文档库 最新最全的文档下载
当前位置:文档库 › 全国城市地下管廊环境监测系统解决方案

全国城市地下管廊环境监测系统解决方案

全国城市地下管廊环境监测系统解决方案
全国城市地下管廊环境监测系统解决方案

全国城市地下管廊环境监测系统解决方案

一、地下管廊环境监测概述

地下管廊装有各种线信号线、热力管、燃气管、电信管道、给水管道、电力管道等等,是一个多种信号与传输对象交汇的场所,为了充分保障管廊内环境安全,需要对其内部环境进行监测,以达到实时、自动监测地下管廊内的环境,其重要性不言而喻。

二、地下管廊环境监测系统功能

深圳信立科技地下管廊环境监测系统主要涉及到管廊内的温湿度、燃气泄露、火险、有害气体、积水监测等。根据实际情况,还可能涉及到其它监测。

通过在地下管廊配置相应的传感器及报警器,并通过通信将监测信号从投料口引出到地面上,并通过无线通信(GPRS)传输到监控中心,通过配套的综合管理软件对数据进行分析。通过软件对每个测点的地理位置、测量值或工作状态进行连续采集,如出现异常,系统会自动生成报警(声光报警、短信报警、邮件报警可选),第一时间通知到相关人员,将可能出现的险情消灭在萌芽状态,避免造成大的经济损失及影响管涵的正常工作。

三、地下管廊环境监测系统测点说明

由于管廊较长,需要选择合适的距离来设置监测点,

1、对于温湿度数据可以对参考200米一个测点

2、对于燃气报警则要针对实现情况选择布的距离要大大缩短(或者选择可能会发生报警的特殊区域)

3、对于积水报警则选择低洼或易积水区域监测。

4、对于有害气体监测,则要判断具体是什么气体为主,为何产生,如果产生了积水(污水)可能会产生恶臭气体等。

5、对于火情报警,按消防标准的话,会很密集,具体到管廊按什么标准,需要另行考虑。

四、地下管廊环境监测系统产品配套

1、无线防爆气体传感器:集成传感、无线通信、低功耗等技术的无线传感网络产品,可以采集不同气体(磷化氢(PH3)、二氧化硫(SO2)、一氧化碳(CO)、硫化氢(H2S)、二氧化氮(NO2)、氨气(NH3)等等)的参数,通过490MHZ/2.4GHZ频段上传数据。

2、无线防爆压力传感器:低功耗传感器配置压力传感元件,达到压力参数采集和无线传输,进行无线监控的智能传感器网络产品

3、无线防爆温度传感器:智能传感器配置温度传感元件、低功耗元件,进行温度的采集和无线传输的一款智能传感器网络产品。

4、无线智能网关:作为无线传感的核心,启动、管理无线传感网络,协调传感节点的通信,使其构建管理的无线传感网络数据传输稳定、可靠。

5、无线测控装置:集数据采集、控制与无线通信功能为一体的终端测控产品,用于采集分布式就地安装的传感器数据(比如压力、流量、位移、振动、位置、温度、湿度、雨量、风速、风向、声音、状态、气体含量、电磁、噪声、光强度、运动或污染物等等参数),开关状态数据。

五、地下管廊环境监测系统示意图

六、地下管廊环境监测系统总结

一套具有实用价值的监测系统,需要与现场做到紧密结合,需要从实际需要、现场情况、经济投入等多多方面相结合,来综合制定。深圳信立科技地下管廊环境监测系统解决方案从常规应用上做了系统说明,但要真正应用还需要对有关细节做更多的细化,随着对实际情况的进一步了解,系统方案会在后续做更多完善。

