文档库 最新最全的文档下载
当前位置:文档库 › 学士学位论文—-某开放式基金投资项目问题分析研究数学建模课程设计

学士学位论文—-某开放式基金投资项目问题分析研究数学建模课程设计

学士学位论文—-某开放式基金投资项目问题分析研究数学建模课程设计
学士学位论文—-某开放式基金投资项目问题分析研究数学建模课程设计

《数学建模》

课程设计

,

题目:某开放式基金投资项目问题专业:

学号:

姓名:

指导教师:

成绩:

二〇一二年十一月十八日

某开放式基金投资项目问题

某开放式基金现有总额为15亿元的资金可用于投资,目前共有8个项目可供投资者选择,每个项目可重复投资。根据专家经验,对每个项目投资总额不能太高,应有上限。这些项目所需要的投资额已知,一般情况下投资一年后各项目所得利润也可估算出来,如表1所示。

表1 单位:万元

请帮该公司解决以下问题:

(1)就表1提供的数据,应该投资哪些项目,使得第一年所得利润最高?(2)在具体投资这些项目时,实际还会出现项目之间互相影响的情况。公司咨询有关专家后,得到以下可靠信息:同时投资项目A1,A3,它们的年利润分别是1005万元,1018.5万元;同时投资项目A4,A5,它们的年利润分别是1045万元,1276万元;同时投资项目A2,A6,A7,A8,它们的年利润分别是1353万元,840万元,1610万元,1350万元,该基金应如何投资?

(3)如果考虑投资风险,则应如何投资,使收益尽可能大,而风险尽可能小。投资项目总体风险可用投资项目中最大的一个风险来衡量。专家预测出各项目的风险率,如表2所示。

(4)开放式基金一般要保留适当的现金,降低客户无法兑现的风险。在这种情况下,将专家的信息都考虑进来,基金该如何决策,使得尽可能降低风险,而一年后所得利润尽可能多?

(5)这个项目投资,是必须资金全部到位才有利润,还是只要第一期资金到位启动后就可以随便投资,然后利润率按第一期利润和投资之比来计算?

开放式基金投资问题

摘要

针对某开放式基金现有总额一定的问题,就四种不同的情况,我们建立了四个投资的线性或非线性规划模型,通过运用lingo 软件得出结果,求的最大的利润和相应的投资方案。

对问题一,我们根据题目所给条件建立了一个利润最大的为目标的线性规划模型,应用Lingo 软件求解得到当对项目12345678,,,,,,,A A A A A A A A 的投资次数分别为5、1、1、4、5、2、5、5次,有最大利润为36841.50万元。

对问题二,在问题一的基础上又多了项目之间的相互利润影响。对此我们在问题一基础上,建立非线性规划模型,得到对项目12345678,,,,,,,A A A A A A A A 的投资次数分别为0,3,6,1,5,5,5,5;获得最大投资利润36595.00万元。对此进一步讨论,通过模型改进得到对项目12345678,,,,,,,A A A A A A A A 的投资次数分别为1,0,6,4,5,4,5,5;获得最大投资利润37607.00万元。

对问题三,在问题二的基础上,建立双目标非线性规划模型,可以将此模型转化为以风险度的变化作为约束条件,以最大利润为目标函数的单目标的线性规划模型。通过Lingo 可以得出不同风险度上最大利润的最优解的数据,并用Matlab 可以作出图像,再根据图表的分析,可以得出最优方案。在风险度s =0.28时,项目12345678,,,,,,,A A A A A A A A 的投资次数分别为0,3,6,1,5,5,5,5;最大利润为36595万元。此方案即为最优方案。

对问题四,考虑到保留资金对投资的影响,因此引入资金保留比例系数,在问题三是上通过修改投资总额,调用问题三的程序可以得出在不同资金保留比例系数下的最优方案,把这些方案用Lingo 软件作出图表,通过对图表的分析得出最优解为:在风险度0.29s =,保留系数0.35W =时,项目12345678,,,,,,,A A A A A A A A 的投资次数分别为0,4,2,0,2,1,5,5,此时利润为25641万元。

对问题五, 综合考虑开放式基金公司的项目投资方式的选择问题。通过对基金公司选择一次性单笔投资方式还是分期投资方式的权衡比较。并结合开放式基金的特点、资金条件、市场行情、风险偏好,提出选择分期投资为最优的方案,即只要第一期资金到位启动后就可以随便投资,然后利润率按第一期利润和投资之比来计算。

关键:双目标非线性规划 投资风险度 保留资金系数 符号函数

一、问题重述

某开放式基金现有总额为15 亿元的资金可用于投资,目前共有8个项目可供投资者选择。每个项目可以重复投资(即同时投资几份),根据专家经验,对每个项目投资总额不能太高,且有个上限。这些项目所需要的投资额己经知道,在一般情况下,投资一年后各项目所得利润也可估计出来,见表1:

表1 投资项目所需资金及预计一年后所得利润

请帮助该公司解决以下问题:

l、就表1提供的数据,试问应该选取哪些项目进行投资,使得第一年所得利润最大?

2、在具体对这些项目投资时,实际还会出现项目之间相互影响等情况。公司在咨询了有关专家后,得到如下可靠信息:

(1)如果同时对第1个和第3个项目投资;它们的预计利润分别为1005万元和1018.5万元;

(2)如果同时对第 4、5个项目投资,它们的预计利润分别为 1045万元和1276万元;

(3)如果同时对第2、6、7、8个项目投资,它们的预计利润分别为1353万元、840万元、1610万元、1350万元;

3、如果考虑投资风险,则应该如何投资使得收益尽可能大;而风险尽可能的小。投资项目总风险可用所投资项目中最大的一个风险来衡量。专家预测出的投资项目A风险损失率为

q,数据见表3。

i

(4)开放式基金一般要保留适当的现金,降低客户无法兑现的风险。在这种情况下,将专家的信息都考虑进来,基金该如何决策,使得尽可能降低风险,而一

年后所得利润尽可能多?

(5)这个项目投资,是必须资金全部到位才有利润,还是只要第一期资金到位启动后就可以随便投资,然后利润率按第一期利润和投资之比来计算?

