0,则f(x)在[a,b]上的图形是凹的。设x1和x2是[a,b]内任意两点,且x1对f'(x)在区间[x0-θ2h,x0+θ1h]上再利用拉格朗日中值公式,得[f'(x0+θ1h)-f'(x0-θ2h)]h=f"(ξ)(θ1+θ2)h^2,其中x0-θ2h因为f"(ξ)>0,所以f(x0+h)+f(x0-h)-2f(x0)>0,即[f(" />
文档库 最新最全的文档下载
当前位置:文档库 › 二阶导数与函数凹凸性证明

二阶导数与函数凹凸性证明

二阶导数与函数凹凸性证明
二阶导数与函数凹凸性证明

证明设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么若在(a,b)内f"(x)>0,则f(x)在[a,b]上的图形是凹的。

设x1和x2是[a,b]内任意两点,且x1

对f'(x)在区间[x0-θ2h,x0+θ1h]上再利用拉格朗日中值公式,得

[f'(x0+θ1h)-f'(x0-θ2h)]h=f"(ξ)(θ1+θ2)h^2,其中x0-θ2h<ξ

因为f"(ξ)>0,所以f(x0+h)+f(x0-h)-2f(x0)>0,即[f(x0+h)+f(x0-h)]/2>f(x0),亦即[f(x1)+f(x2)]/2>f[(x1+x2)/2],所以f(x)在[a,b]上的图形是凹的。

f(x)<=1/2f(x1)+1/2f(x2),x=(x1+x2)/2,注意到1/2=x2-x/x2-x1=x-x1/x2-x1,那么代入

f(x)<=(x2-x)/(x2-x1)f(x1)+(x-x1)/(x2-x1)f(x2),等价于f(x)(x2-x1)<=(x2-x)f(x1)+(x-x1)f(x2) (1)

那个二阶条件是充要条件,

必要性证明,假设是凹的,(1)式改写成,f(x)-f(x1)/x-x1<=f(x2)-f(x)/x2-x,其中x1=f(x2)-f(x1)/x2-x1,所以f'(x1)<=f'(x2),即导函数单调增,f''(x)>=0

充分性证明,由于f''(x)>=0,f'(x)单调增(广义的),这里要用拉格朗日定理了

f(x)-f(x1)/x-x1=f'(a),其中x1

f(x2)-f(x)/x2-x=f'(b),其中x

所以f'(a)<=f'(b),

即f(x)-f(x1)/x-x1<=f(x2)-f(x)/x2-x

显然与凹定义等价

证毕

(整理)基本初等函数求导公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx =g 或()()y f u x ?'''=g 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式: sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A

二阶导数的应用---曲线的凹凸性与拐点

二阶导数的应用---曲线的凹凸性与拐点 教学目标与要求 通过学习,使学生掌握利用二阶导数的符号判定函数在某一区间上凹凸性的方法,为更好地描绘函数图形打好基础,同时,理解拐点的定义和意义。 教学重点与难点 教学重点:利用函数的二阶导数判断曲线的凹凸性与拐点。 教学难点:理解拐点的定义和意义。 教学方法与建议 证明曲线凹凸性判定定理时,除了利用“拉格朗日中值定理”证明外,还可用“泰勒定理”来证明;如果利用“拉格朗日中值定理”证明,则要配合函数图形来分析讲解如何想到需要两次使用“拉格朗日中值定理”的思路,切忌脱离图形,机械证明,让学生领悟不到思想,摸不着头脑。 在讲函数的凹凸性和曲线拐点的定义时,要强调凹凸性并不是曲线的固有性质,而是函数的性质,与所选的坐标系有关;而拐点是曲线的固有性质,与所选的坐标系无关。 教学过程设计 1. 问题提出与定义 函数的单调性对于描绘函数图形有很大作用,但仅仅由单调性还 不能准确描绘出函数的图形。比如,如果在区间上,, 则我们知道在区间上单调增,但作图(参见图1)的时 候,我们不能判断它增加的方式(是弧,还是弧),即 不能判断曲线的凹凸性,所以研究曲线的凹凸性对于把握函数的性 态、作图等是很有必要的! 在图1中,对于上凸的曲线弧,取其上任意两点,不妨取 作割线,我们总会发现不论两点的位置,割线段总位于弧段的下方,这种位置关系可以用不等式