注:本方案由深圳信立科技提供。

综合管廊解决方案

正元城市综合管廊智能化建设 解决方案 正元地理信息有限责任公司 编制日期:二〇一六年四月

目录 一、概述 (1) (一)政策支持 (1) (二)发展现状 (2) 二、城市管廊智能化建设必要性分析 (4) (一)加强管廊运行监管的能力,切实保障管廊长期安全运行 (4) (二)转变管理模式、突破传统管理局限,提升管理工作水平 (4) (三)优化管廊运行方式,降低运行维护费用,提高经济效率 (5) (四)形成合作互惠机制,加强管线入廊管理,发挥管廊作用 (5) 三、正元城市管廊智能化建设目标及内容 (5) (一)建设目标 (5) (二)建设内容 (6) 1. 物联网智能监控系统 (6) 2. 管廊内通讯网络系统 (13) 3. 管廊三维模型及数据中心 (15) 4. 大数据应用支撑平台 (16) 5. 专项业务应用系统 (17) 6. 监控管理中心建设 (20) 四、科学管理模式提升管廊管理水平 (21) (一)运行维护 (21)

(二)后续建设 (21) 五、关于正元公司 (21)

一、概述 城市地下综合管廊将布设在地面、地下或架空的各类公用管线集中容纳于一体,并留有供检修人员行走的通道。将有效促进地下管线统一规划和设计,实现集中建设、集中管理,有效处理了地下管线布线间相互协调困难的问题,便于管理单位之间相互了解。 城市地下综合管廊将原本埋设在地下“不可见”的管线变成“直接可见的”,现状不清、家底不明将不再是制约地下管线发展的问题;而且“直接可见”的地下管线大大降低了管线巡检工作难度、提高了巡检质量,使管线漏损查找和处理都更方便,更容易发现管道安全隐患。城市地下综合管廊将管线“分散式”转变成“集约式”建设和管理,有效、合理地节约了城市地下空间,直接解决了地下管线埋设混乱问题。同时,为改变地下管线管理方式和提升管理水平创造很好的条件。 自动化、信息化管理设备和技术在地下综合管廊中更容易应用,管廊内现有空间为布设监控管理设备和设备检修管理提供了较大便利,通过布设视频和防入侵监控等设备,能有效提升综合管廊内地下管线安全水平和应急管理能力。因此,建设综合管廊在很大程度上对当前地下管线所面临的问题,提供了很好的解决途径。 (一)政策支持 自2013年以来,国务院先后印发了《国务院关于加强城市基础设施建设的意见》、《国务院办公厅关于加强城市地下管线建设管理的指导意见》,部署城市地下管线建设工作。李克强总理近两年三次就城市建设谈到“里子”

环境监测云平台系统产品解决方案

环境监测云平台系统产品 解决方案

目录 一、引言 (3) 二、产品系统概述 (4) 三、方案特点 (5) 1. 数据精准、监控图像清晰度 (5) 2. 网络适应性强、带宽要求低,支持多种有线或无线网络接入方式. 5 3. 可集成性 (6) 4. 高传输可靠性 (6) 5. 系统建设成本低 (6) 四、系统组成及架构 (7) 五、平台服务端操作及功能介绍 (9) 六、相关硬件产品介绍 (20)

一、引言 防治扬尘污染,保护和改善城市生活环境空气质量,保障人民群众身体健康,一直是国家各级环境保护部门的重要工作内容之一。在所有的扬尘污染中,工程施工扬尘,如房屋建设施工、道路与管线施工、房屋拆除等为主要污染源。为此,在国家各级城市出台的扬尘污染防治管理办法中,都对建设工程施工提出了明确的防尘要求和相应的处罚条款。 目前,我国正处于城市建设的快速发展期,工程施工每天都在众多的、分散的地点同时进行着。而环保部门人员数量有限,不可能每天都到各个施工地点去巡查,因此,对众多分散的工程施工现场进行远程监控,及时发现违反防尘要求、出现扬尘污染的施工地点并及时处理,无疑是监管工程施工扬尘污染的有效途径。然而,传统的视频监控一方面呈现的图像分辨率极为有限,不利于对现场情况的准确辨别;另一方面,远程视频监控需要较高的通信网络带宽做支持,往往需要铺设专门的光纤或电缆、租用昂贵的通信信道;可是工程

