文档库 最新最全的文档下载
当前位置:文档库 › 浅谈低温胁迫对植物的影响

浅谈低温胁迫对植物的影响

浅谈低温胁迫对植物的影响
浅谈低温胁迫对植物的影响

低温胁迫对植物的影响

杨万坤 114120238

(云南师范大学生命科学学院 11应用生物教育A班)

摘要:当环境温度持续低于植物正常所需温度(生物学零度)时,温度对植物形成低温胁迫,对植物的生长、发育和生存造成严重影响。植物遭受低温逆境胁迫时,从感受低温信号到发生一系列生理生化反应和调节基因表达,进而产生抗寒能力。研究低温胁迫对植物生长发育、生理生化指标、低温反应基因的表达与调控,对于我们生产生活有着重要意义。

Effect of low temperature stress on plant Abstract:When the environment temperature is consistently lower than the temperature normally required for plants (biological zero),The temperature of low temperature stress on the formation of the plant, the plant growth, development and survival of a serious impact.Plants under low temperature stress, low temperature signal from the feeling to have a series of physiological and biochemical reactions and the regulation of gene expression, resulting in cold hardiness。Study of low temperature stress on plant growth, physiological and biochemical indicators of low temperature responsive gene expression and regulation, for our production and life of great significance.

关键字:低温胁迫、抗寒性、生理生化指标、基因的表达

引言:低温胁迫是影响植物生长、发育和地理分布的重要环境限制因素之一。低温胁迫对植物的影响主要体现在酶活性、膜系统、细胞失水等,导致细胞代谢紊乱,甚至是细胞死亡。而某些植物在长期适应过程中逐渐形成各种抗寒本领,如形成胁迫蛋白、增加渗透调节物质,提高保护酶活性等方式来提高植物(细胞)对低温胁迫抗性【1】。环境温度的改变影响着植物的生长发育和各种生理生化指标和植物抗寒性。而温度的改变则引起植物的各种生理生化指标的改变来抵抗环境温度的胁迫,植物对零上低温的耐受性称抗冷性【2】。低温往往导致植物生长发育缓慢,甚至造成冻害和寒害,甚至死亡,当然低温对植物生长发育也有好的一面,如春化作用。近年来,许多报道证明植物在寒冷条件下基因表达发生改变。大量研究发现低温诱导许多基因的表达,根据基因表达的蛋白产物,可分为编码功能蛋白基因和调节蛋白基因两大类,这两类低温反应基因的表达与调控及在低温胁迫中的作用【3】。当然对于植物的低温反应基因的表达与调控研究,有利于提高植物的抗寒性和低温驯化。因此,研究低温胁迫对植物的影响,探索植物抗寒性的生理机制,不仅在基础理论上具有重要意义,在解决生产实际问题上也具有广泛的应用价值。

正文:

植物的生长发育需要适宜温度,低温胁迫使植物得生长发育等生命活动受到严重影响。受低温胁迫的植物植株矮小,主要体现在根茎

叶花等方面的差异,对于幼苗则降低其存活率,促进植物早花,增加花朵数量,影响结实,从而影响繁殖能力。温度对叶片的生长有着许多影响,低温下,叶片的生长速率降低、生长周期延长、光合色素含量降低(由于叶绿素被破坏)、光合速率下降、有机物含量低。对于同一种植物,受低温胁迫的植株的叶片与相同叶龄叶片相比,叶片面积比较小,叶面积拓展量也随之降低,如受过低温胁迫的烟草,烟苗叶片数减少,叶片面积小,厚度增加。根系是植物吸收养分的主要器官,也是许多物质同化、转化、合成的器官,根系的生长发育及根系活力直接影响植物个体的生长和发育。根区温度的降低,使根系活力降低,降低了根对矿质元素的吸收,使根系中Ca、Fe、Mn、Cu、Zn 的含量降低,而植株根系中N、P、K、Mg的含量增加,导致了这些元素在根系中积累,阻碍了部分矿质元素向地上部的运输,增加了茎中N、K、Ca、Mg、Fe的含量,而P、Mn、Cu、Zn的含量却降低,茎中N、K、Ca、Mg、Fe的含量增加,说明这些元素在茎中的积累,却阻碍了其进一步向叶片中运输;导致叶片中K的含量增加,N、P、Ca、Mg、Fe、Mn、Cu、Zn的含量降低,必然会阻碍叶片的正常生长发育。低温胁迫使植株的根系出现变褐、沤根现象,严重影响其吸收功能,进而导致植物叶片黄化。低温还导致植物有机物含量降低。低温胁迫可以造成寒害(也称冷害)和冻害,当气温低于10℃就会造成寒害,低于0℃则造成冻害。虽然植物本身具有一定的抗寒性,但是不同植物种类和品种有不同的抗寒性,不同器官的抗寒性也不一样【4】,寒害的主要症状是变色、坏死和表面斑点等,禾本科植物则

往往表现为芽枯、顶枯,如早稻秧苗期遇低温寒流侵袭易发生青枯死苗,晚稻幼穗分化至扬花期遇到较长时间的低温,也会因花粉粒发育异常而影响结实。冻害的主要症状是幼叶和幼茎出现冰渍状、暗褐色病斑,随后组织坏死,严重时整株植物变黑、干枯、死亡,如霜冻常使未木质化的植物器官受害,使嫩芽、新叶甚至新稍冻死。一般植物受后并不立即表现出来,往往要过一段时间后才表现出来,由于叶绿素被破坏,叶片变黄枯萎,使整个植株或部分枝条死亡。

低温胁迫对于植物是一柄双刃剑。一般单子叶植物必须经历一段时间的持续低温才能由营养生长阶段转入生殖阶段生长的现象被称为春化作用。春化低温对越冬植物成花的诱导和促进作用,冬性草本植物(如冬小麦)一般于秋季萌发,经过一段营养生长后度过寒冬,于第二年夏初开花结实。如果于春季播种,则只长茎、叶而不开花,或开花大大延迟,这是因为冬性植物需要经历一定时间的低温才能形成花芽。冬性作物已萌动的种子经过一定时间低温处理,则春播时才可以正常开花结实。许多植物种子在萌发前经低温过程后,其植物的生长发育特性会发生明显变化,特别是加速植物的开花时间,增加植物的开花数量,进而影响植物的繁殖能力【5】。在樊江文和M.Fenner 的实验中,所用的15种实验植物中的雀麦、荠和M. arv ensis 等3 个种的种子经低温处理对其开花和植物生长有较明显的影响:3 种植物经低温处理后,明显的增加了植物的开花(小穗)数量;不实雀麦低温处理植株出现第一朵小穗的时间比对照处理植株提前了近20天,小穗数量也增加了50%左右;荠和M . arvensis 植株的开花数量也比对

照处理增加20~ 30 个;植株的枝条也均比对照处理长,其中不实雀麦和荠最为明显,不实雀麦植株枝条长度以30~ 50 cm最多, 而对照处理植株的枝条长度均在20 cm以下【5】。

当环境温度低于0℃时,往往会造成冻害,使织物组织细胞内的自由水结冰,从而破坏细胞结构,使细胞失水。植物细胞的含水量高达70﹪,这些水分有大部分的自由水和结合水组成,自由水在细胞内会因为温度的改变而改变其状态。当温度的骤然降低,可导致细胞内溶质过冷,进而导致细胞内部结冰,一般先在原生质内结冰,然后在液泡内结冰。如果原生质内形成的冰晶体体积比蛋白质等分子的体积大得多,冰晶体就会破坏生物膜,细胞器和衬质的结构对细胞造成致命伤害。冰冻温度下,多数植物在质外体空间诱导冰晶体,这种现象称为细胞间隙结冰,细胞间隙结冰伤害的主要原因是原生质过度脱水,破坏蛋白质分子,原生质凝固变性。电子显微扫描研究表明,许多冻敏感型植物有明显的细胞间隙结冰现象,当高度冻敏感的树种表现细胞间隙结冰的征状时,就会诱导细胞脱水与胞内结冰两者的结合,从而引起植物冻害【6】。