二、问题分析

⑴开放式基金简介

开放式基金,包括一般开放式基金和特殊的开放式基金。特殊的开放式基金就是LOF,英文全称是“Listed Open-Ended Fund”或“open-end funds”,汉语称为“上市型开放式基金”。也就是上市型开放式基金发行结束后,投资者既可以在指定网点申购与赎回基金份额,也可以在交易所买卖该基金。

开放式基金在国外又称共同基金,它和封闭式基金共同构成了基金的两种运作方式。开放式基金是指基金发起人在设立基金时,基金份额总规模不固定,可视投资者的需求,随时向投资者出售基金份额,并可应投资者要求赎回发行在外的基金份额的一种基金运作方式。投资者既可以通过基金销售机构购买基金使基金资产和规模由此相应增加,也可以将所持有的基金份额卖给基金并收回现金使得基金资产和规模相应的减少。

开放式基金是世界各国基金运作的基本形式之一。基金管理公司可随时向投资者发售新的基金份额,也需随时应投资者的要求买回其持有的基金份额。

三、模型假设

(1)不考虑投资所需的投资费,交易费;

(2)假设投资项目利润,投资风险率不受外界因素影响;

(3)虽然要求投资风险最小,但不考虑对单目标进行投资;

(4)在投资过程中,不考虑政策,政府条件对投资的影响;

(5)在利润相同的情况下,投资人对于每个项目的投资偏好是一样;

(6)不考虑保留资金以存款的形式获得的利润

四、符号说明

A(i=1...8)所投资的8个项目第i个投资项目;

i

x (i=1…8) 第i个投资项目的投资份数;

i

p (i=1…8) 当考虑投资的相互影响时第i个投资项目的所获利润;

i

q(i=1….8)第i个投资项目的投资风险;

i

s投资项目的风险度;

M(i=1…8)第i个投资项目的每份投资成本;

i

i N (i=1…8) 第i 个投资项目的所获利润;

w 投资保留系数; Y 投资所获总的利润

五、模型的建立与求解

问题一:

从这个问题来看,在各个投资项目之间不相互影响,不考虑投资风险,每个项目可重复投资的情况下,本问题是一个简单的单目标线性规划问题。总目标是使得第一年所得总利润最大,约束条件是每项投资都不能超过其投资上限,项目投资总额不能超过15亿,重复投资次数必须为大于0的整数。因此,我们可以建立简单的单目标线性优化模型。

模型一如下:

就投资的8个项目,要取得第一年利润最大,即求目标函数Y=8

1*i i i M N =∑的

最大,建立模型如下:

123456781139*1056*727.5*1265*1160*714*1840*1570*Max x x x x x x x x =+++++++约束条件:

134526788

1

6700*340004850*30000

5500*220005800*300006600*27000

4200*230004600*250004500*23000*150000i i i x x x x x x x x M x =≤??≤?

?≤?

≤??≤??

≤??≤?

≤???≤??∑ 0i x ≥(i=1…8),且它为整数;

模型结果:

通过lingo 解出该线性规划模型的结果,如下表

12345678 =5, =1, =1,=4, =5, =2, =5, =5 x x x x x x x x 第一年获得最大利润36841.50万元。 问题二

此问在不考虑投资风险的情况下,考虑了项目投资之间的相互影响。每个项目的年利润也会随着项目投资之间的相互影响发生相应改变。

建立模型二如下: 方法(1):非线性规划

在考虑投资的相互影响时,预计利润分别为:

()()()()()()()()()()()()()()()113132267826783131344545545456267**10051**1139

****13531****1056**1018.51**727.5**10451**1265**12761**1160

**p sign x x sign x x p sign x x x x sign x x x x p sign x x sign x x p sign x x sign x x p sign x x sign x x p sign x x x =+-=+-=+-=+-=+-=()()()()()()()()()82678726782678826782678**8401****714****16101****1840****13501****1575

x sign x x x x p sign x x x x sign x x x x p sign x x x x sign x x x x +-=+-=+-

(注:i p (i=1…8) 当考虑投资的相互影响时第i 个投资项目的所获利润;)

建立目标函数模型

1122334455667788********Max p x p x p x p x p x p x p x p x =+++++++;

(注:分段函数1

00

010

x sign x x >??

==??-

约束条件:

134526788

1

6700*340004850*30000

5500*220005800*300006600*27000

4200*230004600*250004500*23000*150000i i i x x x x x x x x M x =≤??≤?

?≤?

≤??≤??

≤?

?≤?

≤???≤??∑ 0i x ≥(i=1…8),且它为整数;

用Lingo 解得非线性规划结果为:

项目投资12345678 =0, =3, =6,=1, =5, =5, =5, =5x x x x x x x x ;获得最大投资利润36595.00万元。

由上述模型结果可知同时对第2、6、7、8个项目进行了投资,而当同时对第2、6、7、8个项目投资时每年利润变化分别为29万元,126万元,-230万元,-225万元,由此可知同时投资者四项项目时,项目7,8的影响较大,项目2的影响较小。而上述方案对项目7和项目8投资次数较多,对此我们考虑不同时对第2、6、7、8个项目投资,改进方案如下:

目标函数:

123456781005*1056*1018.5*1045*1276*714*1840*1575*Max x x x x x x x x =+++++++约束条件:

1345

267813

4526788

1

*1*1***06700*340004850*30000

5500*220005800*300006600*27000

4200*230004600*250004500*23000*150000i i i x x x x x x x x x x x x x x x x M x =≥??≥??=?

≤??≤?

≤??

≤??≤?

?≤?

≤??≤??≤??∑

0i x ≥(i=1…8),且它为整数;

该投资方案为:投资项目数1x =1,2x =0,3x =6,4x =4,5x =5,6x =4,7x =5,8x =5;第一年获得最大利润37607.00万元 问题三:

在问题二的基础上,考虑投资风险。投资要求风险最小,利润最大。处理该双目标函数,将风险度作为约束条件,不断改变风险度的数值,将双目标化为单目标函数,求出在不同风险度的情况下利润最大值,建立模型三如下: 建立目标函数模型:

12345678

1139*1056*727.5*1265*1160*714*1840*1570*Max x x x x x x x x =+++++++

(注:分段函数100

010

x sign x x >??

==??-

约束条件:

134526788

1

8

8

1

16700*34000

4850*300005500*220005800*300006600*270004200*230004600*250004500*23000*150000

***i i i i i i i i i i x x x x x x x x M x M x q M x s

===≤??≤??≤?

≤?

?≤?

≤?

?

≤?

?≤??≤??

???≤ ?????∑∑∑ s 不停的变化,分别求利润最大

0i x ≥(i=1…8),且它为整数;

其中风险度s 变化范围:0.07到0.37,用Lingo 求解如下表(表5):

表5 风险度和利润的变化关系

将风险度和利润的变化关系用Matlab作图见(图1)

0.511.522.533.544

图1 风险度和利润的变化关系的曲线图

由上表(表5)和(图1)观察可知,在拐点处,即风险度s =0.28时,利润为36595.00,项目投资次数1x =0,2x =3,3x =6,4x =1,5x =5,6x =5,x7=5,8x =5,此方案为最优方案;

问题四:

问题四中,考虑保留基金的一部分,降低兑付客户现金的风险。引入投资保留系数w ,w 变化范围为0.1到1,再依据风险度s 变化范围,在模型三基础上,考虑保留一部分现金后,我们建立模型四如下: 建立目标函数模型:

1122334455667788********Max p x p x p x p x p x p x p x p x =+++++++;

(注:分段函数100

010

x sign x x >??