施工地点数量众多、地理分布复杂,且对于扬尘监控只是阶段性的需求,为此部署大量的视频监控点无疑会给环保部门带来庞大的资金压力,为国家带来不必要的资金消耗。有没有成本更低、部署更方便的监控手段,来实现对工程施工扬尘污染进行远程监控的目的呢? 二、产品系统概述 成都远控科技有限公司开发的“环境监控云平台系统”即是以安装在远程的终端设备通过3G/4G网络实时向云平台服务端上传相关环境监测数据以及监控画面的一种新的监控应用方式。工作人员亦可通过有线或无线网络登陆“环境监控云平台系统”,对远端现场环境作时实监控,提取相关环境污染数据;当环境污染达到上峰值时,安装在施工现场的环境探测感应器或摄像头,将自动记录下相关环境数据并抓拍下现场的高清晰数字图片,并通过有线或无线通信网络自动传输回来,即时呈现在环保机关的各种显示终端上(PC、PDA),让环保工作人员通过高清晰的数字图片,即时了解施工现场的防尘措施实施情况和工地现状,达到对众多分散的工程施工地点进行远程联网监控的目的。

环境监测重点精选文档

环境监测重点精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

1.环境监测定义:(旧书)是指运用化学,生物学,物理学及公共卫生学等方法,间断或连续的测定代表环境质量的指标数据,研究环境污染物的检测技术,监视环境质量变化的过程。(新书)是指监视和测定环境质量各项指标的过程,通过对环境质量指标的监测,确定环境质量及其变化趋势,特别是通过对污染物的监测,确定环境污染的程度及其影响。 ——是环境科学与工程学科的重要组成部分,是环境影响评价,环境污染治理和环境科学研究的基础。 2环境监测的目的:是准确,及时,全面地反映环境质量现状及发展趋势,为环境管理,污染源控制,环境规划等提供科学依据。(①提供代表环境质量现状的数据,根据环境质量标准,评价环境质量。②根据污染特点,分布情况和环境条件,追踪寻找污染源,提供污染变化趋势,为实现监督管理,控制污染提供依据.③收集本底数据,累积长期监测资料,为研究环境容量,实施总量控制,目标管理,预测预报环境质量提供数据。④为制定环境法规,标准,环境规划,环境污染综合防治对策提供科学依据,并全面监视环境管理的效果。⑤揭示新的污染问题,探明污染原因,确定新的污染物质,研究新的监测分析方法,为环境科研提供方向。) 3环境监测分类(按监测目的):监督性监测,特定目的监测,研究性监测,工程性监测。 4环境监测原则:遵循优先监测原则,即对优先污染物进行的监测。 5优先污染物:指难降解,在环境中有一定残留水平,出现频率较高,具有生物累积性毒性较大的化学品(经过优先监测原则选择的污染物,具有较强毒害性)。 6环境监测特点:综合性,追踪性,持续性,生产性,执法性。 对环境监测数据的要求:代表性,完整性,可比性,准确性,精密性。 7环境保护标准的两个级别:国家级标准,地方级标准。 8环境保护标准分类(根据性质和功能分六类):环境质量标准,污染物排放标准(核心内容),环境基础标准,环境方法标准,环境标准样品标准(只有国家标准),环境保护的其他标准。 9国家环境保护标准分为:强制性标准,推荐性标准。 10国家级环境保护标准的标准级别代号:GB(中华人民共和国强制性国家标准)GB/T(中华人民共和国推荐性国家标准)GB/Z(中华人民共和国国家标准化指导性技术文件)HJ(环境保护行业标准)HJ/T(环境保护行业推荐标准).11地方及环境保护标准包括:环境地方质量标准,地方污染物排放标准12地方级标准与国家级标准的关系:地方级标准是国家标准的补充,严于国家标准,法律效力高于国家标准。 12水污染监测的基本程序:①制定监测方案②现场测定和样品采集③水样的运输和保存。④水样的预处理和项目测定⑤数据处理和填写报表。 13水质监测方案的主要内容:①监测对象和目的②主要监测项目③采样点设置④采样的时间和频率。⑤质量控制和质量保证。 14水质监测分析方法的选择顺序:①首先选用强制性标准中引用的方法②当项目有多个A类方法时,按照监测方法选择原则进行选择③当无A类方法时选B 类方法④当监测项目无A B类方法时,可用C类分析法,若用于执法监测,则需上级批准。

