文档库 最新最全的文档下载
当前位置:文档库 › 单级低频电压放大电路

单级低频电压放大电路

单级低频电压放大电路
单级低频电压放大电路

东南大学电工电子实验中心

实验报告

课程名称:电子线路实践

第三、四次实验

实验名称:单级低频电压放大电路

院(系):电气工程学院专业:

姓名:学号:

实验室:实验组别:无同组人员:实验时间:评定成绩:审阅老师:

实验报告格式

实验准备:

1.实验目的和要求(或电路需要实现的功能及主要功能指标)

2.实验原理及实现方案

3.实验电路设计与参数选择

4.需要设计的参数及数据测量方法

5.理论计算数据或软件模拟数据

6.实验数据记录格式

7.实验使用仪器准备(包括仪器的名称、型号、规格、编号、实用状况)

8.实验过程或实验步骤

实验过程:

1.实验步骤与实验数据记录

2.实验最终电路与电路参数

3.实验中出现的问题及解决方案

实验总结:

1.实验数据处理

2.实验误差分析

3.实验结果讨论

4.思考题

一、实验目的和要求

1、掌握单级放大电路的工程估算、安装和调试;

2、了解三极管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、增益、幅频特性等的基本概

念以及测量方法;

3、掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流电压表、函数发生器的使

用技能训练。

二、实验原理

预习思考:

1、器件资料:

上网查询本实验所用的三极管9013的数据手册,画出三极管封装示意图,标出每个管脚的名称,将相关参数值填入下表:

封装示意图如右图

2、 偏置电路:

教材图1-3中偏置电路的名称是什么,简单解释是如何自动调节BJT 的电流I C 以实现稳定直流工作点的作用的,如果R 1 、R 2取得过大能否再起到稳定直流工作点的作用,为什么?

答:该电路为射极偏置电路。

利用R1、R2构成的分压器给三极管基极b 提供电位UB 。如果满足电流I1>>IBQ 的条件,基极电位可以近似由U B=2

11R R R +=

?Vcc 。当环境温度升高,ICQ 增大,RE 压降增大。由于基极电位固定,

发射极上电压减小,IBQ 减小,使得ICQ 减小,通过这样的自动调节ICQ 趋于稳定。

如果R1 、R2取得过大,R1中电流很小,不能满足R1R2支路中的电流I1>>IBQ 的条件。此时,UBQ 在温度变化时无法保持基本不变,直流工作点稳定的实现失效。

3、 电压增益:

(I) 对于一个低频放大器,一般希望电压增益足够大,根据您所学的理论知识,分析有哪些方法可以提

高电压增益,分析这些方法各自优缺点,总结出最佳实现方案。 答:依据电压增益计算公式

'

''

26(1)300(1)

L

L L

V be

b e

CQ

R R R A mV r r r I βββββ???=-

=-=-

++++

采用下述方法可以提高电压增益:

? 增大集电极电阻RC 和负载的输入阻抗RL 。缺点:RC 太大,受VCC 的限制,会使晶体管进入饱

和区,电路将不能正常工作。

? Q 点适当选高,即增大ICQ 。缺点:电路耗电大、噪声高。 ? 选取高β值的三极管

? 选用多极放大电路级联形式来获取足够大的电压增益。一般二级电路的放大倍数可达几百倍,三

级电路的放大倍数可达几千倍。缺点:电路较复杂,输出信号易产生自激,需采取措施消除。 最佳方案是:在射结电阻两端并联一个大电容,对于交流近似短路,但不影响工作点的大小和稳定性,成为射极旁路电容。

(II) 实验中测量电压增益的时候用到交流毫伏表,试问如果用万用表或示波器可不可以,有什么缺点。

答:在频率低于100KHz 时万用表(指多功能数字式万用表,且其频率测量指标在100khz 以上)的交流挡和交流毫伏表都可以比较精确得测量交流电压,当频率大于100KHz 小于1MHz 时,万用表的测量精度下降,只能采用交流毫伏表测量,对于更高频率的信号,必须选择高频毫伏表测量。而示

波器测量的电压得精度一般比毫伏表低一个数量级,无法在需要精确测量电压值的时候使用。

4、 输入阻抗: (I) 放大器的输入电阻R i 反映了放大器本身消耗输人信号源功率的大小,设信号源内阻为R S ,试画出

图1-3中放大电路的输入等效电路图,回答下面的连线题,并做简单解释:

答:放大电路的输入等效电路图如右图,图中RS 为信号源内阻。信号源VS 、放大电路输入阻抗 Ri 、信号源内阻RS 串连成回路,计算可得:

S S i V I R R =

+ (1) S i i S i

V R

V R R =+(2)

2S S S i V P R R =+(3)22

()

S i

i S i V R P R R =+(4) ? 非理想信号源输出的VS 和RS 固定,输出功率有限,即VS ×I 为常量

? 根据公式(1),Ri << RS ,输出电流I 增加 ? 根据公式(2),Ri >> RS ,加在Ri 上的电压增加 ?

根据公式(4),Ri = RS ,加在Ri 上的功率最大

(II) 教材图1-4是实际工程中测量放大器输入阻抗的原理图,试根据该图简单分析为什么串接电阻R S

的取值不能太大也不能太小。

答:如果串联电阻RS 过大信号Vi 值将很小,电压表测量小信号的时候由于噪声干扰等原因测量精度下降,测量误差增加,RS 过小则信号Vi 值将很大,由于电压表分辨率有限,同样会引入较大误差

(III) 对于小信号放大器来说一般希望输入阻抗足够高,根据您所学的理论知识,分析有哪些方法可以提

高教材图1-3中放大电路的输入阻抗。 答:依据交流输入阻抗计算公式

1226////(1)300(1)

i be be b e CQ

mV R r R R r r r I ββ=≈=++=++

采用下述方法可以提高输入阻抗:

? 增大R1 、R2值,同时保证满足R1R2支路中的电流I1>>IBQ 的条件。 ? 选高?值的三极管。

? 在保证输出信号不失真的情况下,降低静态工作点。

5、 输出阻抗:

(I) 放大器输出电阻R O 的大小反映了它带负载的能力,试分析教材图1-3中放大电路的输入阻抗受那

些参数的影响,设负载为R L ,画出输出等效电路图,回答下面的连线题,并做简单解释。

i

答:放大器输出阻抗

ce //O C C

R r R R =≈。输出等效电路图参见右图。

连线题分析可参看输入阻抗预习题(I )的分析,其中放大器输出电压VO 视为信号源VS ,放大电路输出阻抗 R0 视为信号源内阻RS ,负载R L 视为输入阻抗Ri

(II) 教材图1-5是实际工程中测量放大器输出阻抗的原理图,试根据该图简单分析为什么电阻R L 的取

值不能太大也不能太小。

答:从上题可知,若R L 的取值太大,负载将从放大器获取较大的电压,电路可以等效成一个恒电源,无法实现输出电压可调;若R L 的取值太小,负载将从放大器吸收较大电流,容易引入干扰,对电阻的电能消耗也会增大,同时噪声大。 (III) 对于小信号放大器来说一般希望输出阻抗足够小,根据您所学的理论知识,分析有哪些方法可以减

小教材图1-3中放大电路的输出阻抗。

理论上,减小R C 的值可以减小放大电路的输出阻抗。测量电路时,减小负载电阻R L 的值也可以减小放大电路的输出阻抗。

6、 计算教材图1-3中各元件参数的理论值,其中

已知:V CC =12V ,V i =5mV ,R L =3K Ω,R S =50Ω, T 为9013

指标要求:A V >50,R i >1 K Ω,R O <3K Ω,f L <100Hz ,f H >100kHz (建议I C 取2mA ) 答:设计过程:本实验所用三极管9013是硅管,β=160

1)对于图1-3中的偏置电路,只有R2支路中的电流I1>>IBQ 时,才能保证VBQ 恒定实现自动稳定工作点的作用,因此为了满足工作点需求,取:I1=25IBQ

2)为了提高电路的稳定性,一般要求V BQ >>V BE ,工程中一般取V BQ =(5~10)V BE ,即V BQ =(3~5)V ,这里取V BQ =3V ;

3)电路的静态工作点电流 BQ BE

CQ E

V V I R -≈,由于是小信号放大,所以I CQ 一般取0.5~2mA ,这里取

2mA ;

4)计算R 1和R 2的值:

Ω=??=

=

=

=

K I V I V I V R CQ

BQ

BQ

BQ BQ 6.92

253

16025251

2β,取R 2=10K Ω

Ω=?-=

-≈

K V R V V R BQ

BQ CC 403

10

)315()(2

1

5)503.1002

26)

1601(30010)3//3(16026)1(3003

'>-=++??-==++-=mV

I mV R A CE L

V ββ 符合设计要求

R L

Ω>Ω=Ω=?++=++=≈K K I mV r R CQ be i 139.223932

26

)1601(30026)

1(300β符合设计要求 6)计算R E 的值

Ω=-=

-=

=

K I V V I V R CQ

BEQ

BQ CQ

EQ E 15.12

7

.03,取R E =1K Ω 7)计算R C 的值R C ≈R L =3K Ω

8)按常规取 C 1=C 2 = 47 uF ; C E = 100uF

根据以上设计过程,图1-3中各元件参数如下:

R W = 100K R 1= 10K R 2= 10K R C = 3K R E = 1K C 1 = 47u C 2 = 47u C E = 100u

7、 对于小信号放大器来说一般希望上限频率足够大,下限频率足够小,根据您所学的理论知识,分析有

哪些方法可以增加教材图1-3中放大电路的上限频率,那些方法可以降低其下限频率。 答:电路频率特性的下限频率分析可采用RC 高通电路的分析方法:耦合电容和输入阻抗或输出阻抗构成一个高通电路,所以下限频率值组要受C1、C2和CE 的影响,关系如下:

1

)(21

)

10~3(C r Rs f be L ?+≥π2

)(21

)

10~3(C R Rc f L L ?+≥πE

be

E L C r Rs R f ?++≥)1//

(21

)

10~3(β

π

所以增大C1、C2和CE 的值或级间信号和耦合方式采用直接耦合方式,可以降低放大器的下限频率。

放大器的上限频率主要受三极管极间电容的影响,选择极间电容较小的三极管可提高放大器的上限频率。

要有效的增大f H ,必须选用rbb1、Cb ’c 小而特征频率fT 高的三极管,或者将放大器改接成共基极放大器。另外,引入负反馈也能够降低下限频率,增大上限频率。

8、 负反馈对放大器性能的影响

引入交流负反馈后,放大器的放大倍数将下降,其表达式为F A

A =

1+AF

。式中,F 为反馈网络的传输系数;A 为无负反馈时的放大倍数。引入负反馈后通频带加宽,负反馈放大器的上限频率f HF 与下限频率f LF 的表达式分别为HF H =(1+AF)f f 和 L

LF =

1+AF

f f 。引入负反馈还会改变放大器的输入电阻与输出电阻,其中并联负反馈能降低输入阻抗,串联负反馈能提高输入阻抗,电压负反馈使输出阻抗降低,电流负反馈使输出阻抗升高。

三、 实验内容

(一) 单级低频电压放大电路(基础)

1、装接电路:按图1-3所示电路,在模拟试验箱的面包板上装接原件。

2、研究静态工作点变化对放大器性能的影响

(1)调整R W ,使静态集电极电流I CQ =2mA ,测量静态时晶体管集电极-发射极之间的电压V CEQ (2)在放大器输入端输入频率为f=1kHz 的正弦信号,调节信号源输出电压V S 使Vi=5mA ,测量并记录V s 、V o 和V o ’,并记入表1-1中。)

计算过程分析: a) 当I CQ =1mA 时

r be =200+(1+β)

EQ

I 26

=5426Ω A u =

i O U U =be

L C r R R )//(β-=—55.28 b) 当I CQ =2mA 时,取β=200

I EQ ≈2mA,则U EQ =R E ?I EQ =2V

U CQ =V CC -I CQ R C =12V-6V=6V ∴U CEQ =U CQ -U EQ =4V

U BQ =U BEQ +I CQ R E =0.7+2=2.7V

动态分析,得:R i =R 1//R 2//r be =2.2k Ω (r be =200+(1+β)