来描述。同理,对于上凹的曲线弧,总可用不等式 来描述。由此,我们想到对曲线的凹凸性做如下定义: 凹凸性定义设在区间I上连续,如果对I 上任意两点,,恒有 则称在I上的图形是(向上)凹的,简称为凹弧;如果恒有 则称在I上的图形是(向上)凸的,或简称为凸弧。 如果沿曲线从左向右走,则图形是(向上)凸的曲线的几何意义相当于右转弯,图形是(向上)凹的曲线相当于左转弯,而有切线的凹凸弧的分界点正是曲线转向的点,我们把这样的点称为拐点。 2. 凹凸性判定定理的引入 y O y f x =() x y O y f x =() 曲线凹凸性的定义自然能判别曲线的凹凸性,但实际使用起来需要取两个点,且两个不等式对于一些表达式较复杂的函数来说判断起来也不容易。因此,我们就想能否用其它方法来判定曲线的凹凸性。函数的单调性能由的符号确定,而对于凹凸性它束手无策,所以我们猜想凹凸性是否和有关 经过分析,并利用泰勒公式,可证实我们的猜想是正确的,函数图形的凹凸性的确和的符号有关,于是得到了判断曲线凹凸性的定理。 定理设在上连续, 在内具有二阶连续导数,那么: (1)若在内>0,则在上的图形是凹的; (2)若在内<0,则在上的图形是凸的。 3. 判别凹凸性和拐点举例 例1判断曲线y x3的凹凸性

(整理)函数凹凸性的应用

函数凹凸性的应用 什么叫函数的凸性呢?我们先以两个具体函数为例,从直观上看一看何谓函数的凸性. 如函数y =所表示的曲线是向上凸的,而 2y x =所表示的曲线是向下凸的,这与我们日常习惯上的称呼是相类似的.或 更准确地说:从几何上看,若y =f(x)的图形在区间I 上是凸的,那么连接曲线上任意两点所得的弦在曲线的上方;若y =f(x)的图形在区间I 上是凹的,那么连接曲线上任意两点所得的弦在曲线的下方. 如何把此直观的想法用数量关系表示出来呢? 设函数 ()f x 在区间I 上是凸的(向下凸),任意 1x , 2x I ∈( 12 x x <). 曲线 ()y f x =上任意两点11(,())A x f x ,11(,())B x f x 之间的图象位于弦AB 的下方,即任意 12(,)x x x ∈,() f x 的值小于或等于弦AB 在x 点的函数值,弦AB 的方程 211121 ()() ()() f x f x y x x f x x x -= -+-. 对任意 12(,) x x x ∈有,整理得 21 122121 ()()()x x x x f x f x f x x x x x --≤ +--. 令 221()x x t x x -= -,则有01t <<,且12(1)x tx t x =+-,易得1 21 1x x t x x -=--,上式可写成 1212[(1)]()(1)() f tx t x tf x t f x +-≤+- 1.1凸凹函数的定义 凸性也是函数变化的重要性质。通常把函数图像向上凸或向下凸的性质,叫做函数的凸性。图像向下

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、 =n n x nx -1'() (n 为正整数) 3、 ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1'() 5、ln =x x 1 '() 6、sin cos =x x '() 7、 cos sin =-x x '() 8、=-x x 211'() 知识点二:导数的四则运算法则 1、v =u v u '''±±() 2、 =u v uv v u '''+() 3、(=Cu Cu '' ) 4、u -v =u v u v v 2'''() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b ,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b ,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15= (2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23 =0 ( (6)y x 5=

(7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 1 4= ,x =16 (2)sin y x = ,x π =2 (3)cos y x = ,x π=2 (4)sin y x x = ,x π =4 (5)3y x = ,11 28(,) (6)+x y x 2=1 ,x =1 (7)y x 2 = ,,24()

函数的单调性与曲线的凹凸性

§3.4 函数的单调性与曲线的凹凸性 一、函数单调性的判别法 定理1 设 )(x f 在区间I 上可导,则)(x f 在I 上递增(减)的充要条件是 )()('00≤≥x f . 证 若 f 为增函数,则对每一I x ∈0,当0x x ≠时,有 ()() 00 0≥--x x x f x f 。 令0x x →,即得 00≥)('x f 。 反之,若 )(x f 在区间I 上恒有0≥)('x f ,则对任意I x x ∈21,(设21x x <) ,应用拉格朗日定理,存在,使得 ()()()01212≥-=-x x f x f x f ξ')(。 由此证得 f 在I 上为增函数。 定理2 若函数 f 在),(b a 内可导,则f 在),(b a 内严格递增(递减)的充要条件是: (1)),(b a x ∈?有)()('00≤≥x f ; (2) 在),(b a 内的任何子区间上0≠)('x f . 推论 设函数在区间I 上可微,若))('()('00<>x f x f , 则f 在I 上(严格)递增(递 减). 注1 若函数 f 在),(b a 内(严格)递增(递减),且在点a 右连续,则f 在),[b a 上亦为(严 格)递增(递减), 对右端点b 可类似讨论. 注2 如果函数 )(x f 在定义区间上连续,除去有限个导数不存在的点外,导数存在且 连续,那么只要用方程0=)('x f 的根及)('x f 不存在的点来划分函数)(x f 的定义区间就 能保证 )('x f 在各个部分区间保持固定符号,因而函数)(x f 在每个部分区间上单调。 注意:如果函数 )(x f 在区间],[b a 上连续,在),(b a 内除个别点处一阶导数为零或 不存在外,在其余点上都有 0>)('x f (或0<)('x f ),那么由于连续性,)(x f 在区间 ],[b a 上仍然是单调增加(或单调减少)的。

