文档库 最新最全的文档下载
当前位置:文档库 › 次函数压轴题最短路径问题

次函数压轴题最短路径问题

次函数压轴题最短路径问题
次函数压轴题最短路径问题

最短路径问题——和最小

【方法说明】

“和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离的和最小(将军饮马问题).如图所示,在直线l 上找一点P 使得PA +PB 最小.当点P 为直线AB ′与直线l 的交点时,PA +PB 最小.

l

B

A

l

【方法归纳】

①如图所示,在直线l 上找一点B 使得线段AB 最小.过点A 作AB ⊥l ,垂足为B ,则线段AB 即为所求.

l

A

l

②如图所示,在直线l 上找一点P 使得PA +PB 最小.过点B 作关于直线l 的对称点B ′,BB ′与直线l 交于点P ,此时PA +PB 最小,则点P 即为所求.

l

B

A

③如图所示,在∠AOB 的边AO ,BO 上分别找一点C ,D 使得PC +CD +PD 最小.过点P 分别作关于AO ,BO 的对称点E ,F ,连接EF ,并与AO ,BO 分别交于点C ,D ,此时PC +CD +PD 最小,则点

C ,

D 即为所求.

O

B

O

B

④如图所示,在∠AOB 的边AO ,BO 上分别找一点E ,F 使得DE +EF +CF 最小.分别过点C ,D 作关于AO ,

BO 的对称点D ′,C ′,连接D ′C ′,并与AO ,BO 分别交于点E ,F ,此时DE +EF +CF 最小,则点E ,F 即

为所求.

B

O

B O

⑤如图所示,长度不变的线段CD 在直线l 上运动,在直线l 上找到使得AC +BD 最小的CD 的位置.分别过

点A ,D 作AA ′∥CD ,DA ′∥AC ,AA ′与DA ′交于点A ′,再作点B 关于直线l 的对称点B ′,连接A ′B ′与直线l 交于点D ′,此时点D ′即为所求.

l

l

⑥如图所示,在平面直角坐标系中,点P 为抛物线(y =14x 2

)上的一点,点A (0,1)在y 轴正半轴.点P

在什么位置时PA +PB 最小?过点B 作直线l :y =-1的垂线段BH ′,BH ′与抛物线交于点P ′,此时PA +PB 最小,则点P 即为所求.

1.(13广东)已知二次函数y =x 2

-2mx +m 2

-1.

(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式; (2)如图,当m =2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;

(3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.

【思路点拨】

(1)由二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可;

(2)把m=2代入求出二次函数解析式,令x=0,求出y的值,得出点C的坐标;利用配方法或顶点坐标公式求出顶点坐标即可;

(3)根据当P、C、D共线时根据“两点之间,线段最短”得出PC+PD最短,求出CD的直线解析式,令y =0,求出x的值,即可得出P点的坐标.

【解题过程】

解:(1)∵二次函数的图象经过坐标原点O(0,0),

∴代入二次函数y=x2-2mx+m2-1,得出:m2-1=0,解得:m=±1,

∴二次函数的解析式为:y=x2-2x或y=x2+2x;

(2)∵m=2,∴二次函数y=x2-2mx+m2-1得:y=x2-4x+3=(x-2)2-1,

∴抛物线的顶点为:D(2,-1),

当x=0时,y=3,∴C点坐标为:(0,3),∴C(0,3)、D(2,-1);

(3)当P、C、D共线时PC+PD最短,

【方法一】

∵C(0,3)、D(2,-1),

设直线CD的解析式为y=kx+3,代入得:2k+3=-1,∴k=-2,∴y=-2x+3,

当y=0时,-2x+3=0,解得x=3

2

,∴PC+PD最短时,P点的坐标为:P(

3

2

,0).

【方法二】

过点D作DE⊥y轴于点E,

∵PO∥DE,∴PO

DE

CO

CE

,∴

PO

2

3

4

,解得:PO=

3

2

∴PC+PD最短时,P点的坐标为:P(3

2

,0).

2.(11菏泽)如图,抛物线y=1

2

x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;

(2)判断△ABC的形状,证明你的结论;

(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.

【思路点拨】

(1)把点A 的坐标代入求出b 的值,即可得出抛物线的解析式,通过配方法即可求出顶点D 的坐标; (2)观察发现△ABC 是直角三角形,可以通过勾股定理的逆定理证明.由抛物线的解析式,分别求出点B ,C 的坐标,再得出AB ,AC ,BC 的长度,易得AC 2+BC 2=AB 2,得出△ABC 是直角三角形;

(3)作出点C 关于x 轴的对称点C ′,连接C 'D 交x 轴于点M ,根据“两点之间,线段最短”可知MC +MD 的值最小.求出直线C 'D 的解析式,即可得出点M 的坐标,进而求出m 的值. 【解题过程】

解:(1)∵点A (-1,0)在抛物线y =12x 2+bx -2上,∴12×(-1 )2

+b ×(-1)-2=0,解得b =-32,

∴抛物线的解析式为y =12x 2-32x -2=12(x -32)2-258,∴顶点D 的坐标为 (32,-25

8

).

(2)当x =0时y =-2,∴C (0,-2),OC =2.

当y =0时,12x 2-3

2

x -2=0,∴x 1=-1,x 2=4,∴B (4,0),∴OA =1,OB =4,AB =5.

∵AB 2=25,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20,∴AC 2+BC 2=AB 2

. ∴△ABC 是直角三角形.