EQ

I 26

=2.813 k Ω)

∵I 1>>I BQ ∴I 1≈I 2=U BQ /R 2,R 1=(V CC -U BQ )/I1,得R1≈34.4 K ω>> r be R o ≈R C =3 k Ω A u =

i O U U =be

L C r R R )//(β-=-106.6 输入电阻的测量:R i=

Rs Vi Vs Vi

Rs Vi Vs Vi Ii Vi )

(/)(-=-= ∴R i1=1.901 k Ω R i2=1.887 k Ω R i3=2.06 k Ω 输出电阻的测量:L R Vo Vo

Ro )1'

(

-= ∴R o1=3.22 k Ω R o2=2.98 k Ω R o3=3.0 k Ω

3、观察不同静态工作点对输出波形的影响

(1) 增大R W 的阻值,观察输出电压波形是否出现截止失真,描出失真波形。 (2) 减小R W 的阻值,观察输出电压波形是否出现饱和失真,描出失真波形。 (3)

截止失真的波形: 饱和失真的波形:

4、 测量放大器的最大不失真输出电压

输出电压波形如下图:

5、 测量放大器的幅频特性曲线

调整I CQ =2mA(设计值),保持Vi=5mV 不变,改变信号频率,用逐点法测量不同频率下的V O 值,计入表1-2中,并画出幅频特性曲线,记录下限频率f L 、上限频率f H ,计算带宽BW

a ) 输入Vi=5mV ,f =f L ,用示波器双踪显示输入输出波形,记录波形,并测量两者间的相位差

b ) 输入Vi=5mV ,f =f H ,用示波器双踪显示输入输出波形,记录波形,并测量两者间的相位差

幅频特性曲线:

输入Vi=5mV,

f=f L=107.15Hz时的输入输出波形:

通过光标测量法,得φ=140.0°(Vi超前)

输入Vi=5mV,f=f H=107.15Hz时的输入输

出波形:

通过光标测量法,得φ=224.66°(Vi超前)

6、负反馈对放大器性能的影响

在实验电路中增加反馈电阻R F=10Ω,构成电流串联负反馈放大器, 调整I CQ=x(设计值),测量该电路的增益、输入阻抗、输出阻抗、下限频率f L、上限频率f H、带宽BW,并和前面实验测量的结果进行分析比较。

R L

幅频特性曲线如下图:

四、思考题

1、如将实验电路中的NPN管换为PNP管,试问:①这时电路要作哪些改动才能正常工作?②经过正确改

动后的电路其饱和失真和截止失真波形是否和原来相同?为什么?

答:(1)将+Vcc改为-Vcc,C1、C2、Ce反接。

(2)这时底部失真为截止失真,顶部失真为饱和失真(与NPN管相反),输入输出波形仍为反相。即IBQ下降,ICQ也下降,|VCE|上升,当IBQ上升,ICQ上升,|VCE|下降。

2、图1-3电路中上偏置串接R1’起什么作用?

答:偏置电路中串接R1'是防止调整Rw为零电阻时,IB上升,发射结电流过大损坏PN结。

3、在实验电路中,如果电容器C2漏电严重,试问当接上RL后,会对放大器性能产生哪些影响?

答:如果电容C2漏电严重,当接上RL后,电路的静态工作点ICQ、VCEQ将受到影响,输出电压Vo由于漏电电阻的分压作用而使Vo下降。

4、级偏置电路中的分压电阻R1、R2若取得过小,将对放大电路的动态指标(如Ri及fL)产生什么影响?答:射极偏置电路中的分压电阻R1、R2若取值过小,将对放大电路的动态指标Ri、fL产生以下影响:因为Ri=R1//R2//RBE,当R1、R2过小时,Ri下降。因为设计电路时C1=(5~10)/(2πfLRi),所以Ri 下降,fL上升。

5、图1-3电路中的输入电容C1、输出电容C2及射级旁路电容CE的电容量选择应考虑哪些因素?

答:输入电容C1的选取方法(采用有效回路时间常数法)

时间常数τL=(Rs+Ri)*C1,其中Ri=Rb//rbe

同样C2的选取方法:C2=(5~10)/2πfL(rce//Rc+RL)≈(5~10)/2πfL(Rc+RL)

CE的选取方法:CE=(1~3)*(1+β)/2πfL(Rs//R1//R2+rbe)

6、图1-3放大电路的fH、fL与哪些参数有关?

答:由上题可知fL与“有效回路时间常数”有关,即fL=1/2π(Rs+Ri)C1。

由混合参数π型等效电路可知C1、C2看作短路,Cπ'的容抗可与rb'e相比拟,Cπ'将不再看作开路,则fH=1/2πR'Cπ',R'是从电容Cπ'两端向左看过去的视在电阻。

R'=rb'e//(rbb'+Rs') Rs'=Rs//Rb

可见fH与R'、Cπ'有关,因为Cπ'与ICQ、fT有关,可选择fT高的管子,降低ICQ,fH与中频放大倍数是矛盾的。

7. 图1-3放大电路在环境温度变化及更换不同β值的三极管时,其静态工作点及电压放大倍数AV能否基本保持不变,试说明原因。

答:图1-3电路在环境温度变化及更换不同β值的三极管时,其静态工作点及电压放大倍数Av基本保持不变。

当T↑→IBQ↑→ICQ↑→IEQRe↑→(因为Vb恒定)Vbe↓→IBQ↓→ICQ↓

Av=-βRL'/rbe=-βRL'/[rbb'+(1+β)26/IEQ]=RL'*IEQ/26基本不变(因为ICQ基本恒定)