植物在遭受低温伤害后,植物原生质膜的遭到损伤,选择性丧失,对物质的透性发生改变,使得一些盐类,或有机物从细胞中渗出,进入周围溶液中,通过电导度的测量和糖的显色反应,即可见到外界溶液中电介质和糖类的增加等。研究表明低温胁迫对植物生物膜系统造成损伤,而生物抗寒性与生物膜系统的完整性密切相关。Lyons等提出细胞膜系统易遭受低温冷害的首要部位,冷害的根本原因是植物细

胞膜系统受损,进而引起细胞膜透性的变化。研究表明:在遭受低温胁迫下,植物细胞膜透性会发生不同程度的增大,选择通透性改变,表现为电解质外渗,电导率升高,而相对电导率与植物抗寒性呈负相关,质膜稳定性越高,其抗寒性越强。表征生物膜受损程度的另一指标是细胞内丙二醛(MAD)含量,低温胁迫时细胞内的活性氧代谢平衡被破坏,导致质膜过氧化和不饱和脂酸降解产生丙二醛。MAD能强烈与细胞内各种成分发生反应,引起酶和脂膜损伤,导致膜结构和生理机能破坏,因此MAD含量能表示细胞膜受损程度,与抗寒性呈负相关。实验中经常测定二者的含量来研究低温胁迫对植物生物膜系统影响。在低温条件下,细胞内主动积累可溶质来降低细胞液的渗透势,防止细胞过度失水,渗透调节物质主要包括游离脯氨酸含量,可溶性蛋白含量,可溶性糖含量。游离脯氨酸能促进蛋白质水合作用,保护酶的空间结构,为生化反应提供自由水和审理活性物质,对细胞起到一定的保护作用,其含量与抗寒性呈正相关,通过测定低温下游离脯氨酸的含量来判断其抗寒性的强弱。低温导致植物细胞内可溶性蛋白含量增加,但与植物抗寒性的关系仍存在争议。可溶性糖含量增加可以提高细胞液浓度,降低水势,增强保水能力。糖类既可以提供碳源和底物,同时可以保护蛋白质避免低温凝固,进一步提高其抗寒能力。用常测定上述物质的含量来测定植物的抗寒能力。

植物的生命活动需要各种酶的参与,而酶只有在适宜的温度和其他条件的相互协调下才能发挥其活性,而低温会使酶的活性降低,影响植物的新陈代谢,从而使植物生长缓慢甚至是停止生长发育。同时

低温胁迫使植物组织细胞内活性氧分子大量积累超出正常水平,对植物形成氧化胁迫。当氧化胁迫发生时,SOD 、POD 、CAT等抗氧化酶会相互作用清除活性氧,抗氧化酶活性越高,植物抵御有低温引起的氧化胁迫能力越强。

植物遭受低温逆境胁迫时,从感受低温信号到发生一系列生理生化反应和调节基因表达,进而产生抗寒能力,存在一个复杂的信号网络系统。近年来,对低温胁迫后植物体内发生的事件主要集中在分子水平,包括植物如何感知外界的低温信号,并且将信号传递到细胞内部,最终诱导一系列基因的表达。“低温”信号传入细胞,启动或阻遏基因表达需要一个复杂的信号系统,其中包括 Ca2+、ABA、蛋白磷酸化酶、蛋白激酶、可溶性糖分子和一些转录因子等【7】。随着突变分析和分子遗传学方法的大量应用,以拟南芥作为模式植物,已克隆了许多低温反应基因及低温调节的转录因子基因,明确了这些基因的抗冻功能及其涉及的多种低温调控的信号传导途径【2】。根据被低温诱导表达基因的功能,可以将它们分为两大类:一类是调控基因,它们起着调节基因表达和信号转导的作用,包括转录因子如 CBF,感知和传递信号的蛋白激酶如促分裂原活化蛋白激酶 MAPKs;另一类则被称为冷调节基因、早期脱水应答基因、脱水应答基因、冷诱导基因、低温诱导基因等,这类基因编码的蛋白直接对植物起到保护作用,包括对细胞直接起到保护作用的蛋白( 例如抗冻蛋白)、水通道蛋白、渗透调节分子的合成酶( 例如可溶性糖、可溶性蛋白、脯氨酸以及甜菜碱的合成酶) 以及毒性降解酶( SOD、CAT、APX、POD) 等。其中一些

基因已被证实在植物的抗寒性中发挥作用,还有一些基因与植物的抗寒性关系还未有报道。对冷诱导基因的进一步研究发现,这类基因的表达存在两条诱导途径:一条途径依赖脱落酸( ABA) ;而另一条则为不依赖 ABA 的途径,此途径为 CBF 低温应答途径,这条途径中发挥关键作用的是 CBF 转录因子【7】。低温胁迫使植物基因表达改变,提高其抗寒能力,对植物的低温驯化研究有着重要意义。

问题与展望:

低温胁迫对植物细胞形态、结构、生理生化水平上的影响已经研究得比较透彻,随着分子生物学技术的发展,研究重点已经逐步由分析植物低温胁迫下的生理生化反应转向筛选抗寒相关基因,研究这些基因的功能以及低温信号参与的信号转导途径。虽然植物低温胁迫下关于基因的功能以及低温信号参与的信号转导途径还有许多问题亟待解决,但根据近年来的研究表明,人们正在逐步揭开低温影响基因表达的神秘面纱。低温胁迫对植物的影响,探索植物抗寒性的生理机制,对于植物的低温驯化、抗寒良种的培育,防止寒害和冻害有着重要意义,让低温更好服务于我们的生活。

参考文献:

【1】张志良, 瞿伟菁主编物生理学实验指导北京: 高等教育出版社,2003 256—257

【2】潘瑞枳,董愚德. 植物生理学【M】.北京,高等教育出版社1992,322—328

【3】周筱娟低温诱导的植物基因表达与调控百度文库https://www.wendangku.net/doc/5115934911.html,/link?url=KE3H9-l0ftW7AObOwyPc_9Yu0Vp84 yQiQUQcE1xgZoLHCeq4iPp4vXIg_ZHP_FfQHbD5fQK6GP1233Xk7R Pjj57z9GHUW_uruaSLcpZozJm

【4】于凤玲,支庆祥低温对植物的危害以及植物的抗寒性畜牧与饲料科学 2009,30(9):190

【5】樊江文 M.Fenner 低温处理种子对植物生长和开花习性影响的研究《生态学杂志》 2003 22(3): 29-31

【6】徐燕薛立屈明.植物抗寒性的生理生态学机制研究进展【J】 .林业科学 2007 43(4):88-94.