函数的凹凸性在高考中的应用

函数的凹凸性在高考中的应用 崇仁二中廖国华 教学目的: ①了解函数的凹凸性,掌握增量法解决凹凸曲线问题。 ②培养学生探索创新能力,鼓励学生进行研究型学习。 教学重点:掌握增量法解决凹凸曲线问题 教学难点:函数的凹凸性定义及图像特征 教学过程: 一、课题导入 1.展示崇仁县第二中学2008届高三第一次月考试题12得分统计表 2.组织学生现场解答月考试题12并进行得分统计,以引出课题——— 题目:一高为H、满缸水量为V的鱼缸的截面如图1所示,其底部碰了一个小洞,满缸水从洞中流出.若鱼缸水深为h时水的体积为V,则函数V=f(h)的大致图象可能是图2中的().(选自《中学数学教学参考》2001年第1~2合期)的《试题集绵》. 函数凹凸性问题是近几年高考与平时训练中的一种新题型.这种题情景新颖、背景公平,能考查学生的创新能力和潜在的数学素质,体现“高考命题范围遵循教学大纲,又不拘泥于教学大纲”的改革精神.但由于函数曲线的凹凸性在中学教材中既没有明确的定义,又没有作专门的研究,因此,就多数学生而言,对这类凹凸性曲线问题往往束手无策;而教师的“导数”理解又不能被学生所接受.所以,对这类非常规性问题作一探索,并引导学生去得到一般性的解法,无疑对学生数学素质的提高和创新精神的培养以及在迅速准确解答高考中出现此类的试题都是十分重要的。 二、新课讲授 1、凹凸函数定义及几何特征 图1 图2

⑴引出凹凸函数的定义: 如图3根据单调函数的图像特征可知:函数)(1x f 与)(2x f 都是增函数。但是)(1x f 与)(2x f 递增方式不同。不同在哪儿?把形如)(1x f 的增长方式的函数称为凹函数,而形如)(2x f 的增长方式的函数称为凸函数。 ⑵凹凸函数定义(根据同济大学数学教研室主编《高等数学》第201页): 设函数f 为定义在区间I 上的函数,若对(a ,b )上任意两点1x 、2x ,恒有: (1)1212()()()2 2 x x f x f x f ++<,则称f 为(a ,b )上的凹函数; (2)12 12()() ( )2 2 x x f x f x f ++> ,则称f 为(a ,b )上的凸函数。 ⑶凹凸函数的几何特征: 几何特征1(形状特征) 图4(凹函数) 图5(凸函数) 如图,设21,A A 是凹函数y=)(x f 曲线上两点,它们对应的横坐标12x x <,则 111(,())A x f x ,222(,())A x f x ,过点12 2 x x +作ox 轴的垂线交函数于A ,交21A A 于B , 凹函数的形状特征是:其函数曲线任意两点1A 与2A 之间的部分位于弦21A A 的下方; 凸函数的形状特征是:其函数曲线任意两点1A 与2A 之间的部分位于弦21A A 的上方。 简记为:形状凹下凸上。

2021年二阶导数的应用---曲线的凹凸性与拐点

二阶导数的应用曲线的凹凸性与 拐点 欧阳光明(2021.03.07) 教学目标与要求 通过学习,使学生掌握利用二阶导数的符号判定函数在某一区 间上凹凸性的方法,为更好地描绘函数图形打好基础,同时,理解 拐点的定义和意义。 教学重点与难点 教学重点:利用函数的二阶导数判断曲线的凹凸性与拐点。 教学难点:理解拐点的定义和意义。 教学方法与建议证明曲线凹凸性判定定理时,除了利用“拉格朗日中值定理”证明外,还可用“泰勒定理”来证明;如果利用“拉格朗日中值定理”证明,则要配合函数图形来分析讲解如何想到需要两次使用“拉格朗日中值定理”的思路,切忌脱离图形,机械证明,让学生领悟不到思想,摸不着头脑。

在讲函数的凹凸性和曲线拐点的定义时,要强调凹凸性并不是曲线的固有性质,而是函数的性质,与所选的坐标系有关;而拐点是曲线的固有性质,与所选的坐标系无关。 教学过程设计 1. 问题提出与定义 函数的单调性对于描绘函数 图形有很大作用,但仅仅由单 调性还不能准确描绘出函数的 图形。比如,如果在区间 上,,则我们知道 在区间上单调增,但作图 (参见图1)的时候,我们不 能判断它增加的方式(是弧,还是弧),即不能判断曲线的凹凸性,所以研究曲线的凹凸性对于把握函数的性态、作图等是很有必要的! 在图1中,对于上凸的曲线弧,取其上任意两点,不妨取 作割线,我们总会发现不论两点的位置,割线段总位于弧段的下方,这种位置关系可以用不等式 来描述。同理,对于上凹的曲线弧 ,总可用不等式来描述。由此,我们想到对曲线的凹凸性做如下定义:凹凸性定义设在区间I上连续,如果对I上任意两点,,恒有