PNP型单级共射放大电路

PNP 型单级共射放大电路 一、 实验目的 1、 设计一个PNP 型共射放大器,使其放大倍数为80,工作电流为80mA 。 二、 实验仪器 1、 示波器 2、信号发生器 3、数字万用表 4、交流毫伏表 5、直流稳压源 三、 实验原理 1、PNP 型单级共射放大器电路图如下: 2、 静态工作点的理论计算: 静态工作点可由以下几个关系式确定: 4 34 B C C R U V R R = + 5 B BE C E U U I I R -≈= 由以上式子可知,当管子确定后,改变CC V 、3R 、4R 中任意参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过P R 调整。工作点偏高,输出信号波形易产生饱和失真;工作点偏低,输出波形易产生

截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的 静态损耗。 3、电压放大倍数的测量与计算 电压放大倍数是指放大电路输出端的信号电压(变化电压)与输入端的信号电压之比, 即:o u i u A u = 电路中有12 (//) u be R R A r β =-、 26 '(1) be bb EQ mV r r I β =++ 其中,' bb r一般取300Ω。 当放大电路静态工作点设置合理后,在其输入端加适当的正弦信号,同时用示波器观察放大电路的输出波形,在输出波形不失真的条件下,用交流毫伏表或示波器分别测量放大电路的输入、输出电压,再按定义式计算即可。 四、实验内容及结果 1、按图连接电源,确认电路无误后接通电源。 2、在放大器的输入端加入频率f=1KHz,幅值约为10mV的正弦信号,用示波器观察,同时,用示波器的另一端监视放大器的输出电压Uo的波形。调整Rp的阻值,使静态工作点处于合适位置,此时,输出波形最大而不失真。 3、测量电路工作电流Ic并与理论计算值比较

单级放大电路知识点

一、三种常见共射放大电路静态分析见下表所示 上表是常见共射电路的静态工作点。对于实际电路不一定完全跟表中电路相同。求解时遵循以下几点可以求出。 1.思路:①画出该电路的直流通路图。 ②从电源经过基极绕到地列出电压方程(有些电路需经过电工知识进行简化,像分压式可用戴维南定理对R b1、R b2部分等效)求出I BQ 。 ③根据电流放大作用求出I CQ 。 ④从电源经过集电极到发射极到地列电压方程求出U CEQ 。 2.静态工作点的稳定 (1)固定偏置电路 没有稳定静态工作点作用,只能用在要求不高的电路中。 (2)分压式偏置电路 ①静态工作点稳定过程 ②工作点稳定对电路元件参数要求 A .要稳定效果好:V BQ 要一定,就要求I 1≈I 2 I BQ 。这样才能保证V BQ ≈ R b2 R b1+R b2 V G 。一般情况下 ??? ??I 1≈I 2=(5~10)I BQ 硅管 I 1≈I 2=(10~20)I BQ 锗管 B .稳定静态工作点效果:V EQ =I EQ R E 的上升使U BEQ 下降。当R e 越大,U BEQ 下降越快,调整灵敏度

越高,这样就有V EQ U BEQ ,一般有?????V BQ =(3~5)U BEQ 或(3~5)V 硅管 V BQ =(5~10)U BEQ 或(1~3)V 锗管。 (3)集—基反馈式 静态工作点稳定过程:V CQ =V G -(I CQ +I BQ )R c 二、三种常见共射放大电路动态分析见下表所示

几点说明: 1.r be 是三极管的输入电阻,属动态电阻,即交流阻抗,但其大小跟晶体管的静态电流大小有关,一般的估算公式为r be =r ′bb +(1+β)26mV I E mA =r ′bb +26mV I BQ mA 单位为欧姆(Ω)。 (2)r′bb 为三极管基极的等效 电阻,小功率一般约为300Ω,近似计算时,按给出值代入,不给出值时取300Ω代替。 2.输入电阻r i 和输出电阻r o 的物理意义。 r i 表征放大器输入端,相对于信号源而言是信号源的等效负载电阻。r i 越大,则向信号源索取的电流越小,信号源负担越轻。r o 表征放大器的输出端,相对于负载而言是负载的信号源,r o 即为信号源内阻,显然r o 越小,带负载的能力越强。 三、射极输出器 1、静态工作点 I BQ R b +I BQ (1+β)R e +U BEQ =V G , I CQ =βI BQ , U CEQ =V G -I EQ R e ≈V G -I CQ R e 2、动态分析 ①电压放大倍数:A u =(1+β)R L ′/[r be +(1+β)R L ′],其中R L ′=R e ∥R L ②输入电阻:r i =[r be +(1+β)R L ′]∥R b ③输出电阻:r o =∥R e ,其中R s ′=R b ∥R s 3、射极输出器的特性: 射极输出器是共集电极电路,又称射极跟随器(uo ≈ui ,且同相) 电压放大倍数略小于1,电压跟随特性好,输入阻抗高,输出阻抗低,具有一定的电流放大能力和功率放大能力。 射极输出器的反馈类型为电压串联负反馈,且反馈系数为1,属深度负反馈,Auf ≈1/F =1。 4、射极输出器的应用 在多级放大电路中,射极输出器可作为输入级,以减轻信号源的负担;也可用作输出级,提高带负载的能力;还可作为放大器的中间隔离级,减小后级对前级电路的影响;另外,还可以用作阻抗变换器。

电子技术实验报告—实验单级放大电路

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

《线性电子线路》实验五 单级交流放大电路

实验五 单级交流放大电路(一) 一、实验目的 1、熟悉常用电子仪器及模拟电路实验设备的使用。 2、学会放大器静态工作点的调试方法,理解电路元件参数对静态工作点和放大器性能的影响。 3、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 二、实验原理 1、原理简述 图2.2.1为电阻分压式静态工作点稳定放大器电路。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 图2.2.1 共射极单管放大器实验电路 2、静态参数分析 在图2.2.1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算: CC B2 B1B1 B U R R R U +≈ (2-1) U CE =U CC -I C (R C +R E ) (2-3) 3、动态参数分析 电压放大倍数 be L C V r R R β A // ?= (2-4) 输入电阻 R i =R B1 / R B2 / r be (2-5) 输出电阻 R O ≈R C (2-6) 4、 测量与调试 B E BE B E I R U U I )1(β+≈?≈ (2-2)