【7】马媛媛,肖霄,张文娜植物低温逆境胁迫研究综述安徽农业科学, 2012,40( 12):7007-7008,7099

论温度对农业生产的影响

论温度对农业生产的影响 适宜的温度是作物生存及生长发育的重要条件之一,一方面温度直接影响作物 生长、分布界限和产量;另一方面,温度也影响着作物的发育速度,从而影响作物生 育期的长短与各发育期的长短与各发育期出现的早晚。此外,温度还影响着作物病虫 害的发生、发展。 一、植物在环境中生长的要求。 (一)三基点温度。 植物的三基点温度植物生长发育都有三个温度基本 点,即维持生长发育的生物学下限温度(最低温度)、最适温度和生物学上限温度(最高温度),这三者合称为三基点温度。在最适温度下,植物的生命活动最强,生长发育速度最快;在最高和最低温度下,植物停止发 育,但仍能维持生命。如果温度继续升高或降低,就会对植物产生不同程度的 影响,所以在植物温度三基点之外,还可以确定使植物受害或致死的最高与最 低温度指标,即最高致死温度和最低致死温度,合成为五基点温度。不同的植 物对三基点的温度要求不同,同一植物不同生命阶段的三基点温度也不相同, 生长发育的不同生理过程的三基点温度也不相同。 对大多数植物来说,维持生命温度一般在-10~50℃,生长温度在5~40℃,发育温度在10~35℃。

在最适温度下植物生长发育迅速而良好,在生长发育的最低和最高温度下植 物停止生长发育。但仍能维持生命;如果温度继续上升或降低,就会发生不同程度的 危害,达到 生命最低或最高温度时,植物开始死亡。在三基点温度之外,还可以确定最高与最低致死温度,统称为5个基本温度指标。 不同作物或同一种作物的不同发育期,三基点温度是不相同的。 三基点温度是最基本的温度指标,用途很广。在确定温度的有效性、作物的种植季节 和分布区域,计算作物生产潜力等方面都必须考虑三基点。 (二)受害、致死温度 植物遇低温导致的受害或致死,称为冷害或冻害。在0℃以上的低温危害称冷害或寒害,在0℃以下的危害则为冻害。植物因温度过高而造成的危害称热害。 二、周期性变温对植物的影响。 据研究,植物的生长和产品品质,在有一定昼夜变温的 条件下比恒温条件下要好。这种现象称“温周期变化”。在一定的温度范围内,白天温度高,光合作用强,夜间温度低,作物呼吸消耗少即温度日较差大有利于有机质的积累。温度 日较差大有利于有机质作物品质的提高。在昼夜温差较大的条件下,生长的瓜肉和肉 质直根类作物,含糖量增加,小麦千粒重及蛋白质含量均提高。

光对植物的影响

摘要 光作为环境信号作用于植物,是影响植物生长发育的众多外界环境(光、温度、重力、水、矿物质等)中最为重要的条件。其重要性不仅表现在光合作用对植物体的建成的作用上,光还是植物整个生长和发育过程中的重要调节因子。光通过影响光合作用、光形态建成和光周期来调节植物的生长发育,因所处气候带不同或季节变化等原因,农作物不可避免的生长在弱光逆境中,农作物长期的弱光生长会导致植株营养体不健壮、落花落果严重、果实发育缓、含糖量降低、产量下降、品质变劣。我在这里主要讨论的是光对植物生长发育的影响,即光作为调节因子的影响;但实际上光合作用是贯穿植物体后期生长发育的整个过程的,是生长发育的基础,通过在植物体幼苗分化、营养生长中起作用而影响植物生长发育。 关键词:光照;植物;生长发育;呈色反应 1 光照在植物生长发育各个阶段的作用 1.1 种子的成熟过程 种子的形成和成熟过程实质上是指胚由小变大,营养物质在种子中变化和积累的过程。主要是把葡萄糖、蔗糖和氨基酸等小分子物质合成为淀粉、蛋白质和脂肪等高分子有机物质,并积累在子叶和胚乳中。这些物质由光合作用产生,因此光照强度直接影响种子内有机物质的积累。如小麦籽粒2/3的干物质来源于抽穗后叶片及穗子本身的光合产物,此时光照强,叶片同化物多,输入到籽粒的多,产量就高。在小麦灌浆期一遇到连着好几天阴天,籽粒重明显地减小而导致减产。此外,光照也影响籽粒的蛋白质含量和含油率。 1.2 种子萌发过程 种子萌发必须有适当的外界条件,即足够的水分、充足的氧气和适当的温度。这三者是同等重要、缺一不可的。光对一般的植物种子萌发没有什么他特别的影响,但有些植物的种子的萌发是需要光的,这些种子叫做需光种子,如莴苣、烟草等的种子。还有一些萌发时不需要光的种子称为嫌光种子。近年的研究表明,种子的休眠和萌发对某些波长的光较敏感,主要是红光、远红光和蓝光。这些种子的这种需光萌发性与种子内的光敏色素有关,隐花色素对种子的休眠也有一定的调节作用,主要是光敏色素的作用。光敏色素分布在植物的各个器官中,作为光受体,它在吸收了不同波长的光以后,可以诱导和调节植物的形态建成,并对某些生理过程有着显著的影响。例如莴苣种子的发芽中,光敏色素参与了休眠的解除和种子的萌发。在种子成熟后的干种子状态,含有光敏色素的红光吸收型(Pr)和远红光吸收型(Pfr)两种类型。Pr吸收红光能转变成Pfr,Pfr吸收远红光转变成Pr。Pfr是光敏色素的活化形式,可引起各种生理反应。当萌发条件适宜时,在光的照射下,Pr发生水合并转换成Pfr,从而导致发芽。 嫌光种子一般来说都是大粒种子,它们具有足够储藏物质以维持幼苗较长时间生长在地下黑暗环境中,发芽一般不需要光,如瓜类;而需光种子则多为一些小粒种子,当它们处于光不能透过的土层中时,保持休眠状态,只有当它们处于土表,依赖少量储藏物质进行发芽,从而及时伸出土表迅速进行自养生长。这在生态学上是具有一定意义的。如果小粒种子在土表下的黑暗处就能发芽,等它还不能伸出土表时,就已经耗尽储藏物质而不能存活了。 1.3 幼苗的生长分化过程 这一影响可以分为直接和间接两个方面。间接作用是指光通过光合作用、蒸腾作用和物质运输等影响植物生长。这个间接作用是一种高能反应,因为光是光合作用的能源,光照不足就不能产生足够的有机物,植物生长也就失去了物质基础。此外,光还可以影响植株的蒸

关于环境因素对植物生长影响或者作用的论文

第一节植物分类概述(1 学时)一、分类原则1.人为分类2.自然分类3.细胞遗传学——物种生物学4.化学分类学5.数量分类学二、分类单位和命名1.植物分类的基本单位2.命名原则三、界和门的划分1.界的划分:二界说、新二界说、三界说、五界说、六界说2.植物门的划分:菌藻植物、苔藓植物、蕨类植物、种子植物 第二节原核生物 (1 学时)一、细菌门1.细菌的主要特征2.细菌的分类3.细菌的繁殖方式二、蓝藻门1.蓝藻与细菌的区别2.蓝藻的主要特征3.原核生物的生活史第三节真核藻类和真菌、地衣(1 学时)一、藻类(Algae) 1.藻类的主要特征2.藻类的种类、门类3.藻类的繁殖方式二、真菌(Fungi) 1.真菌的主要特征2.真菌的种类3.真菌的繁殖方式4.真菌的演化历史三、地衣

1.地衣的主要特征:形态、结构、繁殖等特点2.地衣的种类3.地衣的生境与分布第四节苔藓和蕨类植物(1 学时)一、苔藓植物1.苔藓植物的主要特征2.苔藓植物的分类3.苔藓植物的繁殖方式4.苔藓植物的分布与生境二、蕨类植物1.蕨类植物的主要特征2.蕨类植物的分类概况3.蕨类植物的繁殖方式4.蕨类植物的生境与分布第五节种子植物(1 学时)一、裸子植物1.裸子植物的生活史2.裸子植物的主要特征3.裸子植物的分类及主要代表类型二、被子植物1.被子植物的生活史2.被子植物的的主要特征3.被子植物的主要分类系统 第二章植物生活和环境(9 学时)——植物生态类群的分化本章的教学目的与要求:掌握植物个体与环境条件之间的相互关系,掌握环境和生态因素的概念,了解生态因素对植物作用的特点;掌握各生态因素对植物的影响以及植物对生态因素生态适应特点。重点:环境与生态因素的概念、植物对各生态因子的生态适应特征。难点:植物适应性的形成。第一节概述(1 学时)一、环境与生态因子1.基本概念:环境、环境因子、生态因子、非生态因子、生态环境、小生境、