则称在I上的图形是(向上)凹的,简称为凹弧;如果恒有 则称在I上的图形是(向上)凸的,或简称为凸弧。 如果沿曲线从左向右走,则图形是(向上)凸的曲线的几何意义相当于右转弯,图形是(向上)凹的曲线相当于左转弯,而有切线的凹凸弧的分界点正是曲线转向的点,我们把这样的点称为拐点。 2. 凹凸性判定定理的引入 曲线凹凸性的定义自然能判别曲线的凹凸性,但实际使用起来需要取两个点,且两个不等式对于一些表达式较复杂的函数来说判断起来也不容易。因此,我们就想能否用其它方法来判定曲线的凹凸性。函数的单调性能由的符号确定,而对于凹凸性它束手无策,所以我们猜想凹凸性是否和有关? 经过分析,并利用泰勒公式,可证实我们的猜想是正确的,函数图形的凹凸性的确和的符号有关,于是得到了判断曲线凹凸性的定理。 定理 4.3设在上连续, 在内具有二阶连续导数,那么: (1)若在内>0,则在上的图形是凹的; (2)若在内<0,则在上的图形是凸的。 3. 判别凹凸性和拐点举例 例1. 判断曲线y x3的凹凸性. 解y3x 2,y6x.由y0, 得x0

函数凹凸性判别法与应用讲解

函数凹凸性判别法与应用 作者:祝红丽 指导老师:邢抱花 摘要 函数的凹凸性是函数的重要性质之一.它反映在函数图象上就是曲线的弯曲方向,通过 它可以较好地掌握函数对应曲线的性状.本文基于函数凹凸性概念的分析,着重探讨了函数凹凸 性的判别方法以及在解题中的应用,如在不等式证明中的应用以及在求函数最值时的应用等.并 结合相关例题做了较详细的论述. 关键词 凹凸性 导数 不等式 应用 1 引言 函数的凹凸理论在高等数学中占有重要地位.函数的凹凸性揭示了函数的因变量随自变 量变化而变化的快慢程度,如果结合函数的其它性质,可以使我们对函数的认识更加精确. 以函数()y f x 在某区间I 上单调增加为例说明.我们不难理解,随着自变量x 的稳定增 加,当函数y 的增量越来越大时,函数图形是凹的,当函数y 的增量越来越小时,函数图 形是凸的,当函数y 的增量保持不变时,函数图象是直线,对于减函数我们可以作类似的分 析. 作为研究分析函数的工具和方法,它在许多学科里有着重要的应用.长期以来,很多学 者致力于函数凹凸性的判别法及其应用的研究.近年来,关于函数凹凸性的判定与应用的研 究取得了一些成果,使函数凹凸性的判别法与应用更加的广泛. 本文先从两个具体的函数图象为出发点,直观上观察函数图象的弯曲方向,从而引出函 数凹凸性的概念和拐点的定义.并在此基础上介绍了凹凸函数的几何特征,接着介绍函数凹 凸性的几种判别方法,如:用定义去判别函数的凹凸性,利用二阶导函数判别函数的凹凸性, 及利用函数凹凸性的判定定理判别函数的凹凸性.其中利用函数凹凸性的概念是最基本的判 别方法,利用二阶导函数与函数凹凸性之间的关系是最常用的判别方法.最后举例介绍了函 数凹凸性在证明不等式、求函数最值以及函数作图中的应用.虽然说并不是所有的不等式都 能利用函数的凹凸性证明,但是利用函数的凹凸性去证明某些不等式,是其它方法不可替代 的.利用函数凹凸性证明不等式丰富了不等式的证明方法,开阔了解题思路.利用导数分析函 数的上升、下降,图形的凹凸性和极值.根据对这些的讨论可以帮助我们画出用公式表示的 函数图形,了解函数的凹凸性能够使对函数图形的描绘更加精确化.

基本初等函数的导数公式的推导过程

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220 011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααααααααααααααααααααα ααααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++L L L L ()11 11 C x x x ααααααα---?== 所以原命题得证. 二、正弦函数()sin f x x =的导数公式推导过程 命题

推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证. 三、余弦函数()cos f x x =的导数公式推导过程 命题

常用基本初等函数求导公式积分公式.doc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函数的和、差、积、商的求导法则 设,都可导,则 ( 1)( 2)(是常数) ( 3)( 4) 反函数求导法则 若函数在某区间内可导、单调且,则它的反函数在对应区间内也可导,且 或 复合函数求导法则 设,而且及都可导,则复合函数的导数为 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.