放大器的静态参数是指输入信号为零时的I B 、I C 、U BE 和U CE 。动态参数为电压放大倍数、输入电阻、输出电阻、最大不失真电压和通频带等。 (1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I ?=,由U C 确定I C ), 同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 (2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2.2.2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2.2.2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2.2.2 静态工作点对u O 波形失真的影响 改变电路参数U CC 、R C 、R B (R B1、R B2)都会引起静态工作点的变化,如图2.2.3所示。但通常多采用调节偏置电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。 图2.2.3 电路参数对静态工作点的影响 所谓的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

单管放大电路实验报告—王剑晓

单管放大电路实验报告 电03 王剑晓 2010010929 单管放大电路报告

一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理 实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减小; U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部失真(截 止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则: 电压增益A i=U O/U i=-?(R C// R L)/r be; 输入电阻R i=R B1//R B2//r be; 输出电阻R O= R C; 其中r be=r bb’+(1+?)U T/ I EQ,体现了直流工作点对动态特性的影响; 分析:当R C、R L选定后,电压增益主要决定于r be,受到I EQ,即直流工作点的影 响。由上面对直流工作点的分析可知,R w变化(以下以增大为例)时I CQ减小, 那么r be增大,电压增益A i减小,输入电阻R i增大,输出电阻R O基本不变,与直 流无关; 如果将发射极旁路电容C E改为与R E2并联,R E1成为交流负反馈电阻,电路的动态 参数分别变为 电压增益A i=U O/U i=-?(R C// R L)/[r be+(1+?) R E1];

单级交流放大电路

深圳大学实验报告课程名称:模拟电路 实验项目名称:单级交流放大电路 学院:信息工程学院 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、预习要求 1.复习三极管及单管放大电路工作原理。

2.进行放大电路静态工作点和电压放大倍数的估算。 四、实验内容及步骤 1.装接电路与简单测量 图1.l 基本放大电路 如三极管为3DG6,放大倍数β一般是25—45;如为9013,一般在150以上 (1)用万用表判断实验箱上三极管V的极性和好坏,电解电容C的极性和好坏。 U BE=0.7V、U BC=0.7V,反向导通电压无穷大。 所示,连接电路(注意:接线前先测量+12V电源,关断电源后再连线), 、 (2)按图1.2接线,调整R P使V E=2.2V,计算并填表1.1。 图1.2 工作点稳定的放大电路 为稳定工作点,在电路中引入负反馈电阻R e,用于稳定静态工作点,即当环境温度变化时,保持静态集电极电流I CQ和管压降U CEQ基本不变。依靠于下列反馈关系: T↑—β↑—I CQ↑—U E↑—U BE↓—I BQ↓—I CQ↓,反过程也一样,其中R b2的引入是为了稳定U b。但此类工作电路的放大倍数由于引入负反馈而减小了,而输入电阻r i变大了,输出电阻r o不变。

e be L c u R r R R A )1()(ββ++-= ,))1((21e be b b i R r R R r β++=,c o R r = 由以上公式可知,当β很大时,放大倍数u A 约等于 e L c R R R ,不受β值变化的影响。 输出波形时要调节R b1,使输出波形最大且不失真时开始测量。输入输出波形两者反相,相差180度。 (3) 信号源频率不变,逐渐加大信号源幅度,观察V O 不失真时的最大值并填表1.2。 分析图1.3的交流等效电路模型,由下述几个公式进行计算: E be I mV r 26) 1(200β++≈,be ce c L V r r R R A β-=,c ce o be b b i R r r r R R r ==,2

单级低频放大电路

实验三单级低频放大电路 1.实验目的 (1)研究单管低频小信号放大电路静态工作点的意义。 (2)掌握放大电路静态工作点的调整与测量方法。 (3)掌握放大电路主要性能指标的测试方法。 2.实验涉及的理论知识和实验知识 本实验体现了三极管的工作原理、放大电路的静态工作点调试方法以及放大器性能指标的基本测试方法。 3.实验仪器 信号发生器、示波器、直流稳压电源、电压表 4.实验电路 实验电路如图3.1.1所示。图中电位器R W是为调节晶体管静态工作点而设置的。 O 图3.1.1单级共发射极放大电路 5. 实验原理 在电子系统中,放大电路是信号处理的基本电路。其作用是将微弱信号增强到所需要的数值,单级低频放大电路是放大电路中最基本的结构形式,是组成各种复杂电路的单元和基础。因此它的分析方法、电路调整技术以及参数的测量方法等具有普遍意义。 实验电路采用由NPN型硅材料三极管以及若干电阻、电容组成的共发射极放大电路,以图3.1.1所示电路为例进行研究。 (1)电路组成原则 放大是最基本的模拟信号处理功能,它是通过放大电路实现的,电子技术里的“放大”有两方面的含义。一是能将微弱的电信号增强到所需要的数值,即放大电信号,以便于测量和使用。二是要求放大后的信号波形与放大前的波形的形状相同,即信号不能失真,否则就会丢失要传送的信息,失去了放大的意义。 因此,电路组成原则是首先要给电路中的晶体管施加合适的直流偏置,即发射结正偏、集电结反偏,使其工作在放大状态,而且还要有一个合适的工作电压和电流,即合适的静态工作点。其次要保证信号发生器、放大电路和负载之间信号能够正常传输,即有u i时,应该有输出响应u o。

电子专业技术实验报告—实验4单级放大电路

电子技术实验报告—实验4单级放大电路

————————————————————————————————作者:————————————————————————————————日期:

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (5) 二、实验仪器 (5) 三、实验原理 (5) (一)单级低频放大器的模型和性能 (5) (二)放大器参数及其测量方法 (7) 四、实验内容 (9) 1、搭接实验电路 (9) 2、静态工作点的测量和调试 (10) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (11) 4、放大器上限、下限频率的测量 (12) 5、电流串联负反馈放大器参数测量 (13) 五、思考题 (13) 六、实验总结 (13)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