==??-

) 约束条件:

()134526788

1

8

8

1

16700*340004850*300005500*220005800*300006600*270004200*230004600*250004500*23000*150000*1***i i i i i i i i i i x x x x x x x x M x w

M x q M x s ===≤?

?≤??≤?

≤?

?≤?

≤?

?

≤?

?≤??≤-??

???≤

?????∑∑∑ 0i x ≥(i=1…8),且它为整数;

保留系数w,最大风险系数s ,和利润三者之间的关系如下表:

格中的数据就说明了在风险系数为0.29下各种投资额的运行投资情况,从表6

中看出此时最大利润值25641.00

问题五:

这个项目投资,是必须资金全部到位才有利润,还是只要第一期资金到位启动后就可以随便投资,然后利润率按第一期利润和投资之比来计算?

此问题牵涉到开放式基金公司的项目投资方式的权衡选择问题。

一般而言,基金的投资方式有两种,一次性单笔投资和分期投资。每个基金公司可以依据自身具体情况,选择适合自己的投资方式,也可以用两种方式搭配使用。

到底要选择用一次性单笔投资还是分期投资呢?可以主要从以下三个角度来考虑。

资金条件:若资金比较充裕,投资额较大,选择一次性单笔投资的方式比较好。资金状况较不充足者,则选择分期投资方式比较好,可以有效避免基金的赎回风险、项目风险以及资金流动性风险。

市场情况:分期投资是利用市场下跌时多买,上涨时少买的策略,抚平市场波动,达到平均成本法的功效。在市场出现振荡行情,或是连续下跌的行情时,分期投资效果要好于一次性单笔投资。但如果市场出现单边上涨的行情,那么一次性单笔投资效果就优于分期投资。

风险偏好:一次性单笔投资相对分期投资而言,是较为积极的投资方式。如果基金投资公司对于风险的承受能力较弱,对于掌握市场的高低点也没有很大的把握,那么选择分期投资较好。若基金公司属于比较积极,风险承受能力亦较强的,则可选择一次性单笔投资,逢低入场,逢高获利出场。

本题中的基金总额是15亿,资金状况较不充足,所以选择分期投资较好。如果对于某个项目,每个月都去投资,或者说这个项目分十二次来投资,每次投1/12,其实投资者剩下的那部分资金没有投进去,还可以投资其他项目。假设市场有波动,对于投资者本金不会丢,而且投资者继续投资这个项目的资金可以投在其他项目,还可以让这部分资金继续增值。

开放式基金本身的资金流动性很强,赎回风险比较大,巨额赎回还会引发的挤兑风潮,这些都增加了风险。为了这种减少风险,选择分期投资比较好。如果市场有波动,投资者就可以回避这种波动。相对于投资者获得的收益来讲,就是投资者用的时间更长,而且收益相对来讲大一些,一定程度上避免了风险。

选择分期投资,可以避免一次性选错投资项目,资金流动可能很长时间难以恢复的问题。

综合考虑:我们建议基金投资者选择分期投资方式。即这个项目投资,只要第一期资金到位启动后就可以随便投资,然后利润率按第一期利润和投资之比来计算。

六、模型的评价

优点:

(1)问题在解答过程中,引用线性思想,更富有数字信息明了,成功运用数学软件把问题解决掉

(2)在处理基本保留适量现金以预防客户兑付现金时,在客户兑付现金情况不清楚的情况下,通过求解投资额最小,所得利润最大,承担的总风险最小的转化,避免了保留适量现金数目的讨论,简化了模型,求解也方便了.

缺点:

(1)模型理想化,将政府政策等外界条件因素不予考虑

(2)这个模型建立得比较简单,而且存在一定的误差. 在公式的推导过程中可能有错误,并且对客户想要提前还清贷款或想要延迟还贷款的情形没有进行讨论,这使得模型有缺陷,不够完善.

七.模型的推广

此模型关于风险投资问题,可以用于实际生活中的投资股票,购买彩票,人力资源配置,物资的分配等问题。

参考文献:

(1)数学建模与数学实验赵静但琦第三版高等教育出版社2008

(2)刘琼荪,龚劬,何中市,傅鹂,任善强,数学实验,北京:高等教育出版社,2004

(3)姜启源,谢金星,叶俊,数学模型,北京:高等教育出版社,2006

(4)赵东方,数学模型与计算,北京:科学出版社,2007

(5)钱颂迪等,运筹学,北京:清华大学出版社,2008

(6)张志涌等,精通Matlab6.5版,北京:北京航空航天大学出版社,2002 (7)袁新生《Lingo和Excel在数学建模中的应用》北京科学出版社2007

附录:

模型一程序:

Lingo代码

max=1139*x1+1056*x2+727.5*x3+1265*x4+1160*x5+714*x6+1840* x7+1575*x8;

6700*x1<34000;

4850*x3<30000;

5500*x4<22000;

5800*x5<30000;

6600*x2<27000;

4200*x6<23000;

4600*x7<25000;

4500*x8<23000;

6700*x1+4850*x3+5500*x4+5800*x5+6600*x2+4200*x6+4600*x7+4 500*x8<=150000;

@gin(x1);

@gin(x2);

@gin(x3);

@gin(x4);

@gin(x5);

@gin(x6);

@gin(x7);

@gin(x8);

end

模型二程序:

max=(@sign(x1*x3)*1005+(1-@sign(x1*x3))*1139)*x1+(@sign(x 2*x6*x7*x8)*1353+(1-@sign(x2*x6*x7*x8))*1056)*x2+(@sign(x 1*x3)*1018.5+(1-@sign(x1*x3))*727.5)*x3+(@sign(x4*x5)*104 5+(1-@sign(x4*x5))*1265)*x4+(@sign(x4*x5)*1276+(1-@sign(x 4*x5))*1160)*x5+(@sign(x2*x6*x7*x8)*840+(1-@sign(x2*x6*x7 *x8))*714)*x6+(@sign(x2*x6*x7*x8)*1610+(1-@sign(x2*x6*x7* x8))*1840)*x7+(@sign(x2*x6*x7*x8)*1350+(1-@sign(x2*x6*x7*

x8))*1575)*x8;!不考虑风险,利润最大;

6700*x1<34000;

4850*x3<30000;

5500*x4<22000;

5800*x5<30000;

6600*x2<27000;

4200*x6<23000;

4600*x7<25000;

4500*x8<23000;