(3)作出点C 关于x 轴的对称点C ′,则C ′(0,2),OC ′=2,

连接C ′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC +MD 的值最小. 【方法一】

设直线C ′D 的解析式为y =kx +n ,则???n =23

2k +n =-258,解得:?

??n =2k =-

4112.∴y =-41

12x +2. ∴当y =0时,-4112x +2=0,x =2441.∴m =24

41

【方法二】

设抛物线的对称轴交x 轴于点E .

∵ED ∥y 轴,∴∠OC ′M =∠EDM ,∠C ′OM =∠DEM ,∴△C ′OM ∽△DEM . ∴OM EM =OC ′ED ,∴m 32-m =2258

,∴m =2441

3.(11福州)已知,如图,二次函数y=ax2+2ax﹣3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B

在A点右侧),点H、B关于直线l:y=

3

3

x+3对称.

(1)求A、B两点坐标,并证明点A在直线l上;

(2)求二次函数解析式;

(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.

【思路点拨】

(1)二次函数y=ax2+2ax﹣3a(a≠0)中只有一个未知参数a,令y=0,解出方程ax2+2ax﹣3a=0(a≠0),即可得到点A,B的坐标.把点A的坐标代入直线l的解析式即可判断A是否在直线上;

(2)根据点H、B关于过A点的直线l:y=

3

3

x+3对称,得出AH=AB=4,过顶点H作HC⊥AB交AB于

C点,得AC=1

2

AB=2,利用勾股定理求出HC的长,即可得出点H的坐标,代入二次函数解析式,求出a,即可得到二次函数解析式;

(3)直线BK∥AH易得直线BK的解析式,联立直线l的解析式方程组,即可求出K的坐标.因为点H,B 关于直线AK对称,所以HN=BN,所以根据“两点之间,线段最短”得出HN+MN的最小值是MB.作点K关于直线AH的对称点Q,连接QK,交直线AH于E,所以QM=KM,易得BM+MK的最小值为BQ,即BQ的长是HN+NM+MK的最小值,求出QB的长即可.

【解题过程】

解:(1)依题意,得ax2+2ax﹣3a=0(a≠0),解得x1=﹣3,x2=1,

∵B点在A点右侧,∴A点坐标为(﹣3,0),B点坐标为(1,0),

∵直线l:y=

3

3

x+3,当x=﹣3时,y=

3

3

×(-3)+3=0,∴点A在直线l上.

(2)∵点H、B关于过A点的直线l:y=

3

3

x+3对称,∴AH=AB=4,

过顶点H作HC⊥AB交AB于C点,则AC=1

2

AB=2,HC=23,

∴顶点H(-1,23),代入二次函数解析式,解得a=-

3

2

∴二次函数解析式为y=-

3

2

x2-3x+

33

2

(3)直线AH 的解析式为y =3x +33,直线BK 的解析式为y =3x +33,

由?

??

??y =33x +

3

y =3x -3

,解得???x =3

y =23

,即K (3,23),则BK =4,

∵点H 、B 关于直线AK 对称,

∴HN +MN 的最小值是MB ,KD =KE =23,

过点K 作直线AH 的对称点Q ,连接QK ,交直线AH 于E ,则QM =MK ,QE =EK =23,AE ⊥QK , ∴BM +MK 的最小值是BQ ,即BQ 的长是HN +NM +MK 的最小值, ∵BK ∥AH ,∴∠BKQ =∠HEQ =90°,由勾股定理得QB =8, ∴HN +NM +MK 的最小值为8.

4.(14海南)如图,对称轴为直线x =2的抛物线经过A (-1,0),C (0,5)两点,与x 轴另一交点为B .已

【思路点拨】

(1)由对称轴为直线x =2,可以得出顶点横坐标为2,设二次函数的解析式为y =a (x -2)2

+k ,再把点

A ,

B 的代入即可求出抛物线的解析式;

(2)求四边形MEFP 的面积的最大值,要先表示出四边形MEFP 面积.直接求不好求,可以考虑用割补法来求,过点P 作PN ⊥y 轴于点N ,由S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME 即可得出;

(3)四边形PMEF 的四条边中,线段PM ,EF 长度固定,当ME +PF 取最小值时,四边形PMEF 的周长取得最小值.将点M 向右平移1个单位长度(EF 的长度),得到点M 1(1,1),作点M 1关于x 轴的对称点M 2(1,-1),连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小. 【解题过程】

解:(1)∵对称轴为直线x =2,∴设抛物线解析式为y =a (x -2)2

+k .

将A (-1,0),C (0,5)代入得:???9a +k =04a +k =5,解得???a =-1

k =9,

∴y =-(x -2)2

+9=-x 2

+4x +5.

(2)当a =1时,E (1,0),F (2,0),OE =1,OF =2.设P (x ,-x 2

+4x +5),

如答图2,过点P 作PN ⊥y 轴于点N ,则PN =x ,ON =-x 2

+4x +5, ∴MN =ON -OM =-x 2

+4x +4.

S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME =1

2(PN +OF )?ON -12PN ?MN -12

OM ?OE

=12(x +2)(-x 2+4x +5)-12x ?(-x 2+4x +4)-12×1×1 =-x 2

+92x +92

=-(x -94)2+153

16

∴当x =94时,四边形MEFP 的面积有最大值为15316,此时点P 坐标为(94,153

16).

(3)∵M (0,1),C (0,5),△PCM 是以点P 为顶点的等腰三角形,∴点P 的纵坐标为3.