(完整版)环境监测系统解决方案

环境监测系统解决方案 一、系统概要 本综合管控云平台是一套基于云计算的物联网综合管控云服务平台。平台可适配于各种物联网应用系统,实时监控管理接入设备的状态与运行情况,并对设备进行远程操作,通过云平台对接物联网设备做到精确感知、精准操作、精细管理,提供稳定、可靠、低成本维护的一站式云端物联网平台。环境监测系统通过对现场温度、湿度、光照、风向、风速、PM2.5、气压等参数的数据采集,将参数数据远传至物联网云平台,实现现场各个设备的数据实时监测,用户可以通过电脑网页或是手机app实时查看,可以自由设置各个参数的标准值上下限,如果数据超限可以给相关的工作人员发送短信或是微信报警提醒,做到提前预警,避免造成不必要的损失,实现在远程就能值守现场设备。 二、拓扑图 现场传感器数据通过物联网中继器上传云平台,客户通过电脑网页或是手机app可以实时监控现场设备数据。

三、系统构成 3.1系统登陆 ①PC端登陆: 本系统采用B/S架构,PC端用户只需打开浏览器通过IP地址进入管理系统,凭管理员分配的用户名密码进行登陆管理。(登陆界面可定制企业logo及信息)如下图: ②手机端登陆: 用户可在任何有本地局域网信号的地方,通过IOS或Android版本APP登陆系统,登陆账号与PC端账号相同。IOS 版本APP请在Apple Store搜索“易云系统”进行下载,安卓版本请在“易云物联网系统”公众号或PC端系统中扫描二维码进行下载。 3.2数据监控 能够便捷监控实时数据,并且可通过数据变化自动启停其他设备,各项数据可用数值、图片、文字分别展示,并通过短信等功能向用户发送报警信息。另外,可设定不同的监控点,更直观的监测每个测温点实时情况,模拟真实的设备位置分布。如下图:

环境监测知识点整理

环境监测 1.环境污染的特点1、时间分布性。2、空间分布性。3、污染因素的综合效应。 2.环境监测的特点1、环境监测的综合性。2、环境监测的连续性。3、环境监测的追溯性。 2.优先污染物的特点:难以降解,在环境中有一定残留水平,出现频率较高,具有生物积累性。 3.三致:致癌、致畸、致突变。五毒有害元素: , , , , . 4.现场监测五参数:①水温②值③电导率④浊度⑤溶解氧 5.环境标准分为国家标准和地方标准两级,国家标准分为综合标准和行业标准。 执行原则:地方环境标准–国家行业标准–国家综合标准。 6.对于工业废水排放源: 第一类污染物采样点一律在车间排放口和具体安装设施排放口。 第二类污染物在排污工厂的总排放口采样。 7.臭阈值:用无臭水稀释水样,当稀释到刚能闻出臭味时的稀释倍数。臭阈值()=(水样体积+无臭水体积)/水样体积 8.色度:取一定量水样,用蒸馏水稀释至刚好看不到颜色,以稀释倍数表示该水样的色度。 7.水样的保存方法1、冷藏或冷冻保存法2、加入化学试剂保存法(加入生物抑制剂;调节;加入氧化剂或还原剂) 8.水样中加入硝酸可以防止金属离子沉淀。 9.水样的预处理方法分为:水样的消解,分离和富集。