2013学年数学建模课程论文题目

嘉兴学院2012-2013年度第2学期 数学建模课程论文题目 要求:按照数学建模论文格式撰写论文,以A4纸打印,务必于2013年5月31日前纸质交到8号楼214室,电子版发邮箱:pzh@https://www.wendangku.net/doc/5816071194.html,。并且每组至少推荐1人在课堂上做20分钟讲解。 题目1、产销问题 某企业主要生产一种手工产品,在现有的营销策略下,年初对上半年6个月的产品需求预测如表1所示。 班时间不得超过10个小时。1月初的库存量为200台。产品的销售价格为240元/件。该产品的销售特点是,如果当月的需求不能得到满足,顾客愿意等待该需求在后续的某个月内得到满足,但公司需要对产品的价格进行打折,可以用缺货损失来表示。6月末的库存为0(不允许缺货)。各种成本费用如表2所示。 (1)若你是公司决策人员,请建立数学模型并制定出一个成本最低、利润最大的最优产销方案; (2)公司销售部门预测:在计划期内的某个月进行降价促销,当产品价格下降为220元/件时,则接下来的两个月中6%的需求会提前到促销月发生。试就一月份(淡季)促销和四月份(旺季)促销两种方案以及不促销最优方案(1)进行对比分析,进而选取最优的产销规

题目2、汽车保险 某保险公司只提供一年期的综合车险保单业务,这一年内,若客户没有要求赔偿,则给予额外补助,所有参保人被迫分为0,1,2,3四类,类别越高,从保险费中得到的折扣越多。在计算保险费时,新客户属于0类。在客户延续其保险单时,若在上一年没有要求赔偿,则可提高一个类别;若客户在上一年要求过赔偿,如果可能则降低两个类别,否则为0类。客户退出保险,则不论是自然的还是事故死亡引起的,将退还其保险金的适当部分。 现在政府准备在下一年开始实施安全带法规,如果实施了该法规,虽然每年的事故数量不会减少,但事故中受伤司机和乘员数肯定会减少,从而医药费将有所下降,这是政府预计会出现的结果,从而期望减少保险费的数额。这样的结果真会出现吗?这是该保险公司目前最关心的问题。根据采用这种法规的国家的统计资料可以知道,死亡的司机会减少40%,遗憾的是医疗费的下降不容易确定下来,有人认为,医疗费会减少20%到40%,假设当前年度该保险公司的统计报表如下表1和表2。 保险公司希望你能给出一个模型,来解决上述问题,并以表1和2的数据为例,验证你的方法,并给出在医疗费下降20%和40%的情况下,公司今后5年每年每份保险费应收多少才比较合理?给出你的建议。 基本保险费:775元 类别没有索赔时补贴 比例(%) 续保人数新投保人数注销人数总投保人数 0 0 384620 18264 1 25 1 28240 2 40 0 13857 3 50 0 324114 总收入:6182百万元,偿还退回:70百万元,净收入:6112百万元; 支出:149百万元;索赔支出:6093百万元,超支:130百万元。 表1 本年度发放的保险单数 类别索赔人数死亡司机人数平均修理费 (元) 平均医疗费 (元) 平均赔偿费 (元) 0 582756 11652 1020 1526 3195 1 582463 23315 1223 1231 3886 2 115857 2292 947 82 3 2941 3 700872 7013 805 81 4 2321 总修理费:1981(百万元),总医疗费:2218(百万元); 总死亡赔偿费:1894(百万元),总索赔费6093(百万元)。 题目3、工件的安装和排序问题 某设备由24个工件组成,安装时需要按工艺要求重新排序。 Ⅰ.设备的24个工件均匀分布在等分成六个扇形区域的一圆盘的边缘上,放在每个扇形区域的4个工件总重量和相邻区域的4个工件总重量之差不允许超过一定值(如4g)。 Ⅱ.工件的排序不仅要对重量差有一定的要求,还要满足体积的要求,即两相邻工件的

数学建模 学校选址问题模型

学校选址问题 摘 要 本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。为问题一和问题二的求解,提供了理论依据。 模型一: 首先:根据目标要求,要建立最少学校的方案列出了目标函数: ∑==16 1i i x s 然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件; 最后:由列出的目标函数和约束函数,用matlab 进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。 模型二: 首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。 然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。 其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。在替换后,进行具体求解。 再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。 最后:对该模型做了灵敏度分析,模型的评价和推广。 关键字:最少建校个数 最小花费 固定成本 规模成本 灵敏度分析

1. 问题重述 1.1问题背景: 某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示: 表1-1备选校址表 备选校址 1 2 3 4 5 6 7 8 覆盖小区 1,2,3, 4,6 2,3,5,8, 11,20 3,5,11,20 1,4,6,7, 12 1,4,7,8,9,11,13, 14 5,8,9,10 11,16,20 10,11,1516,19, 20 6,7,12, 13,17, 18 备选校址 9 10 11 12 13 14 15 16 覆盖小区 7,9,13, 14,15, 17,18, 19 9,10,14,15,16, 18,19 1,2,4,6, 7 5,10,11, 16,20, 12,13,14,17, 18 9,10,14, 15 2,3,,5, 11,20 2,3,4,5,8 1.2 问题提出: 问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。 问题二、设每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i 个备选校址的建校成本i c 可表示为 ?? ???-??+=, 否则, 若学生人数超过学生人数0600 )600(50 1002000i i i c βα 其中i α和i β由表1-2给出: 表1-2 学校建设成本参数表(单位:百万元) 备选校址 1 2 3 4 5 6 7 8 i α 5 5 5 5 5 5 5 3.5 i β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1 备选校址 9 10 11 12 13 14 15 16 i α 3.5 3.5 3.5 3.5 2 2 2 2 i β 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的精确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表1-3: 表1-3.各小区1到6年级学龄儿童数平均值(样本均值) 小区 1 2 3 4 5 6 7 8 9 10 学龄儿童数 120 180 230 120 150 180 180 150 100 160

数学建模结课论文

数学建模结课论文 数学建模对我而言是一个很难得东西,不过我耐心的仔细研究了一番发现,虽然一开始是有些困难,但是却是一个很实用的东西,后来建立起模型后事情会变得简单得多。 我百度了一下数学建模的定义,它是这么说的:当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 我所学习的专业是地质学。近些年来,数学也向地质学慢慢渗

透,其中数学建模扮演着重要的角色。在寻矿的过程中,若是建立起一个数学模型,对于以后的工作会有重要的作用,甚至能够指导我们把精力放在何处。 随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才算达到了完善的地步。展望21世纪,数学必将大踏步地进入所有学科,数学建模将迎来蓬勃发展的新时期。