令y =-x 2

+4x +5=3,解得x =2±6.∵点P 在第一象限,∴P (2+6,3). 四边形PMEF 的四条边中,PM 、EF 长度固定,

因此只要ME +PF 最小,则PMEF 的周长将取得最小值.

如答图3,将点M 向右平移1个单位长度(EF 的长度),得M 1(1,1); 作点M 1关于x 轴的对称点M 2,则M 2(1,-1); 连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小.

设直线PM 2的解析式为y =mx +n ,将P (2+6,3),M 2(1,-1)代入得: ???(2+6)m +n =3

m +n =-1,解得:m =46-45 ,n =46+45,∴y =46-45x -46+45.

当y =0时,解得x =6+54.∴F (6+54,0).∵a +1=6+54,∴a =6+1

4

. ∴a =

6+1

4

时,四边形PMEF 周长最小.

y x

F

E

M

A

C

B

O

P

N y

x

F E

M 2

M 1

M A

C

O

P

图1 图2 2.(14福州)如图,抛物线y =1

2(x

3)

2

1与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,

顶点为D 了.

(1)求点A ,B ,D 的坐标;

(2)连接CD ,过原点O 作OE ⊥CD ,垂足为H ,OE 与抛物线的对称轴交于点E ,连接AE ,AD .求证:∠AEO =∠ADC ;

(3)以(2)中的点E 为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P ,过点P 作⊙E 的切线,切点为Q ,当PQ 的长最小时,求点P 的坐标,并直接写出点Q 的坐标.

x

y H

A

E

D

B

C

O

x

y

A

D

B

C

O

【思路点拨】

(1)由顶点式直接得出点D 的坐标,再令y =0,得12(x 3)2

1=0解出方程,即可得出点A ,B 的坐标;

(2)设HD 与AE 相交于点F ,可以发现△HEF 与△ADF 组成一个“8字型”.对顶角∠HFE =∠AFD ,只要∠

FHE =∠FAD 即可.因为∠EHF =90°,只需证明∠EAD =90°即可.由勾股定理的逆定理即可得出△ADE 为

直角三角形,得∠FHE =∠FAD =90°即可得出结论;

(3)先画出图形.因为PQ 为⊙E 的切线,所以△PEQ 为直角三角形,半径EQ 长度不变,当斜边PE 最小时,

PQ 的长度最小.设出点P 的坐标,然后表示出PE ,求出PE 的最小值,得到点P 的坐标,再求出点Q 的坐

标即可. 【解题过程】

解:(1)顶点D 的坐标为(3,

1).令y =0,得1

2

(x

3)

2

1=0,解得x 1=3+2,x 2=3

2.

∵点A 在点B 的左侧,∴A 点坐标(32,0),B 点坐标(3

2,0).

(2)过D 作DG ⊥y 轴,垂足为G .则G (0,

1),GD =3.令x =0,则y =72,∴C 点坐标为(0,7

2

).

∴GC =

7

2

(1) = 9

2

.设对称轴交x 轴于点M .∵OE ⊥CD ,∴∠GCD +∠COH =90.

∵∠MOE +∠COH =90,∴∠MOE =∠GCD .又∵∠CGD =∠OMN =90,∴△DCG ∽△EOM . ∴CG OM =DG

EM ,即923=3EM .∴EM =2,即点E 坐标为(3,2),ED =3. 由勾股定理,得AE 2

=6,AD 2

=3,∴AE 2

+AD 2

=6+3=9=ED 2

. ∴△AED 是直角三角形,即∠DAE =90.

设AE 交CD 于点F .∴∠ADC +∠AFD =90.又∵∠AEO +∠HFE =90, ∴∠AFD =∠HFE ,∴∠AEO =∠ADC .

(3)由⊙E 的半径为1,根据勾股定理,得PQ 2

=EP 2

-1.

要使切线长PQ 最小,只需EP 长最小,即EP 2最小.

设P 坐标为(x ,y ),由勾股定理,得EP 2

=(x -3)2

+(y -2)2

∵y =12

(x -3)2-1,∴(x -3)2=2y +2.∴EP 2=2y +2+y 2-4y +4=(y -1)2

+5.

当y =1时,EP 2最小值为5.把y =1代入y =12(x -3)2-1,得12(x -3)2

1=1,解得x 1=1,x 2=5.

又∵点P 在对称轴右侧的抛物线上,∴x 1=1舍去.∴点P 坐标为(5,1). 此时Q 点坐标为(3,1)或(195,13

5

).

x

y

F

H A

D

B

C

O G

E x

y

E Q 1

A

D

B

C

O

P

Q 2

6.(14遂宁)已知:直线l :y =﹣2,抛物线y =ax 2

+bx +c 的对称轴是y 轴,且经过点(0,﹣1),(2,0).

(1)求该抛物线的解析式;

(2)如图①,点P 是抛物线上任意一点,过点P 作直线l 的垂线,垂足为Q ,求证:PO =PQ . (3)请你参考(2)中结论解决下列问题:

(i )如图②,过原点作任意直线AB ,交抛物线y =ax 2

+bx +c 于点A 、B ,分别过A 、B 两点作直线l 的垂线,垂足分别是点M 、N ,连结ON 、OM ,求证:ON ⊥OM .

(ii )已知:如图③,点D (1,1),试探究在该抛物线上是否存在点F ,使得FD +FO 取得最小值?若存在,求出点F 的坐标;若不存在,请说明理由.

