文档库 最新最全的文档下载
当前位置:文档库 › 数列极限证明例题

数列极限证明例题

数列极限证明例题
数列极限证明例题

这里就有几个这样做法的例题,均为采用加1的做法。就只想弄懂一定:到底有没有必要“+1”?

数列极限的证明

数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限求极限我会 |Xn+1-A|<|Xn-A|/A 以此类推,改变数列下标可得 |Xn-A|<|Xn-1-A|/A ; |Xn-1-A|<|Xn-2-A|/A; …… |X2-A|<|X1-A|/A; 向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n) 2 只要证明{x(n)}单调增加有上界就可以了。 用数学归纳法: ①证明{x(n)}单调增加。 x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则 x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1<4, 设x(k)<4,则 x(k+1)=√[2+3x(k)]<√(2+3*4)<4。 3 当0 当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则: lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明 3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞ (2)lim[(3n+1)/(2n+1)]=3/2 n→∞ (3)lim[根号(n+1)-根号(n)]=0 n→∞ (4)lim0.999…9=1 n→∞ n个9

3第一讲__数列的极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →,,0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注 2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是唯一 的,若N 满足定义中的要求,则取 ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00,, 0lim ε,有00ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{} k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞→,, 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{} k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?, ,有G x n >,则称{}n x 为无穷大量,记

考研数列极限计算汇总

数列极限及其计算(习题部分) 数列极限存在性的证明以及数列极限的计算,是考研数学的重难点,有时会命制成压轴题。 在考研范围内,数列极限计算常用的方法主要有单调有界准则、夹逼准则、初等变形、定积分定义、归结原理、级数收敛的必要条件、转化为幂级数求和等。本章部分题目涉及到后续章节的知识(如利用定积分定义求极限),自学本讲义的同学可暂时跳过。 题型一、递推数列的极限 (一)单调有界准则 例题1收敛并求极限值 注:利用单调有界准则证明递推数列的收敛性,是常考题型。在具体证明单调性和有界性时,常用到一些经典的不等式放缩,如均值不等式,柯西不等式等等;有时也可用数学归纳法证明。(在进行含有自然数的命题的证明时,我们常常可以考虑数学归纳法,这是一个很好用也很流氓的一个方法。) 类题1 ,证明收敛并求极限值 类题2 ,证明收敛并求极限值 ,问此时是否收敛,该如何 证明?若将,又该如何证明? 类题3 ,证明收敛并求极限值 [注]:此题对于极限值的取舍才是关键点,这是很多辅导书都没有讲清楚的地方,希望大家好好思考。 类题4 设数列,证明收敛并求极限 类题5设可导,且,对于数列收敛, 且极限值满足方程 类题6 收敛并求极限值 类题7 (2018年数学二压轴题)设,证明收敛并求极限 注:这题是我当年考研时的原题,当时考完以后,很多人就在吹这个题多么的不常规,是考研史上最难的数列极限题。也正常,弱者总喜欢找各种理由。 例题2设收敛 注:①.该题说明,某些不是递推型的数列,也可以用单调有界准则来证明 ②.是一个非常重要的极限,我们将这个极限值定义为欧拉常数, 和是等价无穷

是发散的。() 例题3问数列的单调性和函数的单调性之间有无必然联系?请猜想并证明你的判断。 例题4 (2013年数学二压轴题)设函数 (1) 求的最小值 (2)设数列收敛并求极限 注:本题的解法值得借鉴。该题说明,即使某些数列的递推关系由不等式给出,也能使用单调有界准则。 类题1 收敛并求极限 类题2 ,证明收敛并求极限 (二)非单调的迭代数列 例题1收敛并求极限值 注:对付这种不单调的数列,我们可以采取“先斩后奏”的办法——即先把极限值找出来,然后再用递推放缩的方法,证明这个数字就是该数列的极限。以下还有几道类似的题—— 类题1 ,证明收敛并求极限值 类题2 收敛并求极限值 例题2 压缩映像原理 设当,满足——对于上任意两点和,都有 ,试证明—— (1) ,使得 (2) ,证明收敛,且 注:压缩映像原理根本就不要求数列是单调的——只要函数是一个压缩映射,那么就一定收 若题目还告知了可导,那么在具体使用压缩映像原理证明数列收敛时,更常用的是下面这个推论:推论成立,则一定收敛。 (在利用压缩映像原理解题时,最常见的错误就是忽略了 ——正是因为,才能保证数列收敛。这里的相当于是一个“压缩比例” 或“压缩因子”。所以,如果只是证明出来了,是证明不出数列收敛的;, 才能说明数列收敛,也就是说,这个是不可缺少的,在解题时一定要找到这个具体的,切记!)

数列极限四则运算法则的证明.(优选)

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(An+Bn)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An·Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n→+∞的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于ε>0(不论它多么小),总存在正数N,使得对于满足n >N的一切Xn,不等式|Xn-A|<ε都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明: 引理1: limC=C. (即常数列的极限等于其本身) 法则1的证明: ∵limAn=A, ∴对任意正数ε,存在正整数N?,使n>N?时恒有|An-A|<ε.①(极限定义) 同理对同一正数ε,存在正整数N?,使n>N?时恒有|Bn-B|<ε.② 设N=max{N?,N?},由上可知当n>N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε. 由于ε是任意正数,所以2ε也是任意正数. 即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε. 由极限定义可知,lim(An+Bn)=A+B. 为了证明法则2,先证明1个引理. 引理2:若limAn=A,则lim(C·An)=C·A.(C是常数) 证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义) ①式两端同乘|C|,得: |C·An-CA|<Cε. 由于ε是任意正数,所以Cε也是任意正数. 即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε. 由极限定义可知,lim(C·An)=C·A. (若C=0的话更好证) 法则2的证明: lim(An-Bn) =limAn+lim(-Bn) (法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理. 引理3:若limAn=0,limBn=0,则lim(An·Bn)=0. 证明:∵limAn=0, ∴对任意正数ε,存在正整数N?,使n>N?时恒有|An-0|<ε.③(极限定义) 同理对同一正数ε,存在正整数N?,使n>N?时恒有|Bn-0|<ε.④