环境污染对生物的影响

[案例分析]生物教学:环境污染对生物的影响1 教学活动对象:高一学生 教学活动准备:开放生物实验室,并准备学生活动所需的各类仪器装置;实验所需各种生物、各类污染物等主要由学生自己采集、准备。 教学活动过程:该主题的教学活动过程主要分为以下步骤: (1) 教师提出课题“环境污染对生物的影响”。 (2) 学生调查学校周围环境中的主要污染现象,分析污染原因。如让学生走访区环保局和环境监测站,随同专业人员采集黄浦江水样、测定水样,调查学校周围环境的空气、水质和绿化现状等。 (3) 学生经过对周边环境的各类污染因素与常见生物的关系的调查和分析后,组成若干课题研究小组(每组3-5人),各自选定实验研究项目。 (4) 各小组相互评议实验研究项目,进行可行性论证,然后确定实验研究项目。 (5) 各小组设计具体的实验研究方案。实验方案中应包括以下内容:①研究题目;②研究目的;③实验原理;④所需材料(应具有可行性);⑤具体实验步骤;⑥预期结果。 (6) 师生分别作实验准备。 (7) 在课堂内,各组学生按照自己的实验方案进行操作。小组成员之间应相互协作,相互切磋,共同解决实验中出现的问题。 (8) 各组间相互交流实验研究的过程和结果,相互进行评议和质询,提出自己的不同看法。 各组在听取评议的基础上进一步完善实验或提出进一步研究的方案。 (9) 学生写出实验研究报告,提出自己对实验研究结果的见解。 在“环境污染对生物的影响”教学案例中,学生的探究活动分为形成概念和问题、制定学习计划、开展探究活动、总结发现四个阶段。在第一阶段,教师就“环境污染对生物产生的影响”这一现象要求学生进行多种体验,通过调查活动学生形成一系列概念和问题,从而引发学生探究的兴趣。第二阶段开始划分学习小组并进行小组讨论,以选定各自的实验研究项目,制定实验研究计划。第三阶段主要依靠学生自己开展探究活动,教师给予学生适度的辅导。探究的最后阶段是以实验报告的形式来进行总结活动,教师明确提出了实验报告的格式和要求等,并预先制定了相应的量规用于评价学生的整个学习和探究过程。 1.研究课题:环境污染对生物的影响。 2.活动目标: 在活动中提高学生的环保意识和科研意识; 在实验研究的过程中促进学生发展创造性思维; 培养学生设计和操作实验的能力; 培养学生相互合作的精神。 3.参加活动对象:高-年级部分学生(由学生自由报名)。 4,活动的准备: 开放生物实验室,并准备学生活动所需的各类仪器装置。实验所需各种生物、各类污染物等主要由学生自己采集、准备。 5.活动过程: (1)教师就课题"环境污染对生物的影响"概述进行科学实验与研究的基本方法。 (2)学生调查学校周围环境中的主要污染现象,分析污染原因。如让学生走访区环保局和环境监测站,随同1案例来源:上海故业中学费循蛟老师https://www.wendangku.net/doc/5115934911.html,/3_anli/3_jijin/jijin_008.htm

植物抗低温机理的分子生物学研究进展

植物抗低温机理的分子生物学研究进展 摘要:笔者从不同的方面综述了植物低温抗性的分子生物学研究进展,对低温抗性的机理做了阐释,并且给出以后的研究方向和重点。 关键词:低温抗性细胞膜透性不饱和脂肪酸丙二醛保护酶系统 脱落酸钙调素低温诱导蛋白 温度在植物营养生长、生殖生长的过程中都具有重要的作用。对于温度的调控是改善植物生长环境,调节植物生长状态的一项重要措施。在自然环境下,植物对于低温的抗性,体现了植物在温度方面的适应性,体现植物物种、品种的生态位的广度。也影响着植物产品的质量和产量。植物的低温胁迫根据温度的不同范围分为两种类型:冷害,是指零上低温对于植物生理机制的影响所造成的伤害;冻害,是指零下低温对于植物生理机制的影响所造成的伤害。目前,对于植物影响较大的是冷害。【1~4】冷害的影响程度不仅取决于温度低的程度,也取决于植物受低温影响的时间的长度。温度越低,时间越长则冷害对于植物的影响越大。由于温度这一自然因素存在于植物体的整个生命周期中,因此,对于温度的调控,抗低温机制的研究就显得至关重要。以往的研究中,有对于低温敏感植物和低温驯化植物的对比研究,说明了对植物的低温驯化可以在一定程度上提高植物的抗低温能力。也有从水分的平衡,蛋白质,碳水化合物,氨基酸,核酸水平上的研究;还有从细胞壁的特性,细胞膜的结构的研究以及生长调节物质的影响。前面的这些的研究,都说明了植物对于低温的反应和这些条件对于植物抗低温机制的一些影响。然而所有这些因素都不是某一种因素的单独作用,而是多种因素共同作用,相互影响的结果,不同因素之间存在着互作、制约等的作用。上面的这些研究也只是停留在膜保护系统、冷调节蛋白的生理调节的水平。随着生物分子工程、基因工程方面的研究水平的不断提高,给植物抗低温的研究有提出了一个新的方向。特别是低温信号转导的研究,分子标记的应用,将进一步揭示低温适应性的调控机理。 1、通过影响植物细胞膜透性影响植物低温抗性 20世纪70年代,Lyons等提出细胞膜是低温冷害的首要部位,在低温条件下,植物细胞膜由液晶态转变为凝胶态,膜收缩,导致细胞膜透 性改变,膜酶和膜功能系统代谢改变,功能紊乱。【5】 膜脂中不饱和脂肪酸的含量,和植物的低温抗性呈正相关。膜脂的不饱和脂肪酸含量越高,膜脂的相变温度越低,膜脂的结构对于低温的 忍耐性越强。低温敏感植物和低温抗性植物相比,膜脂中的不饱和脂肪 酸含量低,在抗低温驯化过程中,膜脂中的不饱和脂肪酸的含量增加, 低温抗性增强。 在生物技术方面,近年来对于膜脂结构对植物低温抗性影响研究有了新的进展。Los等发现蓝细菌的desA基因与低温抗性有关。研究发现,

光照对植物生长发育的影响

光照 光照对植物生长发育的影响主要表现在:光照强度、光照时间(光周期)和光的组成(光质)三个方面。 (一)光照强度 1.光强对植物生长发育的影响 ?光照不足,光合作用减弱;植株徒长或黄化;抑制根系; ?植物受光不良,花芽形成和发育不良;果实发育受阻,造成落花落果; ?光照过强,发生光抑制(光破坏);日烧; ?光强对蔬菜品质的双向调节作用:果菜类强光、叶菜类弱光;软化栽培嫌光。 2.光形态建成 由低能量光所调控的植株器官的形态变化称为光形态建成。 ?马铃薯植株在黑暗中抽出黄化的枝条(匍匐茎),但其每天只要在弱光下照射5~ 10 min,就足以使黄化现象消失,变为正常地上茎。 ?消除在无光下植物生长的异常现象,是一种低能反应,它与光合作用有本质区别。 3.需光度 植物对光强的需求,与植物的种类、品种、原产地的地理位置和长期对自然条件的适应性有关。 ?原产于低纬度、多雨地区的热带、亚热带植物,对光的需求一般略低于高纬度植物。 ?原生在森林边缘和空旷山地的植物多为喜光植物。 ?同一植物的不同器官需光度不同。 ?不同的生育时期需光度也不相同。 (1)根据蔬菜生长发育对光强的要求,可将蔬菜分为: ?强光照蔬菜:饱和光强1500μmol·m-2·s-1左右,西瓜、甜瓜、番茄、辣椒、茄子等。 ?中光照蔬菜:饱和光强800~1200 μmol·m-2·s-1,白菜类、根菜类、黄瓜等。 ?弱光照蔬菜:饱和光强600~800 μmol·m-2·s-1,绿叶菜类、葱蒜类等。 (2)根据种子萌发对光的需求不同,将蔬菜种子分为: 需光种子:伞形花科、菊科 嫌光种子:百合科、茄果类、瓜类 中光种子:豆类 4.影响光照强度的因素 ?气候条件:如降雨、云雾等。 ?地理位置:纬度、海拔。 ?栽培条件:如栽植密度、行向、植株调整以及间作套种等,会影响田间群体的光强分布。 ?栽培设施: (二)光质 1.太阳光谱 太阳辐射的波长范围150-3000nm,其中400-700nm的可见光约占52%,红外线占43%,而紫外线只占5%。 ?光质随着地理位置和季节的变化而变化; ?光质因天气及其它遮挡材料而变化。如散射光强度低,但红、黄光比例可达50%左右,而直射光只有37%的红、黄光。 2.光质作用