可以推出下表列出的公式: 常用积分公式表·例题和点评 ⑴kdx kx c ( k 为常数) ⑵x dx( 1) 1 x 1 c 1 特别, 1 dx 1 c , x d x 2 x23 c , 1 dx 2 x c x 2 x 3 x ⑶1 dx ln | x | c x ⑷ a x d x a x c , 特别,e x d x e x c ln a

⑸ sin x dx cos x c ⑹ cos x d x sin x c ⑺ 1 d x csc 2 x dx cot x c sin 2 x ⑻ 1 d x sec 2 x dx tan x c cos 2 x ⑼ 1 dx x c ( a 0) , 特别, a 2 x 2 arcsin a ⑽ 1 dx 1 x c (a 0) , 特别, a 2 x 2 arctan a a ⑾ 1 1 a x a 2 x 2 d x 2a ln a x c ( a 0) 或 1 1 x a x 2 a 2 dx 2a ln x a c ( a 0) ⑿ tan x dx ln cos x c ⒀ cot x dx ln sin x c 1 arcsin x c 1 d x x 2 1 1 x 2 dx arctan x c 1 ln csc x cot x c ⒁ csc x d x x dx ln tan c sin x 2 1 ln sec x tan x c ⒂ secx d x x dx c cos x ln tan 4 2 1 ( a 0) x 2 a 2 ⒃ a 2 dx ln x c x 2 ⒄ a 2 x 2 dx ( a 0) a 2 x x a 2 x 2 c arcsin 2 2 a ⒅ x 2 2 (a 0) x x 2 a 2 a 2 ln x x 2 a 2 c a d x 2 2

第四节函数单调性凹凸性与极值

第四节 函数单调性、凹凸性与极值 我们已经会用初等数学的方法研究一些函数的单调性和某些简单函数的性质,但这些方法使用范围狭小,并且有些需要借助某些特殊的技巧,因而不具有一般性. 本节将以导数为工具,介绍判断函数单调性和凹凸性的简便且具有一般性的方法. 分布图示 ★ 单调性的判别法 ★ 例1 ★ 单调区间的求法 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 例7 ★ 例8 ★ 曲线凹凸的概念 ★ 例9 ★ 例 10 ★ 曲线的拐点及其求法 ★ 例11 ★ 例12 ★ 例13 ★ 函数极值的定义 ★函数极值的求法 ★ 例14 ★ 例15 ★ 例16 ★第二充分条件下 ★ 例17 ★ 例18 ★ 例19 ★ 内容小结 ★ 课堂练习 ★ 习题3-4 ★ 返回 内容要点 一、函数的单调性:设函数)(x f y =在[a , b ]上连续, 在(a , b )内可导. (1) 若在(a , b )内0)(>'x f , 则函数)(x f y =在[a , b ]上单调增加; (2) 若在(a , b )内0)(<'x f , 则函数)(x f y =在[a , b ]上单调减少. 二、曲线的凹凸性:设)(x f 在[a , b ]上连续, 在(a , b )内具有一阶和二阶导数, 则 (1) 若在(a , b )内,,0)(>''x f 则)(x f 在[a , b ]上的图形是凹的; (2) 若在(a , b )内,,0)(<''x f 则)(x f 在[a , b ]上的图形是凸的. 三、连续曲线上凹弧与凸弧的分界点称为曲线的拐点 判定曲线的凹凸性与求曲线的拐点的一般步骤为: (1) 求函数的二阶导数)(x f ''; (2) 令0)(=''x f ,解出全部实根,并求出所有使二阶导数不存在的点; (3) 对步骤(2)中求出的每一个点,检查其邻近左、右两侧)(x f ''的符号,确定曲线的凹凸区间和拐点. 四、函数的极值 极值的概念; 极值的必要条件; 第一充分条件与第二充分条件; 求函数的极值点和极值的步骤: (1) 确定函数)(x f 的定义域,并求其导数)(x f '; (2) 解方程0)(='x f 求出)(x f 的全部驻点与不可导点; (3)讨论)(x f '在驻点和不可导点左、右两侧邻近符号变化的情况,确定函数的极值点; (4) 求出各极值点的函数值,就得到函数)(x f 的全部极值.

二阶导数与函数凹凸性证明

二阶导数与函数凹凸性证 明 This model paper was revised by the Standardization Office on December 10, 2020