【思路点拨】

(1)因为抛物线的对称轴是y 轴,所以b =0,再代入点(0,﹣1),(2,0)即可求出抛物线的解析式; (2)由(1)设出P 的坐标,分别表示出PE ,PQ 的长度,即可得出结论;

(3)(i )因为BN ∥AM ,所以∠ABN +∠BAM =180°.由(2)的结论可得BO =BN ,AO =AM ,可得出∠BON =∠BNO ,∠AOM =∠AMO ,易得∠BON +∠AOM =90°再得到∠MON =90°即可;

(ii )如图③,作F ′H ⊥l 于H ,DF ⊥l 于G ,交抛物线与F ,作F ′E ⊥DG 于E ,由(2)的结论根据矩形的性质可以得出结论. 【解题过程】

解:(1)由题意,得?????-b 2a =0-1=c 0=4a +2b +c ,解得:?????a =14b =0

c =-1

,∴抛物线的解析式为:y =14x 2

-1;

(2)如图①,设P (a ,14a 2﹣1),就有OE =a ,PE =14a 2﹣1,∵PQ ⊥l ,∴EQ =2,∴QP =14

a 2

+1.

在Rt△POE 中,由勾股定理,得PO =

a 2+(1

4a 2-1)2=14

a 2+1,∴PO =PQ ;

(3)(i )如图②,∵BN ⊥l ,AM ⊥l ,∴BN =BO ,AM =AO ,BN ∥AM ,

∴∠BNO =∠BON ,∠AOM =∠AMO ,∠ABN +∠BAM =180°. ∵∠BNO +∠BON +∠NBO =180°,∠AOM +∠AMO +∠OAM =180°,

∴∠BNO +∠BON +∠NBO +∠AOM +∠AMO +∠OAM =360°,∴2∠BON +2∠AOM =180°, ∴∠BON +∠AOM =90°,∴∠MON =90°,∴ON ⊥OM ;

(ii )如图③,作F ′H ⊥l 于H ,DF ⊥l 于G ,交抛物线与F ,作F ′E ⊥DG 于E ,

l

∴∠EGH =∠GHF ′=∠F ′EG =90°,FO =FG ,F ′H =F ′O ,

∴四边形GHF ′E 是矩形,FO +FD =FG +FD =DG ,F ′O +F ′D =F ′H +F ′D ,∴EG =F ′H ,∴DE <DF ′, ∴DE +GE <HF ′+DF ′,∴DG <F ′O +DF ′,∴FO +FD <F ′O +DF ′,∴F 是所求作的点. ∵D (1,1),∴F 的横坐标为1,∴F (1,54).

【举一反三】

1.(12滨州)如图,在平面直角坐标系中,抛物线y =ax 2

+bx +c 经过A (﹣2,﹣4),O (0,0),B (2,0)三点.

(1)求抛物线

y =ax 2

+bx +c 的解析式;

(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.

2.(13成都)在平面直角坐标系中,已知抛物线y=﹣1

2

x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.

(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;

(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.

(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;

(ii)取BC的中点N,连接NP,BQ.试探究

PQ

NP+BQ

是否存在最大值?若存在,求出该最大值;若不存在,

请说明理由.

3.(11眉山)如图,在直角坐标系中,已知点A(0,1),B(﹣4,4),将点B绕点A顺时针方向90°得到点C;顶点在坐标原点的拋物线经过点B.

(1)求抛物线的解析式和点C的坐标;

(2)抛物线上一动点P,设点P到x轴的距离为d1,点P到点A的距离为d2,试说明d2=d1+1;

(3)在(2)的条件下,请探究当点P位于何处时,△PAC的周长有最小值,并求出△PAC的周长的最小值.

【参考答案】

1.解:(1)把A (﹣2,﹣4),O (0,0),B (2,0)三点的坐标代入y =ax 2

+bx +c 中,得

???4a -2b +c =-44a +2b +c =0c =0

,解得a =﹣12,b =1,c =0,∴解析式为y =﹣1

2x 2

+x . (2)由y =﹣12x 2+x =﹣12(x ﹣1)2

+12

可得抛物线的对称轴为x =1,并且对称轴垂直平分线段OB ,∴OM =BM , ∴OM +AM =BM +AM ,连接AB 交直线x =1于M 点,则此时OM +AM 最小, 过点A 作AN ⊥x 轴于点N ,在Rt△ABN 中,AB =AN 2

+BN 2

=42

+42

=42, ∴OM +AM 最小值为42.

2.解:(1)∵等腰直角三角形ABC 的顶点A 的坐标为(0,-1),C 的坐标为(4,3),

∴点B 的坐标为(4,-1).∵抛物线过A (0,-1),B (4,-1)两点,

∴ ???c =-1

-12

×16+4b +c =-1,解得:b =2,c =-1,

∴抛物线的函数表达式为:y =-12

x 2

+2x -1.

(2)(i )∵A (0,-1),C (4,3),∴直线AC 的解析式为:y =x -1.

设平移前抛物线的顶点为P 0,则由(1)可得P 0的坐标为(2,1),且P 0在直线AC 上. ∵点P 在直线AC 上滑动,∴可设P 的坐标为(m ,m -1), 则平移后抛物线的函数表达式为:y =-12

(x -m )2

+m -1.

解方程组:?

