数虽。将采好得上样装袋.土袋最好采用布制得?以保持通气。 (5)制作采样标签及采样记录 选用耐浸润得纸签(牛皮纸或硫酸纸〉?用铅笔在标签上注明采样地点,日期,采样深度,上壤名称?编号及采样人等,一式两份,土袋内外各放一份。同时做好采样记录。 1.1.2±壤剖面样品得采集 即按土壤发生层次得采样。首先在能代表研究对铁得采样点挖掘1X1. 5m左右得长方形丄壤剖血坑. 较窄得一面向阳?作为剖血观察面。挖出得土应放在土坑得两侧?而不要放在观察而得上方。丄坑得深度根据具体情况确定,一般要求达到母质层或地下水位。根据剖面得土壤颜色.结构、质地、松紧度、湿度及植物根系分布等.划分土层。按研尤所需了解得项目逐项进行仔细观察?描述记载?然后至上而下逐层采集样品. 一般采集各层最典型得中部位置得上壤?以克服层次之间得过渡现念.保证样品代表性。每个土样质址1 k g左右?将采集得样品放入样品袋,写明标签(同上)。 (1 ) 土壤诊断样品采集 为找出造成某些植物发生局部死苗失绿?綾缩?花而不实等界常现歓得原因,必须对土壤进行某些成分得分析测定。一般应在发生异常现象得范鬧内,采集典型上壤样品?多点混合?同时在附近采集正常上样作为对照。 (2)上壤盐分动态样品得采集 淋溶与蒸发就是造成上壤剖面中盐分季节性变化得主要原因?因此?这类样品得采集按垂直深度分层采取。即从地表起每10cm或20cm划为一个采样层?収样方法釦『段取"即在该取样层内,自上而下,全层均匀得取丄,这样有利干丄壤储盐量得汁算?或绘制丄壤盐分分布图。研尤盐分在土壤中垂直分布得特点时.则笋用“点取”即在各样取样层得中间位貝取样。此外?应特别注重采样得时间与深度”1为盐分上下移动受不同时间得淋溶与蒸发作用得影响很大。 (3)土壤物理性质测定样品采集 如测定土壤容重与空隙度等物理形状?需要原状土样?其样品可直接用环刀在各上层中采取。采取丄壤结构性得样品?

第五章土壤物理性质

第五章土壤物理性质 第一节土壤质地 土壤质地,我们在第二章中曾提过一点,这一章中我们要比较详细地讲一下。 1.土壤颗粒的分级 土壤是由固体、液体和气体所组成,其中的固体部分是由许多大小不等的颗粒所组成。不同的颗粒,他们在成分上和性质上都不一样,人们为了便于研究,就把这些土粒按照他们的直径大小排队,再根据一定的尺度范围把这些颗粒归为几组,这些土壤颗粒组,就称为土壤粒级。(图)世界各国所采用的划分标准,即尺度范围是很不一致的。就现在来说,世界上主要有3种划分标准,就是国际制、原苏联制和美国制。我国在解放前是美国制,解放后变成苏联制,这倒不是苏联制标准好,而是政治原因。到1975年,我们国家由中科院南京土壤所和西北水保所共同拟定了一套我国自己的土壤粒级划分标准,但是,用起来比较麻烦,有一些地方也不完善,所以,用的人不多。目前来看,在我国用的比较广泛的,还是苏联制的分类标准,也就是所谓的卡庆斯基的标准。这种分类方法,是将土粒分成了: 粒级石砾砂砾粉粒粘粒 颗粒直径(mm)大于1 1-0.05 0.05 – 0.001 小于0.001 为了便利起见,人们也可以把土壤粒级分为:物理性砂粒和物理性粘粒两类:物理性砂粒是直径大于0.01mm的颗粒, 物理性粘粒是小于或等于0.01mm的颗粒。 有的同学可能会问,为什么按这个标准来划分?依据是什么?这个划分依据就是土粒的性质。我们马上要将讲到。 2.土壤各粒级的性质 2.1.石砾:直径大于1mm的颗粒,他们是岩石风化后残留物。因此,他们大都保留了母岩的矿物组成,一般情况下,他们的速效养分很少,保水能力很差。2.2.砂粒:直径在1-0.05mm,他们主要是岩石中难风化的矿物,比如,石英、 白云母等。砂粒几乎没有吸附阳离子的能力,而且颗粒之间非常松散,不能相互粘结。颗粒间的孔隙多是一些大孔隙,所以,他们容易透气、透水,但保水能力较弱。 2.3.粘粒:直径小于0.001mm,粘粒的矿物组成是一些次生矿物,它的表面积很大,所以,吸附离子的能力很强。也就是保肥力强。

相关文档
相关文档 最新文档