证明设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么若在(a,b)内f"(x)>0,则f(x)在[a,b]上的图形是凹的。 设x1和x2是[a,b]内任意两点,且x10,所以f(x0+h)+f(x0-h)-2f(x0)>0,即[f(x0+h)+f(x0-h)]/2>f(x0),亦即[f(x1)+f(x2)]/2>f[(x1+x2)/2],所以f(x)在[a,b]上的图形是凹的。 f(x)<=1/2f(x1)+1/2f(x2),x=(x1+x2)/2,注意到1/2=x2-x/x2-x1=x-x1/x2-x1,那么代入 f(x)<=(x2-x)/(x2-x1)f(x1)+(x-x1)/(x2-x1)f(x2),等价于f(x)(x2- x1)<=(x2-x)f(x1)+(x-x1)f(x2)(1) 那个二阶条件是充要条件, 必要性证明,假设是凹的,(1)式改写成,f(x)-f(x1)/x-x1<=f(x2)- f(x)/x2-x,其中x1=f(x2)-f(x1)/x2-x1,所以 f'(x1)<=f'(x2),即导函数单调增,f''(x)>=0 充分性证明,由于f''(x)>=0,f'(x)单调增(广义的),这里要用拉格朗日定理了 f(x)-f(x1)/x-x1=f'(a),其中x1

基本初等函数及常数的导数公式

()()()()()()()( )( )()()1 222 2 ()'0 ()'()'ln '1 (log )'ln 1ln '(sin )'cos cos 'sin tan 'sec cot 'csc sec 'sec tan csc 'csc cot arcsin 'arccos '1arctan '11cot '1a a x x x x a c x ax a a a e e x x a x x x x x x x x x x x x x x x x x x x x arc x x -========-==-==-= ==+-=+ 导数运算法则 ()()()()()()()()()()()()()()()()()()()2'''''''''u x v x u x v x u x v x u x v x u x v x v x u x v x u x v x u x u x ±=±=+??-= ? ???????

1220 ln 1ln 1log ln sin cos cos sin tan sec cot csc sec sec tan csc csc cot arcsin arccos 1arctan 1arc cot u u x x x x a dc dx ux dx de e dx da a adx d x dx x d x dx x a d x xdx d x xdx d x xdx d x xdx d x x xdx d x x xdx d x dx d x dx d x dx x d x -========-==-==-= ==+-=211dx x + 微分的四则运算: ()()2()0d u v du dv d uv udv vdu v udv vdu d u u u ±=±=+-??=≠ ???

函数的凹凸性与拐点

第16 次理论课教学安排

图1 2.4导数的应用----曲线的凹凸与拐点 课题: 曲线的凹凸与拐点 目的要求:理解曲线凹凸性的概念、掌握判断函数图形的凹凸性、求函数图形 的拐点等方法。 重、难点:判断函数图形的凹凸性、求函数图形的拐点 教学方法:讲练结合 教学时数:1课时 教学进程: 函数的单调性可用函数的一阶到函数来判定,对于同样的递增函数有着不同的增法,如向上凸的增或凹的增,那么对于这两种不同的增法我们如何刻画那? 一、曲线的凹凸与拐点 1.曲线的凹凸定义和判定法 从图1可以看出曲线弧ABC 在区间()c a ,内是向下凹入的,此时曲线弧ABC 位于该弧上任一点切线的上方;曲线弧CDE 在区间()b c ,内是向上凸起的,此时曲线弧CDE 位于该弧上任一点切线的下方.关于曲线的弯曲方向,我们给出下面的定义: 定义1 如果在某区间内的曲线弧位于其任一点切线的上方,那么此曲线弧叫做在该区间内是凹的;如果在某区间内的曲线弧位于其任一点切线的下方,那么此曲线弧叫做在该区间内是凸的. 例如,图1中曲线弧ABC 在区间()c a ,内是凹的,曲线弧CDE 在区间()b c ,内是凸的. 由图1还可以看出,对于凹的曲线弧,切线的斜率随x 的增大而增大;对于凸 x y o () y f x =A B x y o () y f x =A B

的曲线弧,切线的斜率随x 的增大而减小.由于切线的斜率就是函数()x f y =的导数,因此凹的曲线弧,导数是单调增加的,而凸的曲线弧,导数是单调减少的.由此可见,曲线()x f y =的凹凸性可以用导数()x f '的单调性来判定.而()x f '的单调性又可以用它的导数,即()x f y =的二阶导数()x f ''的符号来判定,故曲线 ()x f y =的凹凸性与()x f ''的符号有关.由此提出了函数曲线的凹凸性判定定理: 定理1 设函数()x f y =在()b a ,内具有二阶导数. (1)如果在()b a ,内,()x f ''>0,那么曲线在()b a ,内是凹的; (2)如果在()b a ,内,()x f ''<0,那么曲线在()b a ,内是凸的. 例1 判定曲线3 x y =的凹凸性. 2.拐点的定义和求法 定义2 连续曲线上凹的曲线弧和凸的曲线弧的分界点叫做曲线的拐点. 定理2(拐点存在的必要条件) 若函数()x f 在0x 处的二阶导数存在,且点 ()()00,x f x 为曲线()x f y =的拐点,则().00=''x f 我们知道由()x f ''的符号可以判定曲线的凹凸.如果()x f ''连续,那么当()x f ''的符号由正变负或由负变正时,必定有一点0x 使()0x f ''=0.这样,点()()00,x f x 就是曲线的一个拐点.因此,如果()x f y =在区间()b a ,内具有二阶导数,我们就可以按下面的步骤来判定曲线()x f y =的拐点: (1) 确定函数()x f y =的定义域; (2) 求()x f y ''='';令()x f ''=0,解出这个方程在区间()b a ,内的实根; (3) 对解出的每一个实根0x ,考察()x f ''在0x 的左右两侧邻近的符号.如果()x f ''在0x 的左右两侧邻近的符号相反,那么点()()00,x f x 就是一个拐点,如果()x f ''在0x 的左右两侧邻近的符号相同,那么点()()00,x f x 就不是拐点. 例2 求曲线2 3 3x x y -=的凹凸区间和拐点. 解 (1)函数的定义域为()+∞∞-,; (2)()1666,632 -=-=''-='x x y x x y ;令0=''y ,得1=x ; (3)列表考察y ''的符号(表中“”表示曲线是凹的,“” 表示曲线 是凸的): x ()1,∞- 1 ()+∞,1 y '' - 0 + 曲线y 拐点 ()2,1-