数学建模——回归分析

回归分析——20121060025 吕佳琪 企业编号生产性固定资产价值(万元)工业总产值(万元) 1318524 29101019 3200638 4409815 5415913 6502928 7314605 812101516 910221219 1012251624 合计65259801 (2)建立直线回归方程; (3)计算估价标准误差; (4)估计生产性固定资产(自变量)为1100万元时总产值(因变量)的可能值。解: (1)画出散点图,观察二变量的相关方向 x=[318 910 200 409 415 502 314 1210 1022 1225]; y=[524 1019 638 815 913 928 605 1516 1219 1624]; plot(x,y,'or') xlabel('生产性固定资产价值(万元)') ylabel('工业总产值(万元)') 由图形可得,二变量的相关方向应为直线 (2)

x=[318 910 200 409 415 502 314 1210 1022 1225]; y=[524 1019 638 815 913 928 605 1516 1219 1624]; X = [ones(size(x))', x']; [b,bint,r,rint,stats] = regress(y',X,0、05); b,bint,stats b = 395、5670 0、8958 bint = 210、4845 580、6495 0、6500 1、1417 stats = 1、0e+004 * 0、0001 0、0071 0、0000 1、6035 上述相关系数r为1,显著性水平为0 Y=395、5670+0、8958*x (3) 计算方法:W=((Y1-y1)^2+……+(Y10-y10)^2)^(1/2)/10 利用SPSS进行回归分析:

机场选址问题数学建模优秀论文

机场选址问题 摘要 针对机场选址问题,文章共建立了三个模型用以解决该类问题。为了计算出任意两城市之间的距离,我们利用公式(1)将利用题目中所给的大地坐标得出了任意两点之间的距离,见附录2。 对于问题1,我们主要利用0-1变量法,从而对问题进行了简化。我们设了第i个 y以及第i个城市是否是以第j个支线机场为最近机场的()j i x,。城市是否建支线机场的 i 然后将任意两点之间的距离与该城市的总人数之积,再乘以0-1变量()j i x,,最后得出每一个所有城市到最近机场的距离与该城市人口的乘积,然后利用LINGO进行编写程序,进行最优化求解,最后得出的结果见表1和表2,各大城市以及支线机场的分布见图2。 对于问题2,该问题是属于多目标规划的问题,目标一是居民距离最近机场的距离最短,目标二是每个机场覆盖人口数尽可能相等。我们在第一题的基础上,又假设了一些正、负偏差变量,对多个目标函数设立优先级,把目标函数转化为约束条件,进而求得满足题目要求的结果。 对于问题3,我们分析到影响客流量的因素是GDP跟居民人数,所以通过所搜集的资料分析我们给予这两个因素以不同的权重。然后同样采取问题2中所给的反求机场覆盖的方法,求的各个机场所覆盖的客流量,再让其在平均客流量水平上下浮动。通过LINGO程序的运行得到的六个机场的坐标见表6,六个机场的分布见图7。 针对论文的实际情况,对论文的优缺点做了评价,文章最后还给出了其他的改进方向,以用于指导实际应用。 关键词:选址问题;多目标规划;LINGO;0-1变量法;加权

1.问题的重述 近年来,随着我国经济社会的迅猛发展,公共交通基础设施日趋需要进一步完善与提高。支线机场作为我国交通运输体系的有机组成部分,对促进欠发达地区经济社会的发展具有基础性的作用。现某区域有30个城市,本区域计划在未来的五年里拟建6个支线机场。 任务1,确定6个支线机场的所在城市,建立居民到最近机场之间的平均距离最小的数学模型。 任务2,在任务一基础上,确定6个支线机场的所在城市,建立使得每个支线机场所覆盖的居民人数尽可能均衡的数学模型。 任务3,在任务一基础上,根据近一年每个城市的GDP 情况,确定6个支线机场的所在城市,建立使得每个支线机场的客流量尽量均衡的数学模型。 2.问题的分析 2.1 问题1 题目要求是建立居民到最近机场之间的平均距离最小的数学模型,该问题其实就是利用的0-1变量建立的模型。首先我们设两个0-1变量,一个是控制某个城市是否为支线机场的i y ,一个是控制某个城市的最近机场是哪一个的ij x 。针对于上述两个0-1变量,我们分别设立了约束条件。同时又为了满足问题所要求的使局面平均距离最小,我们将某一个城市到离它最近的机场的距离与该城市的人口乘积作为目标函数,在LINGO 软件中,通过设立一约束条件,最后将目标函数进行最优化求解。 2.2 问题2 该问题可以归结为多元目标线性规划的问题,所以我们在第一问的基础上又增加了一个目标函数,最后利用加权的方法将两个目标函数转化成了一个目标函数,将另一个目标函数作为约束条件。同时我们又引入了正负偏差变量,通过控制该变量达到覆盖居民人数均衡以及居民到城市之间的平均距离尽量小。 2.3 问题3 该问题要求的是客流量尽量均衡,经过分析可以知道,城市的GDP 越高,说明该城市经济越繁荣,货币流通越快,从而反映出客流量越大。另一方面城市越大、人口越多,也在一定程度上反映出了该城市客流量越大。基于上述两点,我们对GDP 跟城市人口分别给予了不同的权重来反映其对客流量的影响大小。按照第二问的方法,我们依然利用多元目标线性规划的只是进行求解。通过LINGO 编写程序,最中求得可行解。

数学建模论文

数学建模课程论文题目:解决我国房屋泡沫 专业班级: 姓名: 学号: 任课老师: 20 年月日

题目 解决我国房屋泡沫 近几年来,我国各大城市的房价出现了普遍持续上涨、高居不下的情况。房价的上涨使生活成本大幅增加,导致许多中低收入人群买房难。因此如何有效地抑制房地产价格上扬,是一个备受关注的社会问题。现在请你就以下几个方面的问题进行讨论: 1.建立一个城市房价的数学模型,通过这个模型对房价的形成、演化机理进行深入细致的分析; 2.通过分析找出影响房价的主要因素; 3.给出抑制房地产价格的政策建议; 4.对你的建议可能产生的效果进行科学预测和评价。 目录 数学建模课程论文 (1) 题目 (2) 目录 (2) 摘要: (3) 关键词: (3) 问题重述 (3) 问题分析 (3) 合理假设: (6) 符号说明: (6) 模型的建立及求解 (6) 模型的检验及应用 (10) 结论与小结 (15) 参考文献: (15)