①消解的目的:破坏有机物,消除对测定的干扰,溶解悬浮物,将各种价态的欲测元素氧化成单一高价态或转变成易于分离的无机物。消解后的水样应清澈、透明、无沉淀。 ②分离与富集的目的:对样品进行浓缩,使其浓度增大。 10.水样中金属离子,无机非金属离子,有机物测定时常用的预处理方法分别是消解、蒸馏、萃取。(或消解、萃取、蒸馏)。 11.《地表水环境质量标准》适用于中国领域内江河,湖泊,运河,渠道,水库等。 地表水水域分为五类:Ⅰ类:主要适用于源头水,国家自然保护区。Ⅱ类:主要适用于集中式生活饮用水地表水源地一级保护区,珍稀水生生物栖息地,鱼虾产卵场等。Ⅲ类:适用于集中式生活饮用水地表水源地二级保护区,鱼虾类越冬场等渔业水域与游泳区。Ⅳ类:主要适用于一般工业用水区与人体非直接接触的娱乐用水区。Ⅴ类:主要适用于农业用水区与一般景观要求水域。 12.《环境空气质量标准》根据地区的地理,气候,生态,政治,经济和大气污染程度分为三类环境空气质量功能区: 一类区:国家规定的自然保护区,风景名胜区和其他需特殊保护的地区。 二类区:城镇规划中确定的居住区、商业交通居民混合区、文化区、一般工业区和农村地区。三类区: 特定工业区。 13.《污水综合排放标准》将排放的污染物按性质与控制方式分为两类:

环境监测实施方案

XX县作为本项目监测点,鉴于本次监测任务顺利进行,特绘制XX 县环境监测总体方案图,如下图1所示: 图1 XX县环境监测总体方案图 1监测内容 XX县地表水水质、县政府所在地空气质量、重点污染源(水、气)、城区及交通干线噪声质量等监测工作。具体内容如下: 1.1地表水水质监测 严格执行《地表水环境质量标准》(GB3838-2002)、《地表水和污水监测技术规范》(HJ/T91—2002)、《环境水质监测质量保证手册(第二版)》及《水和废水监测分析方法》(第四版)等相关标准和规范。 监测区域现场勘查及资料收 集 (包括地理位置、地形地貌、气 象气候、土壤利用等) 编制监测方案 确定监测项目 及类别 确定确定监测点 布置及采样时间 和方法 电话预约 现场样品采集 检测室样品分析 检测 数据处理及结 果分析上报 出具监测报告 接受委托 后期服务

1.1.1 监测断面 哈尔腾河红崖子断面。 1.1.2 监测指标及方法依据(见表1-1) 采用《地表水环境质量标准》(GB3838—2002)表1中除粪大肠菌群以外的23项指标。具体监测项目见下表: 表1-1 地表水监测因子及检测方法依据 监测指标技术要求方法依据 水温,℃ pH 溶解氧 高锰酸盐指数 化学需氧量(COD) 五日生化需氧量 (BOD) 氨氮(NH3-N) 总磷(以P计) 总氮(湖、库,以N计) 铜 锌 氟化物(以F-计) 硒 砷 汞 镉 铬(六价) 铅

氰化物 挥发酚 石油类 阴离子表面活性剂 硫化物 此外还可根据XX当地污染实际情况,适当增加区域污染物监测。 1.1.3 监测网点布置(见表1-2) 表1-2 地表水监测网点布置 组号监测点名称监测点位置设点依据 1.1.4 样品采集方法及设备(见表1-3) 表1-3 样品采集方法及设备 样品名称采样方法采集设备 地表水 1.1.4监测时间及频次(见表1-4) 每季度至少监测1次,全面至少监测4次,且需在各监测月份的上旬(1-10日)完成水质监测的采样及实验室分析。具体监测时段按下表执行(特殊情况除外)