二阶导数与函数凹凸性证明

二阶导数与函数凹凸性 证明 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

证明设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么若在(a,b)内f"(x)>0,则f(x)在[a,b]上的图形是凹的。 设x1和x2是[a,b]内任意两点,且x10,所以f(x0+h)+f(x0-h)-2f(x0)>0,即[f(x0+h)+f(x0-h)]/2>f(x0),亦即[f(x1)+f(x2)]/2>f[(x1+x2)/2],所以f(x)在[a,b]上的图形是凹的。 f(x)<=1/2f(x1)+1/2f(x2),x=(x1+x2)/2,注意到1/2=x2-x/x2-x1=x-x1/x2-x1,那么代入 f(x)<=(x2-x)/(x2-x1)f(x1)+(x-x1)/(x2-x1)f(x2),等价于f(x)(x2-x1)<=(x2- x)f(x1)+(x-x1)f(x2)(1) 那个二阶条件是充要条件, 必要性证明,假设是凹的,(1)式改写成,f(x)-f(x1)/x-x1<=f(x2)-f(x)/x2-x,其中x1=f(x2)-f(x1)/x2-x1,所以f'(x1)<=f'(x2),即导函数单调增,f''(x)>=0 充分性证明,由于f''(x)>=0,f'(x)单调增(广义的),这里要用拉格朗日定理了

基本初等函数的导数公式

基本初等函数的导数公式 学习目标: 掌握初等函数的求导公式; 学习重难点: 用定义推导常见函数的导数公式. 一、复习 1、导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的流程图。 (1)求函数的改变量()(x f x x f y -?+=? (2)求平均变化率 x y = ?? (3)取极限,得导数/y =()f x '=x y x ??→?0 lim 本节课我们将学习常见函数的导数。首先我们来求下面几个函数的导数。 (1)、y=x (2)、y=x 2 (3)、y=x 3 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? 二、学习过程 1、基本初等函数的求导公式: ⑴ ()kx b k '+= (k,b 为常数) ⑵ 0)(='C (C 为常数) ⑶ ()1x '= ⑷ 2()2x x '= ⑸ 32()3x x '= ⑹ 2 1 1()x x '=- ⑺ '= 由⑶~⑹你能发现什么规律? ⑻ 1()x x ααα-'= (α为常数) ⑼ ()ln (01)x x a a a a a '=>≠, ⑽ a a 11(log x)log e (01) x xlna a a '= = >≠,且 ⑾ x x e )(e =' ⑿ x 1)(lnx =' ⒀ cosx )(sinx =' ⒁ sinx )(cosx -=' 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。

例1、求下列函数导数。 (1)5-=x y ( 2)x y 4= (3)x x x y = (4)x y 3log = (5)y=sin(2 π +x) (6) y=sin 3 π (7)y=cos(2π-x) 例2.若直线y x b =-+为函数1y x = 图象的切线,求b 的值和切点坐标. 变式1.求曲线y=x 2 在点(1,1)处的切线方程. 总结切线问题:找切点 求导数 得斜率 变式2:求曲线y=x 2过点(0,-1)的切线方程 变式3:已知直线1y x =-,点P 为y=x 2 上任意一点,求P 在什么位置时到直线距离最短. 三:课堂练习. 1.求下列函数的导数 (1)3y x = (2)y = (3)2 1y x = (4)3x y = (5)2log y x = (6)cos y x = 四、小结 (1)基本初等函数公式的求导公式 (2)公式的应用 随堂检测: 1. 已知3()f x x =,则'(1)f = 。 2.设y = ,则它的导函数为 。 3.过曲线3y x -=上的点1 (2,)8 的切线方程为 。 4.求下列函数的导函数 (1)2y x -= (2)y = (3)41y x = (4)2x y = (5)4log y x = (6)ln y x = (7)sin()2y x π=- (8)3cos()2 y x π =+ 5.求曲线x y e =在0x =处的切线方程。