摘要:房价作为一种价格杠杆,在引导房地产可持续发展和抑制房地产泡沫将起到积极的作用。科学合理地制定房价,对房地产的发展具有重要意义。本文先从产生房地产泡沫的原因谈起,找出影响房产的相关因素,然后从房地产开发商和消费者两个方面展开讨论,得出两个不同的模型。模型一从开发商的角度建立模型,运用定性的分析方法,分析一个商场中只有一个房地产开发商,两个开个商和多个开发商的情况,运用博弈论的方法给出不同的模型,给出一个从特殊到一般的数学模型,并运用相关的经济理论进行解释;模型二从消费者的角度建立模型,运用有效需求价格,动态地确定消费者的房价的范围。在此基础上,采用一元线性回归,通过推导出的模型和运用大量的数据对模型的进行验证和分析,得出房价与其中几个主要因素的关系: 主要因素回归方程复相关系数R GDP与房价0.98135 人口密度与房 0.55250 价 人均可支配收 0.93943 入与房价 影响当前房价的主要因素,如社会因素包括国民经济的发展水平、相关税费、居民的收入、政策导向、社区位置等,自然因素包括地价、建安成本和开发商利润等;并在分析影响房价的诸多因素之后,提出了八点政策性建议。 综上所述,运用我们的模型得出相应的房价,然后利用我们相应的政策作为指导,我国的房地产不但会抑制房地产泡沫问题,而且我国的房地产市场将得到持续健康地发展。 关键词:房地产泡沫、回归分析、有效需求模型、GDP、市场 问题重述 近几年来,我国各大城市的房价出现了普遍持续上涨、高居不下的情况。房价的上涨使生活成本大幅增加,导致许多中低收入人群买房难。因此如何有效地抑制房地产价格上扬,是一个备受关注的社会问题。现在请你就以下几个方面的问题进行讨论:1.建立一个城市房价的数学模型,通过这个模型对房价的形成、演化机理进行深入细致的分析; 2.通过分析找出影响房价的主要因素; 3.给出抑制房地产价格的政策建议; 4.对你的建议可能产生的效果进行科学预测和评价。 问题分析 所谓房地产泡沫就是指房地产商品的预期价格被大大的高估,从而导致各类投机资本的纷纷进入,通过恶性炒作将现期房地产价格大大抬高。使其价格远远高于其实际价值,从而产生房地产泡沫。 房地产的基本载体是土地。由于土地的不可再生性、稀缺性与供给无弹性将决定土地的升值性。从而使房地产也具有升值趋势。正是由于这一因素才会导致各类房地产投机者进行投机。土地市场是整个社会市场体系中市场等级较低的基础市场之一,因此社会经济的泡沫现象往往先出现在土地市场,然后泡沫向其他市场输出,并最终沉淀在土地市场,因此泡沫

《数学建模与数学实验》课程论文

10级信息《数学建模与数学实验(实践)》任务书 一、设计目的 通过《数学建模与数学实验(实践)》实践环节,掌握本门课程的众多数学建模方法和原理,并通过编写C语言或matlab程序,掌握各种基本算法在计算机中的具体表达方法,并逐一了解它们的优劣、稳定性以及收敛性。在熟练掌握C 语言或matlab语言编程的基础上,编写算法和稳定性均佳、通用性强、可读性好,输入输出方便的程序,以解决实际中的一些科学计算问题。 二、设计教学内容 1线性规划(掌握线性规划的模型、算法以及Matlab 实现)。整数线性规划(掌握整数线性规划形式和解法)。 2微分方程建模(掌握根据规律建立微分方程模型及解法;微分方程模型的Matlab 实现)。 3最短路问题(掌握最短路问题及算法,了解利用最短路问题解决实际问题)。 行遍性问题(了解行遍性问题,掌握其TSP算法)。 4回归分析(掌握一元线性回归和多元线性回归,掌握回归的Matlab实现)。 5计算机模拟(掌握Monte-carlo方法、了解随机数的产生;能够用Monte-carlo 解决实际问题)。 6插值与拟合(了解数据拟合基本原理,掌握用利用Matlab工具箱解决曲线拟合问题)。 三、设计时间 2012—2013学年第1学期:第16周共计一周 目录 一、10级信息《数学建模与数学实验(实践)》任务书 (1) 二、饭店餐桌的布局问题 (3) 摘要 (3)

问题重述 (3) 模型假设 (3) 模型分析 (4) 模型的建立和求解 (4) 模型推广 (9) 参考文献 (9) 三、白酒配比销售问题 (10) 摘要 (10) 问题重述 (11) 问题分析 (12) 模型假设 (12) 符号及变量说明 (12) 模型的建立与求解 (13) 模型的检验 (18) 模型的评价与推广 (19) 附录 (21) 饭店餐桌的布局问题 摘要 饭店餐桌的布局对于一个饭店有着很重要的作用。本文讨论的就是饭店餐桌的布局问题,根据实际需求及规定建立模型,同时考虑餐桌的类型及规格,尤其是餐桌的摆放技巧,保证使饭店能容纳的人数达到最大。根据所需餐桌的数量

数学建模学校选址问题

学校选址问题 摘要 本文为解决学校选址问题,建立了相应的数学模型。 针对模型一 首先,根据已知信息,对题目中给出的数据进行处理分析。在保证每个小区,学生至少有一个校址可供选择的情况下,运用整数规划中的0-1规划法,列出建校方案的目标函数与其约束条件,通过LINGO软件,使用计算机搜索算法进行求解。得出建立校址的最少数目为4个。再运用MATLAB软件编程,运行得到当建校的个数为4个时,学 首先,对文中给出的学校建设成本参数表和各校区1到6年级学龄儿童的平均值(样本均值)进行分析,可知20个小区估计共有4320个学龄儿童,当每个学校的平均人数都小于600时,至少需要建设8个学校;其次,模型一得到最少的建校数目为4个,运用MATLAB软件编程,依次列出学校个数为4、5、6、7、8时的最优建校方案,分别算出其最优建校方案下的总成本;最后,通过对比得出,最低的建校总成本为1650万,即选取校址10、11、13、14、15、16建设学校。 最后,我们不但对模型进行了灵敏度分析,,保证了模型的有效可行。 关键词:MATLAB灵敏度 0-1规划总成本选址 1 问题重述

当代教育的普及,使得学校的建设已成为不得不认真考虑的问题。 1.1已知信息 1、某地新开发的20个小区需要建设配套的小学,备选的校址共有16个,各校址覆盖的小区情况如表1所示: 2、在问题二中,每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i 个备选校址的建校成本i c 可表示为 (单元:元)学生人数)600-(50100200010? ?? ???+=i i i c βα,若学生人数超过600人,其中 i α和i β由表2给出: 并且考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的精确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表3: 1.2提出问题 1、要求建立数学模型并利用数学软件求解出学校个数最少的建校方案。 2、求出总成本最低的建校方案。 2 问题假设与符号说明

数学建模优秀论文范文

数学建模优秀论文范文 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须

依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的 发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题审题题设条件代入数学模型求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对 应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需 进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干 个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模 型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过 程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解 题质量,同时也体现一个学生的综合能力。 3(1提高分析、理解、阅读能力。