数列极限常见题型及解法

数列极限常见题型及解法 汤原县鹤立高级中学 乔春华 数列极限是描述数列当项数n 无限增大时的变化趋势,是高考考点之一,多以选择题、填空题出现。对于常见类型,应熟悉其解法和 变形技巧。注意向三个重要极限C C n =∞→lim (C 为常数),0lim =∞→n c n (c 为常数),0lim =∞ →n n q (1

综上:???? ?????><==++++++++----∞→) (极限不存在q p q p q p b a b n b n b n b a n a n a n a q q q q p p p p n )(0)(lim 0011101110 二、无限项形式变为有限项形式再求极限 因为极限的运算法则,只适用于有限个数列之和求极限,所以求项数不定的积式、和式的极限分两步①将积式、和式化为有限项的积或和;②求极限 例4.求极限n n n n n n n n -+++-+-∞ →2221374lim 解:原式=n n n n n -++∞→22) 134(lim 2 32253lim =-+=∞→n n n 例5.求极限)211()411()311(lim +--?-∞→n n n 解:原式=?? ????++?????∞→21544332lim n n n n 22 2lim =+=∞→n n n 三、无理式求极限 通常是将分子或分母有理化,使式子中的减号变为加号。 1.没有分母的,可将分母看作1,再对分子进行有理化 2.分子、分母都含有无理式(减法)的,可分子、分母同时有理化 例6.求极限)1(lim n n n n -+∞ → 解:原式=n n n n n n n n ++++-+∞→1)1)()1(lim

高数极限60题及解题思路

高数极限60题 1.求数列极限)sin 1(sin lim n n n -+∞ →。 2.设∑==n k k n b k S 1,其中)!1(+=k b k ,求n n S ∞→lim 。 3.求数列极限)321(lim 1 2-∞→+?+++n n nq q q ,其中1>a x ,且n n ax x =+1,证明:n n x ∞→lim 存在,并求出此极限值。 16.设21=x ,且n n x x +=+21,证明:n n x ∞ →lim 存在,并求出此极限值。 17.设2221...31211n x n ++++=(n 为正整数),求证:n n x ∞→lim 存在。

第一讲 数列的极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →, , 0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是 唯一的,若N 满足定义中的要求,则取 ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00, , 0lim ε,有00 ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{}k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞ →, , 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{}k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?,,有G x n >,则称{}n x 为无穷大量,记 作∞=∞ →n n x lim .

数列极限例题

三、数列的极限 观察数列})1(1{1 n n --+当∞→n 时的变化趋势. 问题: 当n 无限增大时, n x 是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察: 当n 无限增大时, n x n n 1 )1(1--+=无限接近于1. 问题: “无限接近”意味着什么?如何用数学语言刻划它. =-1n x n n n 11)1(1 =-- 给定,1001 由,10011n 时, 有,100 11<-n x 给定,10001只要1000>n 时, 有,1000 11<-n x 给定,100001只要10000>n 时, 有,10000 11<-n x 给定,0>ε只要])1[(ε =>N n 时, 有ε<-1n x 成立. 定义 如果对于任意给定的正数ε(不论它多么小), 总存在正整数N , 使得对于N n >时的一切n x , 不等式ε<-a x n 都成立, 那末就称常数a 是数列n x 的极限, 或者称数列n x 收敛于a , 记为 ,lim a x n n =∞ → 或).(∞→→n a x n 如果数列没有极限, 就说数列是发散的. 注意: N -ε定义,0,0lim :>?>??=∞ →N a x n n ε 使N n >时, 恒有.ε<-a x n 其中记号:?每一个或任给的; :?至少有一个或存在. 数列收敛的几何解释: 当N n >时, 所有的点n x 都落在),(εε+-a a 内, 只有有限个(至多只有N 个)落在其外. 注意:数列极限的定义未给出求极限的方法. 121+N 3

例1 证明.1)1(lim 1 =-+-∞→n n n n 证 注意到1-n x 1)1(1--+=-n n n n 1=. 任给,0>ε 若要,1ε<-n x 只要,1εn 所以, 取 ],1 [ε =N 则当N n >时, 就有 ε<--+-1)1(1 n n n . 即.1)1(lim 1 =-+-∞→n n n n 重要说明:(1)为了保证正整数N ,常常对任给的,0>ε给出限制10<<ε; (2)逻辑“取 ],1 [ε=N 则当N n >时, 就有ε<--+-1)1(1 n n n ”的详细推理见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理. 由于111+<≤??????=N N ε ε,所以当N n >时一定成立ε11>+≥N n ,即得εε 不妨取10<<ε, 若要1-n x =1)1(1--+=-n n n n 1=<ε ,只要 ,1ε>n 所以, 取 ],1[ε=N 则当N n >时, 由于111+<≤??????=N N ε ε,所以当N n >时一定成立ε11>+≥N n ,即得εε寻找N , 但不必要求最小的N. 例3证明0lim =∞→n n q , 其中1

相关文档