植物低温胁迫及其抗性生理

植物低温胁迫及其抗性生理 江福英1,2 ,李 延1 ,翁伯琦 2 (1.福建农林大学资源与环境学院,福建 福州 350002; 2.福建省农业科学院,福建 福州 350003)收稿日期:2002-02-02初稿;2002-05-29修改稿 作者简介:江福英(1975-),女,在读硕士研究生,主要从事牧草植物生理方面的研究。基金项目:福建省科技厅重点科技项目(2000T 005)。 摘 要:综述低温胁迫对植物活性氧代谢、光合作用、呼吸作用、氮代谢等生理过程的影响,以及提高植物抗寒性的措施及其机理。提出尚待进一步研究的问题。关键词:低温胁迫;抗寒性;抗寒蛋白;抗寒基因中图分类号:Q 945.78 文献标识码:A Review on physiology of chilling stress and chilling resistance of plants JI AN G Fu-y ing 1,2,L I Yan 1,W ENG Bo -qi 2 (1.Colleg e of Resour ces and E nv ir onment Sciences ,Fuj ian A gr icultur e and F or estry Univ ersity ,Fuz hou ,Fuj ian 350002,China ; 2.Fuj ian A cademy of A gr icultur al Sciences ,Fuz hou ,Fuj ian 350003,China )Abstract :T he physio lo gical chang es such as the activ e o xy gen metabolism,photo synthesis,r espiration a nd nit ro gen metabolism o f chilling st ress plants and the m ethods o f chilling resist ance w ere intr oduced ,so me pr oblems need t o be fur ther investig ated in the ar ea of pla nt chilling -resistance w ere put for w ard .Key words :Chilling str ess;Chilling r esist ant ;Chilling resistant pro tein;Chilling r esist ant gene 低温胁迫是植物栽培中常常遇到的一种灾害,它不仅会导致植物产量的降低,严重时还会造成植株的死亡[1]。研究低温胁迫对植物的伤害作用及其机理,探索植物抗寒机制及其预防措施,具有重要的理论和实际意义。本文就此领域的研究概况和进展作一综述,并提出需进一步研究的问题。 1 低温胁迫对植物伤害效应及机理 1.1 活性氧代谢 1.1.1 膜脂相变 细胞膜系统是低温冷害作用的首要部位,温度逆境不可逆伤害的原初反应发生在生物膜系统类脂分子的相变上[2]。膜脂脂肪酸的不饱和度或膜流动性与植物抗寒性密切相关。增加膜脂中的不饱和类脂或脂肪酸含量能降低膜脂的相变温度,且膜脂上的不饱和脂肪酸成分比例越大,植物的相变温度越低,抗寒性也越强[2~11]。植物对低温反应的一种重要表现就是增加不饱和度较高的脂肪酸,如增加油酸、亚油酸、亚麻酸在总脂肪酸中的比例;增加磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰甘油在总磷脂中的比重 [9~11] 。王洪春等[4] 对206个 水稻品种种子干胚膜脂脂肪酸组成所做的分析表明,抗冷品种(粳稻)的膜总类脂脂肪酸组成中,含有较多的亚油酸C 18∶2和较少的油酸C 18∶1,其脂肪酸的不饱和指数高于不抗冷品种(籼稻)。类似的报道在香蕉、柑桔、番茄等中也得到证实[6~8]。一般认为膜的流动性在很大程度上是由膜上的脂,特别是膜磷脂的脂肪酸所决定。膜磷脂的脂肪酸组成能控制膜流动性,因而成为临界冷冻决定因素,高比例的磷脂合成可能有利于植物免受冻害。近年来的研究表明[3] ,磷脂酰甘油(PG)因具有较多的饱和脂肪,而成为决定膜脂相变一重要因素,PG 的脂肪酸组成及其相变温度与植物抗寒性密切相关。具有相同脂肪酸链的不同磷脂的热致相变中,不同极性端的磷脂其相变温度的顺序为磷脂甘油(PG)>磷脂酰胆碱(PE)>磷脂酰乙醇胺(PC)[12]。1.1.2 膜脂过氧化 植物在低温胁迫下细胞膜系统的损伤可能与自由基和活性氧引起的膜脂过氧化和蛋白质破坏有关[13]。植物体内的自由基与活性氧具有很强的氧化能力,对许多生物功能分子有破坏作用。植物体内也同时存在一些清除自由基和活性 福建农业学报17(3):190~195,2002 Fuj ian J our nal of A gr icultur al S ciences 文章编号:1008-0384(2002)03-0190-06

园林植物的影响因素

第五章园林植物的影响因素 植物为活的有机体,在生长发育过程中,不断受到内在因素的影响,同时受外界条件的综合影响,较明显者为:温度、水分、土壤、空气、人类活动等。 一、温度 随海拔升高、纬度(北半球)北移而降低; 随海拔降低、纬度(北半球)南移而升高。 南---------北:常绿----落叶 阔叶----针叶 (一)温度三基点 1、温度变化----影响植物的光合作用、呼吸作用、蒸腾作用等生理作用。 (1)最低温度 (2)最适温度 (3)最高温度 2、一般植物0—35oC范围内,温度上升,生长加速, 温度下降,生长减缓 (二)温度的影响 1、温度影响植物的休眠和萌芽 2、低温使植物遭受寒害和冻害 3、高温影响植物质量 4、温度与物候的关系 5、温度与各气候带的植物景观 (1)寒温带针叶林景观 (2)温带针阔叶混交林景观 (3)暖温带落叶阔叶林景观 (4)亚热带常绿阔叶林景观 (5)热带季雨林、雨林景观 二、水分 1、水的作用: (1)影响植物的光合作用、呼吸作用、蒸腾作用等生理作用 (2)植物生存的物质条件之一

(3)影响植物的形态结构、生长发育、繁殖、种子传播的生态因子之一 (4)可形成特殊的植物景观 2、植物分类(依植物对水分变化的适应能力) (1)旱生植物:少量水分即可满足生长发育 树干矮小、树冠稀疏、根系发达、夜小而厚, 有的退化成针状,表面有角质层或生绒毛 如:仙人掌 (2)湿生植物:与(1)对立 一般根系不发达,生长发育需要大量水分抗旱能力差 如:秋海棠、酢浆草 (3)中生植物:介于(1)(2)之间 如:水淹可正常生长:旱柳、乌桕、水杉 水淹会死亡:梧桐、桃、李、木瓜、雪松(4)水生植物:植物的全部或部分必须在静水或流水中生长 如:王莲 三、光照 (一)植物对光照的要求,通过以下两点表示 (1)光补偿点 (2)光饱和点 (二)植物分类(依光照强度) (1)阳性植物:要求较强光照,不耐庇荫 (2)阴性植物:要求较弱光照 (3)中性植物(耐荫植物) 备注:耐荫是相对的,与纬度、气候、年龄、土壤密切相关 四、土壤(植物生长发育的基质) (一)土壤物理性质的影响 主要指土壤的机械组成 (二)土壤厚度的影响 涉及土壤水分、养分多寡及承重问题 (三)土壤酸碱度(PH) 影响矿物质养分溶解、转化、吸收 (四)植物分类