??y =x -1y =-12(x -m )2

+(m -1),解得???x 1=m y 1

=m -1, ???x 2=m -2

y 2

=m -3

, ∴P (m ,m -1),Q (m -2,m -3). 过点P 作PE ∥x 轴,过点Q 作QF ∥y 轴,则

PE =m -(m -2)=2,QF =(m -1)-(m -3)=2.∴PQ =22=AP 0.

若以M 、P 、Q 三点为顶点的等腰直角三角形,则可分为以下两种情况: ①当PQ 为直角边时:点M 到PQ 的距离为22(即为PQ 的长). 由A (0,-1),B (4,-1),P 0(2,1)可知, △ABP 0为等腰直角三角形,且BP 0⊥AC ,BP 0=22.

如答图1,过点B 作直线l 1∥AC ,交抛物线y =-12

x 2

+2x -1于点M ,则M 为符合条件的点.

∴可设直线l 1的解析式为:y =x +b 1,∵B (4,-1),∴-1=4+b 1,解得b ==-5,

∴直线l 1

的解析式为:y =x -5.解方程组 ?

??y =x -5y =-12x 2

+2x -1,得:???x 1

=4y 1

=-1,???x 2=-2

y 2

=-7

, ∴M 1(4,-1),M 2(-2,-7).

②当PQ 为斜边时:MP =MQ =2,可求得点M 到PQ 的距离为 2 . 如答图2,取AB 的中点F ,则点F 的坐标为(2,-1). 由A (0,-1),F (2,-1),P 0(2,1)可知:

△AFP 0为等腰直角三角形,且点F 到直线AC 的距离为 2 .

过点F 作直线l 2∥AC ,交抛物线y =-12x 2

+2x -1于点M ,则M 为符合条件的点.

∴可设直线l 2的解析式为:y =x +b 2,

∵F (2,-1),∴-1=2+b 2,解得b 2=-3,∴直线l 2的解析式为:y =x -3.

解方程组?

??y =x -3y =-12x 2

+2x -1,得:???x 1=1+5

y 1

=-2+5,???x 1=1-5

y 1=-2-5

, ∴M 3(1+5,-2+5),M 4(1-5,-2-5). 综上所述,所有符合条件的点M 的坐标为:

M 1(4,-1),M 2(-2,-7),M 3(1+5,-2+5),M 4(1-5,-2-5).

(ii )

PQ

NP +BQ

存在最大值.理由如下:

由i )知PQ =22为定值,则当NP +BQ 取最小值时,

PQ

NP +BQ

有最大值. 如答图2,取点B 关于AC 的对称点B ′,易得点B ′的坐标为(0,3),BQ =B ′Q . 连接QF ,FN ,QB ′,易得FN ∥PQ ,且FN =PQ ,∴四边形PQFN 为平行四边形.∴NP =FQ . ∴NP +BQ =FQ +B ′Q ≥FB ′=22

+42

=25.

∴当B ′、Q 、F 三点共线时,NP +BQ 最小,最小值为25.∴

PQ NP +BQ 的最大值为2225

=10

5.

F

3.解:(1)设抛物线的解析式:y =ax 2,∵拋物线经过点B (﹣4,4),∴4=a ?42

,解得a =14

所以抛物线的解析式为:y =14

x 2

过点B作BE⊥y轴于E,过点C作CD⊥y轴于D,如图,

∵点B绕点A顺时针方向90°得到点C,∴Rt△BAE≌Rt△ACD,

∴AD=BE=4,CD=AE=OE﹣OA=4﹣1=3,∴OD=AD+OA=5,∴C点坐标为(3,5);(2)设P点坐标为(a,b),过P作PF⊥y轴于F,PH⊥x轴于H,如图,

∵点P在抛物线y=1

4

x2上,∴b=

1

4

a2,∴d1=

1

4

a2,

∵AF=OF﹣OA=PH﹣OA=d1﹣1=1

4

a2﹣1,PF=a,

在Rt△PAF中,PA=d2=AF2+PF2=(1

4

a2-1)2+a2=

1

4

a2+1,∴d2=d1+1;

(3)由(1)得AC=5,∴△PAC的周长=PC+PA+5=PC+PH+6,要使PC+PH最小,则C、P、H三点共线,

∴此时P点的横坐标为3,把x=3代入y=1

4

x2,得到y=

9

4

即P点坐标为(3,9

4

),此时PC+PH=5,∴△PAC的周长的最小值=5+6=11.