数学建模实践课论文

学生实习报告 课程编号:C01061 课程名称:数学建模实用技术基础 学号: 姓名: 专业班级:机自1501 所在学院:工程分院 报告日期:2017 年8 月13 日

注:学生的实习总结等文档附在本封面之后

摘要 数学建模实用技术应用基础系列课程给我最大的收获不是学会简单地使用软件、知道一些简单的建模方法,而是每一位老师课前的介绍。老师们的课前介绍告诉我统计学的浩瀚。这篇文章除了阐述抑或叫记录老师讲的我觉得比较重要的知识点,还有我自己根据老师的思路自己课外做的实例。 第一、二天讲的是关于文献查找的内容,印象最深刻还是NoteExpress的好用之处,除此之外还知道了一些常用的找文献的网站。之后林老师讲的随机模拟对数学知识的储备要求比较高。用excel的函数来做随机模拟无疑是非常快捷方便的办法。KNN算法的思想对我而言很新奇,个人感觉和神经网络有点异曲同工之处。康老师讲的关于MATLAB、LINGO软件的操作非常有用,相当于数学建模公选课的浓缩。戴老师对matlab的更进一步的讲解,包括计算方法让我印象非常深刻。如果说之前我在门外徘徊,从这堂课开始我才正视用matlab进行真正的编程操作。matlab有很多计算方程的函数,这些都可以用help能够找到。之后在张老师的指导下,学会了用spss的简单操作,也对聚类分析、降维有了初步的认识。同时,张老师还讲了主成分分析和因子分析,用来解决多元统计系列问题。黄老师的二维三维图形绘制的课也让我对数学建模论文的插图有了进一步的想法。关于科技论文的写作更是让我有规范论文格式的意识。最后,王老师介绍了MATLAB的工具箱。我意识到了站在前人肩膀上的重要性。 总之此次数学建模培训让我明白数学建模四个字的含义,将问题转化为数学问题然后运用成熟的算法将之解决。 关键字:MATLAB LINGO SPSS 多元统计

数学建模论文__物流与选址问题

物流预选址问题 (2) 摘要 .............................................................................................. 错误!未定义书签。 一、问题重述 (3) 二、问题的分析 (3) 2.1 问题一:分析确定合理的模型确定工厂选址和建造规模 (4) 2.2 问题二:建立合理的仓库选址和建造规模模型 (4) 2.3 问题三:工厂向中心仓库供货的最佳方案问题 (5) 2.4 问题四:根据一组数据对自己的模型进行评价 (5) 三、模型假设与符号说明 (5) 3.1条件假设 (5) 3.2模型的符号说明 (5) 四、模型的建立与求解 (6) 4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模 (6) 4.1.1模型的建立 (7) 4.2 问题二:建立合理模型确定中心仓库的位置及建造规模 (10) 4.2.1 基于重心法选址模型 (10) 4.2.2 基于多元线性回归法确定中心仓库的建造规模 (12) 4.3 问题三:工厂向中心仓库供货方案 (13)

4.4 问题四:选用一组数据进行计算 (14) 五、模型评价 (21) 5.1模型的优缺点 (21) 5.1.1 模型的优点 (21) 5.1.2 模型的缺点 (21) 六参考文献 (21) 物流预选址问题 摘要 在物流网络中,工厂对中心仓库和城市进行供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。 本论文在综述工厂和中心仓库选址问题研究现状的基础上,对二者选址的模型和算法进行了研究。对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用

数学建模之回归分析法

什么是回归分析 回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。 回归分析之一多元线性回归模型案例解析 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。

今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:(数据可以先用excel建立再通过spss打开) 点击“分析”——回归——线性——进入如下图所示的界面:

数学建模课程论文

数学模型课程论文 题目:企业利润合理的分配 【摘要】 本文针对企业利润合理的分配进行建立层次分析模型。首先将决策问题分解为三个层次,最上层为目标层,即企业利润的合理分配,最下层为方案层,有 P1,P2,P3三个分别为:为企业员工发年终奖金,扩建集体福利设施,引进高薪技术人才和设备。中间为准则层,有调动员工的积极性,提高企业质量,改善企业员工的生活条件。然后用成对比较法得出成对比较矩阵,运用Matlab软件求出特征值和权向量。求出组合权向量,进行一致性检验。最后得出组合权向量为:(0.5020,0.3546,0.1434)。结果表明方案在企业员工发年终奖金的权重大些,所以资金的合理分配为: 企业员工发年终奖金、扩建集体福利设施和引进高薪技术人才和设备资金的比例为:0.5020:0.3546:0.1434 。 关键词:层次分析法;Matlab软件;企业利润;合理分配;

问题重述 某企业由于生产效益较好,年底取得一笔利润领导决定拿出一部分资金分别用于,(1)为企业员工发年终奖金;(2)扩建集体福利设施;(3)引进高薪技术人才和设备;为了促进企业的进一步发展,在制定分配方案时,主要考虑的因素有:调动员工的积极性,提高企业质量,改善企业员工的生活条件。主要问题为年终奖发多少?扩建集体福利和设施支出多少?拿多少资金用于引进高薪技术人才和设备。试建立层次分析法模型,提出一个较好的资金分配方案。 一、问题分析 首先将决策问题分解为三个层次,最上层为目标层,即企业利润的合理分配, 最下层为方案层,有P 1,P 2 ,P 3 三个分别为:为企业员工发年终奖金,扩建集 体福利设施,引进高薪技术人才和设备。中间为准则层,有C 1 调动员工的积极 性,C 2 提高企业质量,C 3 改善企业员工的生活条件。将方案层对准则层的权重 及准则层对目标层的权重进行综合,最终确定方案层对目标层的权重,在层次分析法中要给出进行综合的计算方法。用成对比较法得出成对比较矩阵,运用Matlab软件[1]求出特征值和权向量[2]。求出组合权向量,进行一致性检验。最后得出组合权向量。

回归分析在数学建模中的应用

摘要 回归分析和方差分析是探究和处理相关关系的两个重要的分支,其中回归分析方法是预测方面最常用的数学方法,它是利用统计数据来确定变量之间的关系,并且依据这种关系来预测未来的发展趋势。本文主要介绍了一元线性回归分析方法和多元线性回归分析方法的一般思想方法和一般步骤,并且用它们来研究和分析我们在生活中常遇到的一些难以用函数形式确定的变量之间的关系。在解决的过程中,建立回归方程,再通过该回归方程进行预测。 关键词:多元线性回归分析;参数估计;F检验