基本初等函数导数公式附导数运算法则

1.2.2基本初等函数的导数公式及导数的运算法则(一)教学目的:1熟练掌握基本初等函数的导数公式。 2掌握导数的四则运算法则; 3能利用给出的公式和法则求解函数的导数。 教学重点难点 重点:基本初等函数的导数公式、导数的四则运算法则 难点:基本初等函数的导数公式和导数的四则运算法则的应用 教学安排:两课时 教学过程: 引入:复习巩固导数的基本公式,及其基本运算规律。 且 知识讲解: 一:基本初等函数的导数公式 为了方便我们将可以直接使用的基本初等函数的导数公式表如下:

关于表特别说明:1 常数函数 的导 数是 0; 2幂函数 导数是以对应幂函数的指数为系数 3 余弦函 数的导数是正弦函数的相反 数。 从图像上来看,正弦函数在区间上单调递增,瞬时变化率为正, 和余弦函数在该区间的正负是一致的, 余弦函数在区间上是单调递减,瞬时变化率为负, 和正弦函数在该区间的正负是相反的,故 有一个负号。 4

的导数是它自身。 5 例1计算下列函数的导数 强调:1幂函数和指数函数是两种不同的函数,关键是看变量所处的 位置是在底数上还是在指数上。 2 导函数的定义域决定于原函数的定义域。 练习:求下列函数的导数。 例 2.(课本P14例1)假设某国家在20 那么在第10个年头,这种商品的价格上涨的速度大约 是多少(精确到0.01 )? /年) 在第10个年头,这种商品的价格约为0.08元/年的速度上涨.

提出问题: 10个年头,这种 0.01)? 二导数的计算法则 推论1 导数不变) 2 (常数与函数的积的导数,等于常数乘函数 的导数) 3 解决问题: 公式和求导法则,有 /年) 0.4元/年的速度上涨.例3 根据基本初等函数的导数公式和导数运算法则,求下列函数的导数,并注明定义域。

应用函数的凹凸性解高考数学题

应用函数的凹凸性解高考数学题 摘要:函数凹凸性问题在近几年高考试卷中屡见不鲜。但笔者通过平时的教学及高考后学生对这方面问题的反馈中发现大部分学生对此类问题缺乏应变能力,本文通过探讨函数凹凸性定义及几何特征入手,结合具体案例,研究凹凸性问题的一般解法,以期在今后复习过程中,提高针对性和时效性,同时,培养学生探讨创新能力,鼓励学生进行研究性学习,提高学生的数学素养。 关键词:函数凹凸性问题 探究 问题导入:2006年高考重庆卷(9 )理,如图,单位圆中弧AB x ,f(x)表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y=f(x)的图象是( ) 图1 图2 函数凹凸性问题是近几年高考与平时训练中的一种新题型.这种题情景新颖、背景公平,能考查学生的创新能力和潜在的数学素质,体现“高考命题范围遵循教学大纲,又不拘泥于教学大纲”的改革精神.但由于函数曲线的凹凸性在中学教材中既没有明确的定义,又没有作专门的研究,因此,就多数学生而言,对这类凹凸性曲线问题往往束手无策;对这类非常规性问题作一探索,并引导学生去得到一般性的解法,无疑对学生数学素质的提高和创新精神的培养以及在迅速准确解答高考中出现此类的试题都是十分重要的。 一、 凹凸函数定义及几何特征 1、 引出凹凸函数的定义: A B C D

如图3根据单调函数的图像特征可知:函数)(1x f 与)(2x f 都是增函数。但是)(1x f 与)(2x f 递增方式不同。不同在哪儿?把形如)(1x f 的增长方式的函数称为凹函数,而形如)(2x f 的增长方式的函数称为凸函数。 2、凹凸函数定义(根据同济大学数学教研室主编《高等数学》第201页): 设函数f 为定义在区间I 上的函数,若对(a ,b )上任意两点1x 、2x ,恒有: (1)1212()()( )22 x x f x f x f ++<,则称f 为(a ,b )上的凹函数; (2)1212()()()22x x f x f x f ++>,则称f 为(a ,b )上的凸函数。 3、凹凸函数的几何特征: 几何特征1(形状特征) 图4(凹函数) 图5(凸函数) 如图,设21,A A 是凹函数y=)(x f 曲线上两点,它们对应的横坐标12x x <,则 111(,())A x f x ,222(,())A x f x ,过点122 x x +作ox 轴的垂线交函数于A ,交21A A 于B , 凹函数的形状特征是:其函数曲线任意两点1A 与2A 之间的部分位于弦21A A 的下方; 凸函数的形状特征是:其函数曲线任意两点1A 与2A 之间的部分位于弦21A A 的上方。 简记为:形状凹下凸上。 几何特征2(切线斜率特征)

相关文档
相关文档 最新文档