一次函数压轴题包括答案.doc

))))))))) 1.如图 1,已知直线 y=2x+2 与 y 轴、 x 轴分别交于 A 、 B 两点,以 B 为直角顶点在第二象限作 等腰 Rt△ ABC (1)求点 C 的坐标,并求出直线 AC 的关系式. (2)如图 2,直线 CB 交 y 轴于 E,在直线 CB 上取一点 D ,连接 AD ,若 AD=AC ,求证: BE=DE . ( 3)如图 3,在( 1)的条件下,直线 AC 交 x 轴于 M , P(, k)是线段 BC 上一点, 在线段 BM 上是否存在一点N ,使直线 PN 平分△ BCM 的面积?若存在,请求出点N 的坐标;若不存在,请说明理由. 考点:一次函数综合题。 分析:( 1)如图 1,作 CQ⊥ x 轴,垂足为 Q,利用等腰直角三角形的性质证明△ ABO ≌△ BCQ,根据全等三角形的性质求OQ, CQ 的长,确定 C 点坐标; ( 2)同( 1)的方法证明△ BCH ≌△ BDF ,再根据线段的相等关系证明△ BOE ≌△ DGE,得出结论; ( 3)依题意确定 P 点坐标,可知△BPN 中 BN 变上的高,再由S△PBN= S△BCM,求 BN , 进而得出 ON . 解答:解:( 1)如图 1,作 CQ⊥ x 轴,垂足为 Q, ∵∠ OBA+ ∠ OAB=90 °,∠ OBA+ ∠QBC=90 °, ∴∠ OAB= ∠ QBC, 又∵ AB=BC ,∠ AOB= ∠ Q=90°, ∴△ ABO ≌△ BCQ , ∴BQ=AO=2 , OQ=BQ+BO=3 , CQ=OB=1 , ∴C(﹣ 3, 1), 由 A ( 0, 2),C(﹣ 3, 1)可知,直线 AC : y=x+2 ; (2)如图 2,作 CH⊥ x 轴于 H, DF ⊥x 轴于 F, DG ⊥ y 轴于 G, ∵ AC=AD ,AB ⊥ CB ,∴ BC=BD , ∴△ BCH ≌△ BDF ,∴ BF=BH=2 , ∴ OF=OB=1 , ∴DG=OB , ∴△ BOE ≌△ DGE , ∴BE=DE ;

2020年中考复习之提高篇——二次函数压轴题(包含答案)

2020年中考复习之提高篇——二次函数压轴题(含答案) 1.(2019抚顺)(12分)如图1,在平面直角坐标系中,一次函数334 y x =-+的图象与x 轴交于点A ,与y 轴交于B 点,抛物线2y x bx c =-++经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC x ⊥轴于点C ,交直线AB 于点E . (1)求抛物线的函数表达式 (2)是否存在点D ,使得BDE ?和ACE ?相似?若存在,请求出点D 的坐标,若不存在,请说明理由; (3)如图2,F 是第一象限内抛物线上的动点 (不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标.

2(2019沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点. (1)求直线DE和抛物线的表达式; (2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF面积是7时,求点P的坐标; (3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2√2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.

3(2018年辽宁本溪).如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE. (1)求抛物线的解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PBE的面积为s,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF 沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

二次函数压轴题专题及答案

2016年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m 的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.

八上期末复习一次函数压轴题附答案解析

一次函数综合题选讲及练习 例1.如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式; (2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B 两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长; (3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③. 问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由. 变式练习: 1.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3. (1)求点B的坐标; (2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标; (3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等. ①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.) ②求点P的坐标.

例2.如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC 交x轴负半轴与点C,且OC=OB. (1)求直线BC的函数表达式; (2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC; (3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由. 变式练习: 2.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO. (1)点A坐标是,BC= . (2)当点P在什么位置时,△APQ≌△CBP,说明理由. (3)当△PQB为等腰三角形时,求点P的坐标. 课后作业: 1.已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B两点. (1)求两直线与y轴交点A,B的坐标及交点C的坐标; (2)求△ABC的面积. 2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB (1)求直线AC的解析式; (2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.

精选中考二次函数压轴题[附答案解析]

精选中考二次函数压轴题(含答案) 1.如图,二次函数c x y +-=2 21的图象经过点D ??? ? ?-29,3,与x 轴交于A 、B 两点. ⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用) 2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EF BC ; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值; (3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式. 3.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16 x 2+bx +c 过O 、A 两点. (1)求该抛物线的解析式; (2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由; (3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由 4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC =23.设直线AC (第2(图1) (图

中考数学二次函数压轴题(含答案)

2017年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式. (2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0

一次函数相关的中考压轴题(含分析和答案)

一次函数是初中数学的重点内容之一,也是中考的主要考点。现举几例以一次函数为背景的中考压轴题供同学们在中考复习时参考 一.解答题(共30小题) 1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO 于D,点A的坐标为(﹣3,1). (1)求直线AB的解析式; (2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围; (3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值. 2.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式. (2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE. (3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由. 3.如图直线?:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值. (2)若P(x,y)是直线?在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围. (3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.

二次函数压轴题(含答案)

面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可. (2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

初二一次函数压轴题复习精讲

初二一次函数压轴题复 习精讲 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初二一次函数压轴题复习精讲 1.如图,直线l1的函数解析式为y=1/2x+1,且l1与x轴交于点D,直线l2经过定点A,B,直线l1与l2交于点C. (1)求直线l2的函数解析式;(2)求△ADC的面积. 2.如图,在平面直角坐标系中,点A的坐标为(2,3),点B在x轴的负 半轴上,△ABO的面积是3. (1)求点B的坐标;(2)求直线AB的解析式; (3)在线段OB的垂直平分线m上是否存在点M,使△AOM得周长最 短?若存在,直接写出点M的坐标;若不存在,说明理由. (4)过点A作直线AN与坐标轴交于点N,且使AN=OA,求△ABN的 面积. 3.如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6, 动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x 轴垂直. (1)求点C的坐标,并回答当x取何值时y1>y2? (2)求△COB的面积; (3)是否存在点P,使CP将△COB分成的两部分面积之比为1: 2?若存在,请求出点P的坐标;若不存在,请说明理由. (4)设△COB中位于直线m左侧部分的面积为s,求出s与x之 间函数关系式. 4.如图,在平面直角坐标系xOy 中,长方形OABC的顶点A C 、的坐标分别为 (3,0),(0,5).(1)直接写出点B的坐标; (2)若过点C的直线CD交AB边于点D,且把长方形OABC的周长分为1:3两部分,求直线CD的解析式;(3)设点P沿O A B C ---的方向运动到点C (但不与点O C 、重合),求△OPC的面积y与点P所行路程x之间的函数关系式及自变量x的取值范围 A C B x y O