回归分析在数学建模中的应用 Abstract Regression analysis and analysis of variance is the inquiry and processing of the correlation between two important branches, wherein the regression analysis method is the most commonly used mathematical prediction method, it is the use of statistical data to determine the relationship between the variables, and based on this relationship predict future trends. introduces a linear regression analysis and multiple linear regression analysis method general way of thinking and the general steps, and use them to research and analysis that we encounter in our life, are difficult to determine as a function relationship between the variables in the solving process, the regression equation is established by the regression equation to predict. Keywords:Multiple linear regression analysis; parameter estimation;inspection II

数学建模课程设计论文

数学建模课程设计 题目:最佳捕鱼方案 第九组:组员一组员二组员三 姓名:崔健萍王晓琳吴晓潇 学号: 021340712 021341009 021341014 专业:数学与应用数学数学与应用数学数学与应用数学成绩: 湖北民族学院理学院 二零一五年五月三十一日

最佳捕鱼方案问题 摘要 捕鱼方案问题在实际生活中应用广泛,如何捕鱼投放市场效益最佳这是一个一直需要讨论的问题。 本文通过建立一个数学模型的方式把捕鱼方案问题这种实际问题转化为数学模型的方式进行解答。 在本文中,首先我们对于这个问题进行了分析假设,排除了一些实际生活中不可避免但是我们又无法预计的实际情况,然后对本题进行了分析,选择了最合适的建模方式。在已知鱼的总量、水位、水位随时间的变化关系、鱼损失的变化率随水位的变化关系、捕鱼成本随水位的变化关系及不同供应量时鱼的价格的情况如下,要求下面几个问题: 问题一:建立草鱼的销售收益随供应量变化的函数关系,主要是考虑当随捕鱼量取不同值时,鱼的价格,然后再把其联系在一块,做出其函数关系。 问题二:建立草鱼的捕捞成本随时间变化的函数关系,由于是自然放水,所以水的深度和时间是一个一次函数的关系,但水的深度降低时,捕捞成本越来越低,并且降低的速度越来越快。经过一系列的模型建立与求解最终得出捕捞成本随时间的函数关系。 问题三:当水位下降时捕鱼的损失率会越来越大,并且其损失率会加速增大,据查询的可靠资料,最后得出水位和损失率的关系跟反函数图像最接近,最后就采用以水位为自变量,损失率为因变量建立模型,最终得出其函数模型,然后再联系水位与时间的关系,最终可以得出草鱼的损失率与时间变化的函数关系。问题四:为取得最大的总经济效益,保证在放水的过程中,每一天都达到了最大的经济效益,其中要考虑到捕鱼成本随水深的变化和损失率随水深的变化,同时水深又是随时间的变化,建立相应的目标规划模型。 关键词:0-1变量规划问题多目标 LINGO

数学建模论文

我们的数学建模课 摘要:数学建模设一门很有趣的课程,也值得大家好好思考。学完 之后,我就试了一下两道题目,一个是狼找兔子,另一个是设置输 油管的布置,写出了自己思考的过程。对于老师讲的课程,我抱有 很大的兴趣,也希望以后将这种思维运用到以后的学习工作中去。 关键词:数学建模编号位置费用 最初接触数学建模是又一次在五羊广场看到一个数学建模的比赛,听到这个 名称我就感到很好奇,也很想参加比赛。后来的故事当然顺理成章,我选了这 门课程,但同学们的反应却很惊讶,“干嘛选这种课程啊”、“你简直就是一 怪人”、“这种课程应该很难吧!”,各种质疑声铺天而来,我也很吃惊,想 着有必要嘛,不就是选了数学建模嘛!因为感兴趣,所以我选了这门课程!因 为好奇,我还是选了这门课程!也许这就是大学设置课程的好处吧! 很多与数学有关的东西,我都有很大兴趣,但是我的专业是劳动与社会保障,主要方向是人力资源管理和劳动关系,由于很多东西不甚了解,也并不喜欢做 那些文字性的东西。例如将绩效考评用模型来进行评估或者评价某一项管理好坏,总的来说这些东西对我来说都比较虚,不如数字来得直白。数据更能容易 引起我的关注,也比较喜欢做这一类的题目。如果将论文联系到我的专业的话,那实在是没什么想法,我想换另外一种方式,那就思考一些题目。 一:狼追兔子的故事 一只兔子躲进了10个环形分布洞的某一个中,狼在第一个洞中没有找到兔子,就隔一个洞,到第三个洞去找,也没有找到,就间隔两个洞,到第六个洞去找,以后每次多一个洞去找兔子…这样下去,如果狼一直找不到兔子.请问兔子可能躲在哪个洞中?给出算法步骤,并编程求出结果 求解过程: 洞是环形结构的,将十个洞分别编号:1、2、3、、、、9、10,在狼第一圈找兔子的时候,狼找洞的序号是1、3、6、10,在第二圈的时候是5,由于十个数字是环形的,我们可以直接用数字计算,而计算超过十所得数据的尾数就是落到那个洞的洞号。即在第二圈我们可以计算出一个数字15,而洞的编号就是5也就是15的个位数字,以后的狼没跳到一个洞口,我们都可以计算一个数据,规则同上。 ……………… 1 3 6 10 15 21 28 36 45 55 66 78 ………….. 箭头表示的是下面两个数字的差值。两个相邻数字的差额成等差数列, 公差是一。 a a a 设N个数据为12.....n

数学建模-回归分析-多元回归分析

1、 多元线性回归在回归分析中,如果有两个或两个以上的自变量,就称为 多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。(multivariable linear regression model ) 多元线性回归模型的一般形式为: 其中k 为解释变量的数目,j β (j=1,2,…,k)称为回归系数(regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为: j β也被称为偏回归系数(partial regression coefficient)。 2、 多元线性回归计算模型 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe)为最小的前提下,用最小二乘法或最大似然估计法求解参数。 设( 11 x , 12 x ,…, 1p x , 1 y ),…,( 1 n x , 2 n x ,…, np x , n y )是一个样本, 用最大似然估计法估计参数: 达 到最小。

把(4)式化简可得: 引入矩阵: 方程组(5)可以化简得: 可得最大似然估计值:

3、Matlab 多元线性回归的实现 多元线性回归在Matlab 中主要实现方法如下: (1)b=regress(Y, X ) 确定回归系数的点估计值 其中 (2)[b,bint,r,rint,stats]=regress(Y,X,alpha)求回归系数的点估计和区间估计、并检 验回归模型 ①bint 表示回归系数的区间估计. ②r 表示残差 ③rint 表示置信区间 ④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r2、F 值、与F 对应的 概率p 说明:相关系数r2越接近1,说明回归方程越显著;F>F1-alpha(p,n-p-1) 时拒绝H0,F 越大,说明回归方程越显著;与F 对应的概率p<α 时拒绝H0,回归模型成立。 ⑤alpha 表示显著性水平(缺省时为0.05) (3)rcoplot(r,rint) 画出残差及其置信区间

相关文档