智慧环保在线监测系统解决方案

( 环保在线监测系统设计1总体设计 系统由污染排放在线监测系统、污染净化设施运行监测系统、预警预告系统、初级控制执行系统、紧急控制执行系统五大系统组成。 对排污数据和环境治理设备运行状况同时进行监测,综合分析两方面的数据,确保排污单位排污状况真实可靠,污染净化设施有效运行。 对企业污染物超标排放或者环保设备偷停不运转的情况,系统会启动生产控制执行程序,远程下达命令,分层断电,及时制止排污行为,改变了传统设备“只监不控”的方式。 对突发性污染事故隐患和污染物泄露事故,系统会立即执行重大事故应急预案,启动排污单位的紧急ESD系统,紧急规避危险,预防灾难性污染事故的发生。 如果企业排污超标,系统会在排污单位和环保部门同时报警,并将报警信息通过短信息在第一时间发送到相关单位负责人和管理者的手机上,督促管理者及时处理问题。 系统监控设备监控一体化功能,使排污单位必须自觉维护好系统,因为一旦运行不好,上传数据不正确,没有数据上传视同违法,系统仍然会报警,有效遏止人为破坏,保证系统运行正常。

} 2功能设计 方便的污染源管理 本模块利用GIS技术把环境污染源应用软件构筑于污染源数据库管理系统和图形库管理系统之上,提供具备空间信息管理、信息处理和直观表达能力的应用。能综合分析环境情况,实现污染源信息的综合查询,为计划决策提供信息支持,为有关的评价、预测、规划、决策等服务。其检索查询功能,可对行政区划、年份等进行条件统计汇总,统计结果可用表格、统计图、文字等多种方式表示。 动态数据成图 系统可根据测量得到的数据,自动对区域环境状况进行直观表现,提供描绘全场平面、立体等值线图,各种数据可生成饼图、柱状图、线状图等多种表现形式,能动态外挂图、文、声、像等多媒体数据。 环境质量监测 系统分为对大气、水、噪声、固体废弃物、土壤及农作物等方面的监测,其主要功能:专题的监测点位图的显示、点位查询、区域查询、信息查询、全区环境分布、全区或个别点环境平均状况随时间的变化情况等。并实现了数据地图化功能,可自动生成交通线上的噪声

解析大气环境监测布点方法

解析大气环境监测布点方法 【摘要】大气环境监测是预防大气污染、进行大气保护的前提,大气环境对人类生活的质量甚至安全有着直接影响,大气环境监测的主要内容有选择监测项目、选择监测布点、试样采集、项目分析、处理监测数据,文章重点分析了大气环境监测布点的方法。 【关键词】大气环境监测;大气保护;布点方法 大气环境监测主要是对环境中的污染物按照实际需要进行定时定点观测,观测不同种类污染物的分布规律,进而进行环境评估、预报和研究。通过大气环境监测,对大气环境进行判断,评估是否符合国家标准,对外预报大气环境质量,分析大气污染发展的趋势,为环境质量状况研究提供依据。大气环境监测的对象主要是大气中的氮氧化物、硫氧化物、碳氧化物、臭氧、挥发性有机物等分子状污染物和可吸入颗粒物(PM10)、总悬浮颗粒物、细颗粒物等颗粒状污染物。在我国的监测历史并不太长,从学科角度来看,大气环境监测属于环境科学的分支学科,对环境科学的发展具有基础性的作用。 1.大气环境监测的意义 2007年国家环保总局公告《环境空气质量监测规范(试行)》实施以来,我国的大气环境监测取得了很大的进展,但是随着我国工业化、城镇化程度的不断推进,我国大城市的大气环境问题不容乐观,已经影响到了人民的健康水平,对我国的大气环境监测工作提出了新的要求和挑战。进行大气环境监测的意义主要体现在三个方面:第一,对人的意义。人作为社会活动主体最基本的权利是生存权,大城市的大气环境在无形中对人的身体产生极大的影响,恶劣的大气环境甚至威胁人的生命,因此,对大气环境进行日常监测是保证人的生存权的最基本的要求。第二,对动植物的意义。动植物动过光合作用或呼吸作用来存活,在这个过程中与空气进行融合;空气中的污染物对周围环境,如土壤、水等的不良影响也会导致动植物受害,甚至导致动物大批死亡,植物大量枯萎。第三,对社会环境的意义。大气污染物通过对人、动植物的影响,最终会导致活动的承受体——社会环境不断恶化,大气监测最后是通过对社会环境的监测观察来实现,通过对社会环境中不同时空、不同种类污染物的浓度进行监测,最后有利于对污染浓度进行有效控制,保持社会的可持续发展。 2.大气环境监测布点的方法 监测点的布设,应尽量全面、客观、真实反映评价范围内的环境空气质量。大气环境监测布点方法不是一成不变的,根据污染物浓度、环境人口的密集度、工业发展水平、重要动植物分布、河流水源地的重要程度、监测地形、监测地气候环境等等进行监测布点分析和选择。 2.1大气环境监测布点点位选取的原则