中考数学—反比例函数的综合压轴题专题复习含详细答案

中考数学—反比例函数的综合压轴题专题复习含详细答案 一、反比例函数 1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数 (m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于 D. (1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值; (3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值; (2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得, 所以一次函数解析式为y= x+ , 把B(﹣1,2)代入y= 得m=﹣1×2=﹣2; (3)解:如下图所示: 设P点坐标为(t,t+ ), ∵△PCA和△PDB面积相等, ∴? ?(t+4)= ?1?(2﹣t﹣),即得t=﹣,

∴P点坐标为(﹣,). 【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到? ?(t+4)= ?1?(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标. 2.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣ 2),与y轴交于点C. (1)m=________,k1=________; (2)当x的取值是________时,k1x+b>; (3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标. 【答案】(1)4; (2)﹣8<x<0或x>4 (3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4). ∴CO=2,AD=OD=4. ∴S梯形ODAC= ?OD= ×4=12, ∵S四边形ODAC:S△ODE=3:1, ∴S△ODE= S梯形ODAC= ×12=4,

一次函数压轴题经典培优

一次函数压轴题训练 典型例题 题型一、A卷压轴题 一、A卷中涉及到的面积问题 例1、如图,在平面直角坐标系xOy中,一次函数 12 2 3 y x =-+与x轴、y轴分别相交于点 A和点B,直线 2 (0) y kx b k =+≠经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分. (1)求△ABO的面积; (2)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式。

练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :1 2 1 +=x y 与x 轴交于点C ,两直线1l ,2l 相交于点B 。 (1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。 2、如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运 动(0y 2 (2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式. (3)当x 为何值时,直线m 平分△COB 的面积(10分) A B C O D x y 1 l 2 l

二、A 卷中涉及到的平移问题 例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。 ①直线y=43x-8 3经过点C ,且与x 轴交与点E ,求四边形AECD 的面积; ②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式, ③若直线1l 经过点F ?? ? ??- 0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位 交x 轴于点M ,交直线1l 于点N ,求NMF ?的面积.

最新数学八级与一次函数有关的压轴题word版本

一次函数压轴题 1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1). (1)求直线AB的解析式; (2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围; (3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值. 2.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证: BE=DE.(3)如图3,在(1)的 条件下,直线AC交x轴于M, P(,k)是线段BC上一点, 在线段BM上是否存在一点N, 使直线PN平分△BCM的面积? 若存在,请求出点N的坐标;若 不存在,请说明理由.

3.如图直线?:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线?在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由. 4.如图,在平面直角坐标系xoy中,点A(1,0),点B(3,0),点,直线l经过点C, (1)若在x轴上方直线l上存在点E使△ABE为等边三角形,求直线l所表达的函数关系式; (2)若在x轴上方直线l上有且只有三个点能和A、B构成直角三角形,求直线l所表达的函数关系式;(3)若在x轴上方直线l上有且只有一个点在函数的图形上,求直线l所表达的函数关系式.

中考二次函数压轴试题分类汇编及答案(1)

中考二次函数压轴题分类汇编 一.极值问题 1.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式; (2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解; (3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标. 解:(1)由题设可知A(0,1),B(﹣3,), 根据题意得:,解得:, 则二次函数的解析式是:y=﹣﹣x+1; (2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0). ∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+, 则当x=﹣时,MN的最大值为; (3)连接MN、BN、BM与NC互相垂直平分, 即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC, 即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1, 故当N(﹣1,4)时,MN和NC互相垂直平分.

点评:本题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用,利用 二次函数的性质可以解决实际问题中求最大值或最小值问题. 2.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式. (2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值. (3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标. 考点:二次函数综合题. 分析:(1)利用待定系数法求出抛物线的解析式; (2)首先求出△PCE面积的表达式,然后利用二次函数的性质求出其最大值; (3)△OMD为等腰三角形,可能有三种情形,需要分类讨论. 解答:解:(1)把点C(0,﹣4),B(2,0)分别代入y=x2+bx+c中, 得, 解得 ∴该抛物线的解析式为y=x2+x﹣4. (2)令y=0,即x2+x﹣4=0,解得x 1=﹣4,x 2 =2, ∴A(﹣4,0),S △ABC =ABOC=12. 设P点坐标为(x,0),则PB=2﹣x. ∵PE∥AC, ∴∠BPE=∠BAC,∠BEP=∠BCA, ∴△PBE∽△ABC, ∴,即, 化简得:S △PBE =(2﹣x)2.