单级放大电路的设计与仿真

单级放大电路的设计与仿真 一、实验目的 1)掌握放大电路静态工作点的调整与测试方法。 2)掌握放大电路的动态参数的测试方法。 3)观察静态工作点的选择对输出波形及电压放大倍数的影响。 二、实验器材 1mV 5KHz 正弦电压源,15mV 5KHz 正弦电压源,12V直流电压源,2N2222A三极管,10uF电容(3个),10KΩ电阻(2个),3.0KΩ电阻,1.5KΩ电阻,5.1KΩ电阻,250KΩ电位器,万用表,示波器等。 三、实验原理与要求 三极管工作在放大区时具有电流放大作用,只有给放大电路中的三极管提供合适的静态工作点才能保证三极管工作在放大区。如果静态工作点不合适,输出波形则会产生非线性失真——饱和失真和截止失真,而不能正常放大。静态工作点合适时,三极管有电流放大特性,通过适当的外接电路,可实现电压放大。表征放大电路放大特性的交流参数有电压放大倍数、输入电阻、输出电阻。对于不同频率的输入交流信号,电路的电压放大倍数不同,电压放大倍数与频率的关系定义为频率特性,频率特性包括:幅频特性——即电压放大倍数的幅度与频率的关系;相频特性——即电压放大倍数的相位与频率的关系。 设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(幅度1mV) ,负载电阻5.1kΩ,电压增益大于50。调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。加入信号源频率5kHz(幅度1mV) ,调节电路使输出不失真,测试此时的静态工作点值。测电路的输入电阻、输出电阻和电压增益。测电路的频率响应曲线和fL、fH值。 设计图如下:

四、实验内容与步骤 1.饱和失真 为了使得到的饱和、截止失真的波形图更加明显,用15mV的交流电压源代替了原先的1mV 的电源。调节电位器的百分比至0%,观察波形。 测试饱和失真下的静态工作点 可知I B=227.374uA,I C=2.576mA, U CE=69.657mV。

单级低频电压放大电路(基础)实验报告模板

东南大学电工电子实验中心 实验报告 课程名称: 第次实验 实验名称: 院(系):专业: 姓名:学号: 实验室: 实验组别: 同组人员:实验时间:年月日评定成绩:审阅教师:

实验三单级低频电压放大电路(基础) 一、实验目的 1、掌握单级放大电路的工程估算、安装和调试; 2、了解三极管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、增益、幅频 特性等的基本概念以及测量方法; 3、掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流电压表、 函数发生器的使用技能训练。 二、实验原理 三、预习思考 1、器件资料: 上网查询本实验所用的三极管9013的数据手册,画出三极管封装示意图,标出每个管脚的名称,将相关参数值填入下表: 2 教材图1-3中偏置电路的名称是什么,简单解释是如何自动调节BJT的电流I C以实现稳定直流工作点的作用的,如果R1、R2取得过大能否再起到稳定直流工作点的作用,为什么? 答: 3、电压增益: (I)对于一个低频放大器,一般希望电压增益足够大,根据您所学的理论知识,分析有 哪些方法可以提高电压增益,分析这些方法各自优缺点,总结出最佳实现方案。 答: (II)实验中测量电压增益的时候用到交流毫伏表,试问如果用万用表或示波器可不可以,有什么缺点。 答:

4、输入阻抗: (I)放大器的输入电阻R i反映了放大器本身消耗输人信号源功率的大小,设信号源内阻 为R S,试画出图1-3中放大电路的输入等效电路图,回答下面的连线题,并做简单解释: R i = R S放大器从信号源获取较大电压 R i << R S放大器从信号源吸取较大电流 R i >> R S放大器从信号源获取最大功率答: (II)教材图1-4是实际工程中测量放大器输入阻抗的原理图,试根据该图简单分析为什么串接电阻R S的取值不能太大也不能太小。 答: (III)对于小信号放大器来说一般希望输入阻抗足够高,根据您所学的理论知识,分析有哪些方法可以提高教材图1-3中放大电路的输入阻抗。 答: 5、输出阻抗: (I)放大器输出电阻R O的大小反映了它带负载的能力,试分析教材图1-3中放大电路的 输入阻抗受那些参数的影响,设负载为R L,画出输出等效电路图,回答下面的连线题,并做简单解释。 R O = R L负载从放大器获取较大电压 R O << R L负载从放大器吸取较大电流 R O >> R L负载从放大器获取最大功率答: (II)教材图1-5是实际工程中测量放大器输出阻抗的原理图,试根据该图简单分析为什么电阻R L的取值不能太大也不能太小。 答: (III)对于小信号放大器来说一般希望输出阻抗足够小,根据您所学的理论知识,分析有哪些方法可以减小教材图1-3中放大电路的输出阻抗。 答: 6、计算教材图1-3中各元件参数的理论值,其中 已知:V CC=12V,V i=5mV,R L=3KΩ,R S=50Ω,T为9013 指标要求:A V>50,R i>1 KΩ,R O<3KΩ,f L<100Hz,f H>100kHz(建议I C取2mA) 答: 四、实验内容 1、除1-(1)外的全部实验(所有波形必须定量记录,包括幅度、频率等,输入和输出波形 必须记录在同一坐标内)。 2、实验修改内容

单管共集放大电路分析

课程设计说明书 学生姓名:学号: 学院: 班级: 题目: 晶体管单管共集电极放大电路分析 指导教师:职称: 2012 年7 月 2 日

一.课题名称: 晶体管单管共集电极放大电路分析 二.设计任务及要求: 1.分析静态工作点 2.失真分析 3.动态分析 4.参数扫描分析 5.频率响应 三.设计原理: 放大是对模拟信号最基本的处理,在大多数的电子系统中都含有各种各样的放大电路,其作用是将微弱的模拟信号放大到所需的数值。放大电路及其基本分析方法是构成其他模拟电路的基本单元和基础,是模拟电子技术课程研究的主要内容之一。 电路的组成:电路要能放大,晶体管应工作在放大区,即Ube>0,Ubc<0,所以电源和电阻的设置要满足这些条件。其基本电路如图所示.