浅谈低温胁迫对植物的影响

低温胁迫对植物的影响 杨万坤 114120238 (云南师范大学生命科学学院 11应用生物教育A班) 摘要:当环境温度持续低于植物正常所需温度(生物学零度)时,温度对植物形成低温胁迫,对植物的生长、发育和生存造成严重影响。植物遭受低温逆境胁迫时,从感受低温信号到发生一系列生理生化反应和调节基因表达,进而产生抗寒能力。研究低温胁迫对植物生长发育、生理生化指标、低温反应基因的表达与调控,对于我们生产生活有着重要意义。 Effect of low temperature stress on plant Abstract:When the environment temperature is consistently lower than the temperature normally required for plants (biological zero),The temperature of low temperature stress on the formation of the plant, the plant growth, development and survival of a serious impact.Plants under low temperature stress, low temperature signal from the feeling to have a series of physiological and biochemical reactions and the regulation of gene expression, resulting in cold hardiness。Study of low temperature stress on plant growth, physiological and biochemical indicators of low temperature responsive gene expression and regulation, for our production and life of great significance.

二氧化硫对植物的影响 word (1)

二氧化硫对植物的影响 张涛 20135937 摘要:近年来SO2污染比较严重,它对植物有着多方面的影响。植物既受到SO2污染的影响,又对SO2的影响具有一定程度的修复能力。本文总结了关于SO2单一污染物对植物生理生化的直接影响以及其适应机制,并提出对这方面研究的展望。 关键词:二氧化硫;植物;抗氧化酶 我国是以煤为主要能源的国家,所以我国的大气污染主要是以SO 2 污染为主。特别是近30年来我国经济的高速发展,更使煤炭以及石油的消耗量达到 了一个前所未有的高度,加剧了SO 2的排放污染。SO 2 是我国当前最主要 的大气污染物,在个别地区污染相当严重。SO 2 可通过气孔进入植物叶片细 胞后快速溶于细胞中,在细胞内释放出H+、HSO 3-和SO 3 2-等,从而对细 胞产生直接或间接的伤害。也可与其它大气污染物进行化学反应,生成各种硫酸盐,这些成分随雨水共同降落成为“酸雨”,能够导致土壤和水系的酸化,干扰植物的代谢,对生态系统有很大的破坏作用,从而间接地危害人类健康。关 于SO 2 污染环境对植物生理生化及生长发育的影响已引起了众多学者的关 注,并己取得了长足的进展。近年来,在SO 2 的植物伤害症状、伤害机理、对生理生化指标、植物组织结构影响等方面取的研究得了许多进展。 1.二氧化硫对植物形态的影响 李利红,仪慧兰[1]等采用室内培养及密闭箱静态熏气方法,研究了不同浓 度SO 2暴露对拟南芥叶片形态的影响,结果显示:SO 2 暴露对拟南芥成熟 叶片的伤害主要是叶面伤害斑的出现和叶片枯死,伤

害程度与暴露浓度和时间呈正相关,暴露于低浓度SO 2 时叶面无伤害斑,随 时间推移有少数叶片边缘卷曲,但在停止暴露后恢复正常;中浓度时暴露的植株叶片出现大小不等的透明斑,随着暴露时间的延长,伤害症状发展为坏死斑, 暴露于高浓度SO 2 的植株,叶片很快出现不规则形的黄色坏死斑,坏 死斑的面积随暴露时间的延长而扩大,之后叶片大量枯死。但在脱离高浓度S O 2 后伤害性斑点不再增加,并能继续生长发育。 SO 2暴露对拟南芥植株的生长发育具有双向作用,较低浓度SO 2 暴露 对植株的生长发育有一定的促进作用,高浓度SO 2 暴露会抑制植株的生长发育,使株高、单株叶片数和单叶面积呈浓度依赖性减少。 2二氧化硫对植物生理生化的影响 2.1二氧化硫对植物气孔的影响 气孔是植物与外界环境间气体交换的主要通道,气体污染物主要通过气孔进入叶组织,因此气孔在大气污染物对植物的影响中占有相当重要的地位。高吉喜 [2]通过试验表明:通常情况下 SO2 促使植物气孔关闭,但也有某些植物经S O 2熏气后气孔关闭。气孔对SO 2 浓度的反应通常是SO 2 浓度越大,气孔 反应越快。 2.2二氧化硫对植物细胞膜的影响 细胞膜是植物细胞的重要组成部分,起着调节控制细胞内外物质交流的屏障作用,当植物处在不利环境条件下时,刺激首先作用于细胞膜。大量观察研 究表明,细胞膜也是SO 2作用的最初部位,在植物接触高浓度SO 2 后,膜 首先受到损伤,继而膜透性发生改变。植物膜透性对SO 2 的反应差异通常与 植物的抗性有关,抗SO 2强的植物,细胞膜对SO 2 的反应不敏感,反之则很

光谱成分对植物生长的影响

光谱成分对植物生长的影响 太阳辐射是以光谱、光照强度、日照时间、影响植物生长发育的,太阳辐射是影响植物生长发育最直接和最重要的气象要素。到达地面上的太阳辐射包括紫外线、可见光和红外线三部分。而光谱成分是植物重要的一个生态因子,在太阳光谱中,对于植物生活其最重要的是可见光部分(波长0.04μm~0.76μm),但紫外线(波长0.01μm~0.4μm)和红外线(波长0.76μm~1000μm)也有一定的意义。不同波段对植物的生长发育,刺激和支配植物组织和器官的分化的影响也不同。因此,太阳光谱在某种程度上决定着植物器官的外部形态和内部结构,有形态建成的作用。 太阳辐射不同光谱对植物的影响如下:1)波长大于1.00μm的辐射,被植物吸收转化为热能,影响植物体温和蒸腾情况,可促进干物质的积累,但不参加光合作用2)波长为1.00~0.72μm的辐射,只对植物伸长起作用,其中波长为0.72~0.80μm的辐射称为远红外光,对光周期及种子的形成有重要作用,并控制开花与果实的颜色3)波长为0.72~0.61μm的红光、橙光可被叶绿素强烈吸收,某种情况下表现为强的光周期作用4)波长为0.61~0.51μm 的光,主要为绿光,表现为的光合作用与弱成形作用5)波长为0.51~0.40μm的光,主要为蓝紫光,被叶绿素和黑色素强列吸收,表现为强的光合作用与成形作用6)波长为 0.40~0.32μm的光,外辐射起成形和着色作用,如使植物变矮,颜色变深,叶片变厚等7)波长为0.32~0.28μm紫外线对大多数植物有害8)波长小于0.28μm的远紫外辐射可立即杀死植物。 此外,有科学实验证明,不同波长的光对植物生长有不同的影响。可见光中的蓝紫光与青光对植物生长及幼芽的形成有很大作用,这类光能抑制职务的伸长,而是其形成粗矮