中考数学二次函数压轴题精编(含答案)

(2010湖北咸宁)16.如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点, 与反比例函数k y x =的图象相交于C ,D 两点,分别过C ,D 两 点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE . 有下列四个结论: ①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC BD =. 其中正确的结论是 .( 把你认为正确结论的序号都填上) (2010江苏徐州)25.(本题8分)如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函 数y= x m 的图象的两个交点,直线AB 与y 轴交于点C . (1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-x m <0的解集(直接写出答案). 1. (2009遂宁)把二次函数34 12+--=x x y 用配方法化成()k h x a y +-=2 的形式 A.()22412+--=x y B. ()42412+-=x y C.()42412++-=x y D. 3212 12 +??? ??-=x y 2. (2009嘉兴)已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( ▲ ) 3. (2009烟台)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函 数a b c y x ++= 在同一坐标系内的图象大致为( ) 4. (2009黄石)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图3所示, 下列结论:①abc >0 ②2a+b <0 ③4a -2b+c <0 ④a+c >0, 其中正确结论的个数为( ) O y x 1 -1A x y O 1 -1 B x y O 1 -1 C x y O 1 -1 D 1- 1 O x y (第11题图) y x O y x O B . C . y x O A . y x O D . A B O x y (第21题) 2 1 2 3 -3 -1 -2 1 3 -3 -1 -2 y x D C A B O F E (第16题)

一次函数压轴题含答案

1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等 腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式. (2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM 上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由. 2.如图直线:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0) (1)求k的值. (2)若P(x,y)是直线在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围. (3)当点P运动到什么位置时,△OPA的面积为9,并说明理由. 3.如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C. (1)若直线AB解析式为y=﹣2x+12, ①求点C的坐标; ②求△OAC的面积. (2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q 分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由. 4.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点. (1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式; (2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标; (3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由. 5.如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合. (1)求点F的坐标和∠GEF的度数; (2)求矩形ABCD的边DC与BC的长; (3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t (0≤t≤6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围. 6.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A 点的坐标是(1,0).

中考二次函数压轴题及答案

二次函数压轴题精讲 1.二次函数综合题 (1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项. (2)二次函数与方程、几何知识的综合应用 将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题 从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

例1. 已知:如图,在平面直角坐标系中,直线与x轴、y轴的交点分 别为A、B,将∠对折,使点O的对应点H落在直线上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线上是否存在点P,使得四边形为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线的交点为T,Q为线段上一点,直接写出﹣的取值范围.

2.如图,直线2与抛物线26(a≠0)相交于A(,)和B(4,m),点P是线 段上异于A、B的动点,过点P作⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; (3)求△为直角三角形时点P的坐标.

初二一次函数压轴题整理

初二一次函数压轴题复习精讲 1.如图,直线l1的函数解析式为y=1/2x+1,且l1与x轴交于点D,直线l2经过定点A,B,直线l1与l2交于点C.(1)求直线l2的函数解析式;(2)求△ADC的面积. 2.如图,在平面直角坐标系中,点A的坐标为(2,3),点B在x轴的负半轴上,△ABO的面积是3. (1)求点B的坐标;(2)求直线AB的解析式; (3)在线段OB的垂直平分线m上是否存在点M,使△AOM得周长最短?若存在,直接写出点M的坐标;若不存在,说明理由. (4)过点A作直线AN与坐标轴交于点N,且使AN=OA,求△ABN的面积.3.如图,直线OC 、BC的函数关系式分别是 y1=x和y2=-2x+6,动点P (x,0)在OB上运动(0<x<3),过点P 作直线m与x轴垂直. (1)求点C的坐标,并回答当x取何值时y1>y2? (2)求△COB的面积; (3)是否存在点P,使CP将△COB分成的两部分面积之比为1:2?若存在,请求出点P的坐标;若不存在,请说明理由. (4)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式. 4.如图,在平面直角坐标系xOy 中,长方形OABC的顶点A C 、的坐标分别为(3,0), (0,5).(1)直接写出点B的坐标; (2)若过点C的直线CD交AB边于点D,且把长方形OABC的周长分为1:3两部分,求直线CD的解析式;(3)设点P沿O A B C ---的方向运动到点C(但不与点 O C 、重合),求△OPC的面积y与点P所行路程x之间的函数关系式及自变量x的取值范围 A C B x y O

5.已知直线y kx b =+经过点223,5M ? ? ???、120,5N ?? ?? ?.(1)求直线MN 的解析式; (2)当0y >时,求x 的取值范围; (3)我们将横坐标、纵坐标均为整数的点称为整数点.直接写出此直线与两坐标轴围成的三角形的内部(不包含边界)的整数点的坐标. 6.在平面直角坐标系xoy 中,直线m x y +-=经过点)0,2(A ,交y 轴于点B ,点D 为x 轴上一点,且1=?ADB S (1)求m 的值 (2)求线段OD 的长 (3)当点E 在直线AB 上(点E 与点B 不重 合),EDA BDO ∠=∠,求点E 的坐标 7.已知一次函数y=kx+b ,y 随x 增大而增大,它的图象经过点(1,0)且与x 轴的夹角为45°, (1)确定这个一次函数的解析式; (2)假设已知中的一次函数的图象沿x 轴平移两个单位,求平移以后的直线及直线与y 轴的交点坐标. 8.如图①所示,直线l1:y=3x+3与x 轴交于B 点,与直线l2交于y 轴上一点A ,且l2与x 轴的交点为C (1,0). (1)求证:∠ABC=∠ACB ; (2)如图②所示,过x 轴上一点D (-3,0) 作DE ⊥AC 于E ,DE 交y 轴于F 点,交AB 于G 点,求G 点的坐标. (3)如图③所示,将△ABC 沿x 轴向左平移, AC 边与y 轴交于一点P (P 不同于A 、C 两点), 过P 点作一直线与AB 的延长线交于Q 点,与x 轴交于M 点,且CP=BQ ,在△ABC 平移的过程中,线段OM 的长度是否发生变化?若不变,请求出它的长度;若变化,确定其变化范围.

2020中考数学二次函数压轴题(含答案)

中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为.

2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标. 解答: 解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程: x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有:

相关文档
相关文档 最新文档