Vbb和Rb及Re相配合,给晶体管设置合适的基极电流;Vcc提供了晶体管的集电极电流和输出电流.交流信号Ui从基极输入,产生变化的基极电流Ib,再通过晶体管得到了放大了的Ie,而变化的Ie流过电阻Re得到了变化的电压,从发射极输出.对于交流信号来说,集电极是公共端,所以是共集放大电路。 本实验使用Multisim 10进行仿真。该软件基于PC平台,采用图形操作界面虚拟仿真了一个与实际情况非常相似的电子电路实验工作台,他几乎可以完成在实验室进行的所有电子电路实验,已被广泛应用于电子电路分析,设计,仿真等项目中,是目前世界上最为流行的EDA软件之一,已被广泛应用于国内外的教育界和电子技术界。 四.仿真过程: 本实验基本电路图如下图所示: XSC1 A B Ext Trig + + _ _+_ V1 10mVrms 1kHz 0° R1 1kΩ 1 C1 10uF 2 R2 10kΩ R3 35kΩ Q1 2N2222A 3 VCC 12V R4 2kΩ VCC R5 1kΩ C2 10uF 5 R6 2kΩ C3 47uF 4 6 1.静态工作点的分析: 三极管是放大电路的核心,要使放大电路正常工作,必须为三极管设置合适的外部工作

实验一单级放大电路

实验一单级放大电路 一、实验目的 1、掌握单管电压放大电路的调试和测试方法。 2、掌握放大器静态工作点和负载电阻对放大器性能的影响。 3、学习测量放大器的方法,了解共射极电路的特性。 4、学习放大器的动态性能。 二、实验仪器 1、模拟电路实验箱及附件板 2、示波器 3、万用表 4、直流毫伏表 5、交流毫伏表 6、函数发生器 7、+12V电源 三、实验原理 实验采用分压式工作点稳定电路,如图1.1所示。

1、静态工作点的估算 当流过基极分压电阻的电流远远大于三极管的基极电流时,可以忽略BQ I , 则有:CC 2b 1b 1 b BQ V R R R V += ,e BEQ BQ EQ CQ R U V I I -=≈ )(e c CQ CC e EQ c CQ CC CEQ R R I V R I R I V U +-≈--= β CQ BQ I I = 2、动态指标的估算与测试 放大电路的动态指标主要有电压放大倍数,输入电阻,输出电阻及通频带等。 理论上,电压放大倍数be L u r R A '-=β ,输入电阻be be 2b 1b i ////r r R R R ≈=,输出电阻c o R R ≈ 测量电压放大倍数时,首先将电路调整到的合适静态工作点,给定输入电压i u ,在输出电压不失真的情况下,用毫伏表测出输出电压o u 与输入电压i u 的 有效值,则i o u U U A = 四、实验内容及步骤 1、在模拟电路实验箱上插上附件板,按图1.1电路,用插接线连接实验电

路,接线完毕,检查无误后,接上+12V直流电源。 2、调试静态工作点 接通直流电源前,先将R W调至最大,函数信号发生器输出旋钮旋至零。接通+12V电源、调节R W,使I C=2.0mA(即U E=2.0V),用直流电压表测量U B、U E、U C及用万用电表测量R B2值。记入表1-1。 表1-1 I C=2mA 3、测量电压放大倍数 在放大器输入端加入频率为1KHz的正弦信号u S,调节函数信号发生器的输出旋钮使放大器输入电压U i 10mV,同时用示波器观察放大器输出电压u O波形,在波形不失真的条件下用交流毫伏表测量下述两种情况下的U O值,并用双踪示波器观察u O和u i的相位关系,记入表1-2。 表1-1 I C=2mA 表2.1

实验一:单管放大电路及常用电子仪器的使用全解

模拟、数字及电力电子技术 实验一:单管放大电路及常用电子仪器的使用 一、实验目的: 1)学会用万用表判别三极管的类别和管脚。 2)掌握测试三级管输出特性曲线的方法。 3)基本放大电路的静态工作点测试。 二、实验设备及器材: 1)MES系列模拟电子电路实验系统 2)直流稳压电源 3)万用表 4)晶体管毫伏表 5)元器件:电阻、电位器、三极管 6)示波器等 三、实验内容及电路: 1、用示波器测量交换信号的频率 按表1-1所示频率有信号发生器输入信号,用示波器测出周期并计算,将所测试结果与已知频率作比较。 表1-1 信号频率100HZ 1*H2 扫描速度开关(t/div)开开

一个周期所占水平格数 6格 4格半 信号频率f=1/T 1/3 1/4.5 2、单管放大电路的调整与测试 1)静态工作点的测试 接通电源+12V ,调节Rw 使U EQ =2V 不变条件下,输入频率1KH2的5mV 正弦波信号,用毫伏表测出U O 的值,将测量结果记入表2-2中。 表2-2 R L 实测 实测计算 估算 Ui(mv) Uo(v) A(v)实测 Av(估算) ∞ 3.3 4 5.4 6 接入负载 3.8 5 6.2 6 3)输入电阻、输入电阻测试 表3-1输入电阻测试 实测 实测计算 估算 Us(mv) Ui(mv) Ri=RS Ui US Ui - Ri ≈r be //R b 2.9mv 3.2mv 3.6mv 3mv 表3-2输出电阻测试 实测 实测计算 估算 U ∞(v) Uo(v) Ro=(1-∞ Uo U )R L Ro ≈Rc 5mv 5.6mv 6.2mv 6mv 四、思考题 1、使用示波器时若达到如下要求应调哪些旋钮?