实验一 极端温度对植物的影响

仲恺农业工程学院实验报告纸 园艺园林学院(院、系)园林专业园林111班组课 学号姓名实验日期教师评定 实验一极端温度对植物的影响 一、目的 通过实验了解极端高温和极端低温对植物的影响,从而了解温度对园林植物生产中存在的限制作用,以及对极端温度的预防措施。 二、仪器准备 恒温水浴锅、冰箱、电导仪、注射器、培养皿、烧杯、剪刀、镊子等。 三、实验材料 植物成熟健康叶片。 四、原理及说明 植物对高温伤害反应因物种不同而有差别。植物耐高温性的测定最好用整株植物进行,但在实际中不易进行。根据Lange的研究,认为在多数情况下,测定植物离体部分的温度抗性,与对整株植物测定没有很大差异。最简单的方法是把植物的一部分浸在适当温度的水中经过30min,然后观察器官受伤害程度,若有50%的器官受害,表明这个温度是致伤高温。 植物细胞膜对维持细胞的微环境和正常的代谢起着重要的作用。在正常情况下,细胞膜对物质具有选择透性能力。当植物受到逆境影响时,如高温、低温、干旱、盐渍或病原菌侵染后,细胞膜遭到破坏,膜透性增大,从而使细胞内的电解质外渗,以致植物细胞浸提液的电导率增大。膜透性增大的程度与逆境胁迫强度有关,也与植物抗逆性的强弱有关。这样,比较不同作物或同一作物不同品种在相同胁迫温度下膜透性的增大程度,即可比较作物间或品种间的抗逆性强弱,因此,电导法目前已成为作物抗性栽培、育种上鉴定植物抗逆性强弱的一个方法。 可通过测定细胞渗出液的电导率来了解植物受伤害的程度。伤害程度可用下式表示: I=C-C0/C d-C0 C为样品的伤害电导率、C0为完好时的电导率,C d为完全伤害时的电导率。I值越大,表明伤害程度越严重。 五、实验步骤 1.植物耐热性测定:分别取供试植物的叶片切成1×1cm小片,每份称取0.5g样品,在烧杯中分别放入测

二氧化硫污染对绿色植物的影响

二氧化硫污染对绿色植物的影响 上海市园林学校(200051)胡天勤 化学与生活,1996(7) 随着人类对自然资源的不断开发和工农业生产的迅速发展,大量有毒有害物质任意排放,对我们周围环境带来了严重污染。 本文就二氧化硫这一主要大气污染物对绿色植物所产生的影响作一分析和探讨。 (一)二氧化硫的来源 在大氧中有许多污染物质,如二氧化硫、NOx、臭氧、烟尘等,其中以二氧化硫为主要污染源,原因是它来源广、危害大。据统计,全球每年向大气排放的二氧化硫多达2.4亿吨左右,单在我国,就有1400万吨之多,其污染量之大令人吃惊。二氧化硫污染大气,它来自以下凡方面: (1)煤、石油等燃料的燃烧是大气中二氧化硫的主要来源。煤炭中含硫,一般含量在3%~5%左右,燃烧后即被氧化成二氧化硫,由燃料燃烧所产生的二氧化硫大多从烟囱排入大气。 (2)钢铁、炼油、有色金属冶炼、化工、水泥等工厂企业,在生产流程及工艺操作过程中,也会排放相当量的二氧化硫气体。据统计,到本世纪末。全世界二氧化硫排放总量可达3.4吨左右。而当大气中二氧化硫的含量超出0。2~0。3PPm时,一些绿色植物将会受到严重的伤害。 (二)二氧化硫对植物的危害 大气中二氧化硫污染物对植物的危害方式一般有三种: 1。急性危害:高浓度的SO2气体会大大超出植物的承受能力,使植物在短时问内(1~2天或几小时内)发生叶片枯焦脱落,生长发育严重受阻,直到枯

萎死亡。 2。慢性危害:植物因长期在低浓度SO2污染的环境中,逐渐产生不易被人们所觉察的一些症状,使植物出现不同程度的生长不良。 3。隐性危害:植物长期在低浓度SO2影响下,并未表现出任何症状,但植物内部的生理活动已受到侵害,生长发育受阻。 (三)二氧化硫危害植物的化学机理 当二氧化硫通过植物叶片上的气孔进入叶子后,被叶肉吸收,转变成亚硫酸根离子然后又可转变成硫酸根离子,由于在植物体内SO2转变成SO32-的速度要比SO32-转变成SO42-快得多,所以当高浓度的二氧化硫进入植物体内后,会造成高浓度的SO32-的积累,而SO32-对植物的毒性比SO42-扩大30倍,从这一意义上分析,二氧化硫对植物造成的损害,实际上是由于其还原作用所引起的。 (1)对气孔机能的影响 当二氧化硫气体进入叶片以SO32-形式积累起来后;便会对气孔的开启和关闭机能带来影响,使气孔机能瘫痪,从而使大量二氧化硫气体进入植物体的细胞,加重对植物的危害。此外,由于植物气孔机能受阻,还会引起水份大量蒸腾,导致植物组织迅速枯萎。 (2)对叶片组织结构的破坏 当二氧化硫通过开放的气孔进入叶片组织后,溶解在细胞中,致使细胞内含物遭破坏或变形,引起外渗与原生质分离,使叶片组织结构遭到损害,海绵细胞与栅栏细胞发生质壁分离,其主要症状为:细胞失水变形、组织破碎。栅状组织细胞的排列层次紊乱、细胞间隙增大、叶片明显变薄等。 (3)对光合作用的影响

研究环境对植物生长的影响课题报告...

土壤研究环境对植物生长的影响课题报告随着城市化建设的发展,日益增加的人群活动影响城区土壤的自然性状已发生很大的改变,成了独特的城市土壤,从而对园林植物的生长产生影响。 1.城市土壤的特点 1.1 土壤无层次人为活动产生各种废弃物,过去长期多次无序侵入土体和地下施工翻动土壤,破坏了代表土壤肥力的原土壤表层或腐殖层,形成无层次、无规律的土体构造。 2 土壤密实、结构差城市土壤有机质含量低、有机胶体少,土体在机械和人的外力作用下,挤压土粒,土壤密实度高,破坏了通透性良好的团粒结构,形成理化性能差的密实、板结的片状或块状结构。 3 土壤侵入体多土壤掺入大量的各种渣砾和地下构筑物及管道等,占据地下空间,改变了土壤固、液、气三相组成和孔隙分布状态及土壤水、气、热、养分状况。 4 土壤养分匮缺城区内园林植物的枯枝落叶,大部分被运走或烧掉,使土壤不能像林区自然土壤那样落叶归根、养分循环。在土壤基本上没有养分补给的情况下,已有大量侵入体占据一定的土体,致使植物生长所需营养面积不足,减少了土壤中水、气、养分的绝对含量。植物在这种土壤上生长,每年都要从有限的营养空间吸取养分,势必使城市土壤越来越贫瘠。 5 土壤污染城市人为活动所产生的洗衣水、菜瓜汤、油脂、酸碱盐等物质进入土体内,超过土壤自净能力,造成土壤污染。近年来,一些城市用10%-20%的氯化钠盐作为主要干道的融雪剂,融化的盐水已构成影响植物生存的新污染源。2.城市土壤对园林植物生长的影响 6 土壤密实度对园林植物生长的影响土壤密实度又称紧密度或土壤坚实度。城市土壤密实度显著大于郊区土壤,是城市土壤的一个主要特点。 7矿物质对植物的影响很大了,植物需要大约25种元素,C H O N P S Na Mg AL B MO Ca Fe Zn 等等, 矿物质中大多都有这些元素,它们在土壤中被根吸收,转运到植物的不同部位,进行作用,好多植物缺少矿物质叶子都会发黄, 比如如果没有Mg,就不能正常进行光合作用,因为Mg是合成叶绿素必须的元 对于这些问题,我们应该想办法解决,这样才可以更好的生活在城市的绿色中,更好的享受城市的美好生活。