实验一 单级交流放大电路 实验报告

实验一单级交流放大电路 一、实验目的 1.熟悉电子元器件和模拟电路实验箱, 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。 3.学习测量放大电路Q点,A V ,r i ,r o 的方法,了解共射极电路特性。 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、实验原理 1.三极管及单管放大电路工作原理。 以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理: 三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 2.放大电路静态和动态测量方法。 放大电路良好工作的基础是设置正确的静态工作点。因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。 放大电路的动态特性指对交流小信号的放大能力。因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。 四、实验内容及步骤 1.装接电路与简单测量 图1.1 工作点稳定的放大电路

(1)用万用表判断实验箱上三极管V 的极性和好坏,电解电容C 的极性和好坏。 测三极管B 、C 和B 、E 极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。 三极管导通电压UBE=0.7V 、UBC=0.7V ,反向导通电压无穷大。 (2)按图1.1所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将RP 的阻值调到最大位置。 2.静态测量与调整 接线完毕仔细检查,确定无误后接通电源。改变R P ,记录I C 分别为0.5mA 、1mA 、1.5mA 时三极管V 的β值。 注意:I b 和I c 一般用间接测量法,即通过测V c 和V b ,R c 和R b 计算出I b 和I c 。此法虽不直观,但操作较简单,建议采用。以避免直接测量法中,若操作不当容易损坏器件和仪表的情况。 (2)按图1.1接线,调整R P 使V E =1.8V ,计算并填表1.1。 为稳定工作点,在电路中引入负反馈电阻Re ,用于稳定静态工作点,即当环境温度变化时,保持静态集电极电流ICQ 和管压降UCEQ 基本不变。 依靠于下列反馈关系: T ↑—β↑—ICQ ↑—UE ↑—UBE ↓—IBQ ↓—ICQ ↓,反过程也一样。其中Rb2的引入是为了稳定Ub 。但此类工作电路的放大倍数由于引入负反馈而减小了,而输入电阻ri 变大了,输出电阻ro 不变。 e be L c u R r R R A )1()(ββ++-= ,))1((21e be b b i R r R R r β++=,c o R r = 由以上公式可知,当β很大时,放大倍数约等于e L c R R R ,不受β值变化的 影响。 表1.1 注意:图1.1中b 为支路电流。 3.动态研究 (1)按图1.2所示电路接线。 (2)将信号发生器的输出信号调到f=1KHz ,幅值为500mV ,接至放大电路的A 点,经过R 1、R 2衰减(100倍),V i 点得到5mV 的小信号,观察V i 和V O 端波形,并比较相位。 图中所示电路中,R1、R2为分压衰减电路,除R1、R2以外的电路为放大电路。由于一般信号源在输出信号小到几毫伏时,会不可避免的受到电源纹波影响出现失真,而大信号时电源纹波几乎无影响,所以采取大信号加R1、R2衰减形式。此外,观察输出波形时要调节Rb1,使输出波形最大且不失真时开始测量。输入输出波形两者反相,相差180度。

单级共射放大电路的设计共7页word资料

实验二、单级共射放大电路的设计 一、实验目的 1.掌握共射放大器电路的设计方法 2.掌握如何设置放大电路的静态工作点及其调试方法 3.学习放大电路性能指标 4.观察基本放大电路参数对放大器的静态工作点、电压放大倍数及最 大不失真电压、以及频率响应的测量方法 5.进一步熟悉函数发生器、等常用仪器的使用方法 6.进一步熟悉晶体管参数的测试 7.了解负反馈对放大电路性能的影响 二、实验仪器与器件: 直流稳压电源、万用电表、双踪示波器、交流毫伏表、直流毫安表、频率计、三极管、电阻器、电容器、电位器若干。 三、实验原理: 连接电路图如下图,并测量相关数据,了解单级共设放大电路 四、实验内容 1.静态工作点的调整与测量: 将R L 开路;在接通电源钱,将R b2 调至最大,并使u i =0.调节R b2 测量相应数 据填入下表

2.观察静态工作点对输出波形失真的影响: 调节函数信号发生器找到最大不失真输入电压,然后观察u O 输出波形,判断失真情况以及管子工作状态填入下表

3.电压放大倍数的测量 将频率为1kHz 、u i =300mV (参考)的正弦信号作为输入信号,用交流毫伏表测量U i 和U o 有效值,用示波器观察输入输出电压的波形,把测量结果记入下表 U i =248mV

4.观察静态工作点对电压放大倍数的影响 将R L 开路,R C =2k欧姆,输入适当u i 。改变R b2 ,将数据填入下表 U i =106.06mV 注意:测量U CE 时它是静态参数。 5.输入电阻和输出电阻的测量 输入端开关打开,用交流毫伏表测量U i 和U s ,计算输入电阻 R i =U i /I i =R s *U i /(U s -U i ) 闭合输入端开关,打开和闭合输出端开关,用交流毫伏表测量U L 和U O ,计 算输出电阻 R O =(U O /U L -1)*R L 6.最大不是真输出电压V opp 的测量 同时调节输入信号的幅度和电位器R b2 ,用示波器和交流毫伏表测量填表 7.幅频特性的测量 采用主点法进行测量,填表。

单级放大电路的设计和仿真

实验一单级放大电路的设计和仿真 一、实验目的 1、掌握放大电路静态工作点的调整和测试方法。 2、掌握放大电路的动态参数的测试方法。 3、观察静态工作点的选择对输出波形及电压放大倍数的影响。 二、实验要求 1、设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(幅度1mV) ,负载电阻5.1kΩ,电压增益大于50。 2、调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。 3、加入信号源频率5kHz(幅度1mV) ,调节电路使输出不失真,测试此时的静态工作点值。测电路的输入电阻、输出电阻和电压增益; 4、测电路的频率响应曲线和f L、f H值。 三、设计原理图 Rb1=160kΩ,Rb2=80.6kΩ,Rc=2.2kΩ,Re=1.65kΩ,C1=C2=10uF,Ce=100uF,RL=3,9kΩ,R1=10Ω 四、实验过程 1、观测饱和失真、截止失真与不失真 <1饱和失真的观测 使Rb1=51kΩ,用示波器观测波形,并做直流工作点分析。此时的静态工作点,ICQ=3.05334mA,IBQ=49.41790uA,VCEQ=130.534mV

静态工作点 <2截止失真的观测 使Rb2=20.0k ,信号源电压峰值40mv,用示波器观测波形,并做直流工作点分析。此时的静态工作点,ICQ=418.088uA,IBQ=1.88563uA,VCEQ=10.382913V 不失真

静态工作点 <2不截止失真的观测 用示波器观测波形,并做直流工作点分析。此时的静态工作点,ICQ=1.78125mA,IBQ=8.28494uA,VCEQ=5.18389V

相关文档
相关文档 最新文档