光照强度对植物生长的影响

光照强度对植物生长的影响 内容摘要:光照强度在补偿点以下,植物的呼吸消耗大于光合作用产生,用词不能积累干物质;在光补偿点处,光合作用固定的有机物刚好与呼吸消耗相等;在光补偿点以上,随着光照强度的增加,光合作用强度逐渐提高并超过呼吸强度,于是在植物体内开始积累干物质。 关键词:光照强度;植物;光合作用 植物的生长是通过光合作用储存有机物来实现的,因此光照强度对植物的生长发育影响很大,它直接影响植物光合作用的强弱。光照强度与植物光合作用没有固定的比例关系,但是在一定光照强度范围内,在其它条件满足的情况下,随着光照强度的增加,光合作用的强度也相应的增加。但光照强度超过光的饱和点时,光照强度再增加,光合作用强度不增加。光照强度过强时,会破坏原生质,引起叶绿素分解,或者使细胞失水过多而使气孔关闭,造成光合作用减弱,甚至停止。光照强度弱时,植物光合作用制造有机物质比呼吸作用消耗的还少,植物就会停止生长。只有当光照强度能够满足光合作用的要求时,植物才能正常生长发育。 根据植物的生长环境,可将植物分为陆生型,水生型,附生型,

寄生型。对植物的总光能利用率产生影响的主要因素是光合面积、光照时间和光合能力。光合面积主要是指叶面积,通常用叶面积指数来表示,即植物叶面积总和与植株所覆盖的土地面积的比值;光合时间是指植物全年进行光合作用的时间,光合时间越长,植物体内就能积累更多的有机物质并增加产量,延长光合时间主要是靠延长叶片的寿命和适当的延长植物的生长期;光和能力是指大气中二氧化碳含量正常和其他生态因子处于最适状态时的植物最大净光合作用速率。 1光合作用与光照强度 光合作用是绿色植物和藻类利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物光合作用速率的大小可用单位时间、单位叶面积所吸收的CO2或释放的O2表示,亦可用单位时间、单位叶面积所积累的干物质量表示。 光照强度,简称照度。一个被光线照射的表面上的照度(illumination/illuminance)定义为照射在单位面积上的光通量。设面元dS 上的光通量为dΦ,则此面元上的照度E为:E=dΦ/dS 。照度的单位为lx(勒克斯),也有用lux的,1lx=1lm/㎡。照度表示物体表面积被照明程度的量。光照强度在赤道地区最大,随纬度的增加而逐渐减弱。例如在低纬度的热带荒漠地区,年光照强度为200大

植物低温胁迫适应性应答综述

植物低温胁迫适应性应答综述 摘要:对植物低温胁迫适应性应答的研究进展,包括低温诱导蛋白、低温转录因子、低温信号转导、不饱和脂肪酸酶,以及低温次级氧胁迫进行了综述。 关键词:植物;低温胁迫;适应应答 低温胁迫包括0-12℃之间的冷胁迫(chillingstress)和0℃以下的冰冻胁迫(freezing stress)两种。它是一种严重的自然灾害,不仅限制作物的区域分布和生存,还对作物产量有很大影响。探讨植物在低温胁迫下的生理生化变化及其抗寒冻机理。对改善作物抗寒冻性能,提高经济作物产量,改善环境绿化状况均有十分重要的理论与经济意义和社会效益,是人们关注和研究解决的植物生理学和农业问题之一。 1 低温胁迫下的植物损伤 环境温度改变会引起物质在水溶液中发生物理化学变化。随着温度降低,水分子的粘滞性可以增大几倍。使得溶剂以及水分子的扩散速率下降,盐的溶解性也降低,而气体的溶解性增大。生物体缓冲系统的pH提高。另外,细胞结冰往往伴随着脱水。使细胞内渗透压增大,细胞体积缩小。质膜系统和细胞骨架受到损伤,气体交换受阻,生物大分子结构改变并导致功能丧失,有害物质积累,植物细胞器如线粒体、叶绿体、核糖体的结构与功能也受到影响。植物体内包括光合、呼吸、生长发育、代谢、蒸腾以及营养水分吸收等在内的几乎所有的生命活动都会不同程度地受到寒冷胁迫的干扰。 有关植物冷害的最早学说是Lyons在1973年提出的“膜脂相变”学说。该学说认为,与热激胁迫所引起的蛋白质变性以及折叠受阻不同,低温对冷敏感植物的伤害首先是改变了磷脂双层膜的膜相,尤其是改变了质膜的空间构象和物理状态,使从片层(lamellar)转变为非片层(non-lamellar)或六方晶Ⅱ(hexagonalⅡ),从液晶相转变为凝胶相。膜相的改变可能抑制细胞膜发挥正常功能,而构象的改变影响了膜的稳定性,使蛋白质从膜上解聚下来,发生膜融合。 2低温胁迫对植物细胞生物学和生物化学的响应 虽然植物不能像动物那样靠运动来趋利避害,但在长期进化过程中也形成了多种在寒冻环境下生存的适应机制,包括被动适应机制和主动适应机制。前者指植物体自身具有的结构障碍,如叶片较小、栅栏组织发达、细胞壁衍化成角质层、

气象对园林植物的影响

气象对园林植物的影响 摘要:概述各种气象因子对园林植物的影响,研究气象与园林植物的关系;具体分析光、温度、水分及空气对园林植物的影响,探寻其实践应用方法。 关键词:气象园林植物光照温度水分空气 一、气象与园林植物的关系 影响植物生长的因素有很多,而气象对园林植物就有深远的影响,大到植物带的分布小到植物的生长发育。气象学包括各种气象因素,而对于园林植物来说,气象对其影响有很多方面,如植物的生长发育离不开气象这个大环境,植物的分布、色彩大小等等都离不开它。而最普遍的影响因素莫过于光、温度、水分和空气。故气象与园林植物的关系就是影响与被影响的关系,而我们接下来要探讨的就是四大气象因素对园林植物的影响。 二、气象因子的具体影响 (一)光照因子对园林植物的影响 植物生长离不开光,绿色植物通过光合作用将光能转化为化学能,储存在有机物中,各种植物都要求在一定的光照条件下才能正常生长,太阳辐射在地球表面随时间和空间发生有规律的变化,直接影响着植物的生长和发育。所以光因子对园林植物的影响居重要地位,为此我们应该具体分析: 1) 光谱对植物的影响不同波长的光照因子对植物的生长发育、种子萌发、叶绿素合成及形态形成的作用是不一样的。太阳辐射光谱不能全被植物吸收。植物吸收用于光合作用的辐射能称为生理辐射,主要指红橙光、蓝紫光和紫外线。 ①红橙光被叶绿素吸收最多,光合作用活性最大,蓝紫光的同化效率仅为红橙光的14%。红橙光有利于叶绿素的形成及碳水化合物的合成,加速长日照植物的生长发育,延迟短日照植物的发育,促进种子萌发; ②蓝紫光有利于蛋白质合成,加速短日照植物的发育,延迟长日照植物的发育。紫外线有利于维生素 C 的合成。 ③在紫外线辐射下,许多微生物死亡,能大大减少植物病虫害的传播。紫外线也能抑制植物茎的伸长,引起向光敏感性和促进花青素的形成。 在诱导形态建成、向光性及色素形成等方面,不同波长的光,其作用也不同。如蓝紫光抑制植物的伸长,使植物形成矮小的形态;而红光有利于植物的伸长,如用红光偏多的白炽灯照射植物,可引起植物生长过盛的现象。青蓝紫光还能引起植物的向光敏感性,并促进花青素等植物色素的形成。紫外线能抑制植物体内某些生长素的形成,以至于植物的白天生长速度常不及夜间。 生长期内生长素受侧方光线的影响,在迎光一面生长素少于背光面,造成背光面生长速度快于迎光面,产生所谓植物向光运动。 2) 光照强度对植物的影响 光照强度主要影响园林植物的生长和开花。园林植物对光强的要求,通常通过补偿点和光饱和点来表示。植物与光照强度的关系不是固定不变的。随着年龄和环境条件的改变会相应的发生变

相关文档
相关文档 最新文档