物联网智能环境监测系统

《传感器与物联网技 术》 综合报告 题目:智能环境与物联网技术 专业: 学号: 姓名: 提交日期:二О一六年六月

摘要 环境与所有人的日常生活都息息相关,而物联网技术也随着计算机技术,信息技术,以及智能技术的发展越来越多的开始被应用到我们的日常生活中来。本文主要针对物联网技术应用到环境监测中的相关问题进行了分析与探讨。 智能环境利用各种传感器技术,移动计算,信息融合等技术对空气环境,海洋环境,河,湖水质,生态环境,城市环境质量进行全面有效地监控,通过构建全国各地环境质量的检测实现对全国范围内的环境进行实时在线监控和综合分析,建立全国性的污染源信息综合管理系统,为采取环境治理措施和污染预警提供更客观,有效的依据。 关键字:智能环境物联网技术传感器

目录 1引言 (4) 1.1 物联网简介 (4) 1.2智能环境研究的目的和背景 (4) 2需求分析 (4) 2.1智能环境功能需求分析 (5) 2.2各子系统需求分析 (5) 2.2.1大气污染监测子系统需求分析 (5) 2.2.2海洋污染监测子需求分析 (5) 2.2.3水质监测子系统需求分析 (5) 2.2.4生态环境检测子系统需求分析 (5) 2.2.5城市环境检测子系统需求分析 (5) 2.3其他非功能需求分析 (6) 2.3.1可靠性需求 (6) 2.3.2开放性需求 (6) 2.3.3可扩展性需求 (6) 2.3.4安全性需求 (6) 2.3.5应用环境需求 (6) 3详细设计 (6) 3.1各环境监测子系统解决方案 (6) 3.2智能环境监测系统结构图 (5) 3.2.1各子系统环境监测拓扑结构图 (6) 4结论 (12) 参考文献 (13)

最新城市地下管廊综合管理平台技术方案

城市地下管廊综合管理平台 技 术 方 案

目录 一、基于全周期管理的地下综合管廊建设思路 (1) 二、智能化地下综合管廊应用规划 (2) 三、地下综合管廊数据中心建设 (3) 四、规划设计 (4) 4.1 质量管控 (4) 4.2 G-UIM 模型管理(协同设计) (4) 五、地下综合管廊施工过程管理 (5) 六、施工过程可视化管控 (6) 七.应用举例 (7) 7.1 基于二三维一体化的地下综合管廊查询 (7) 7.2 管廊状况监控 (8) 7.3 地下综合管廊智能巡检 (8) 7.4 风险隐患监控 (9) 7.5 风险隐患治理监控 (10) 7.6 “一张图”应急决策支持 (11) 7.7 智能化综合管理 (12)

一、基于全周期管理的地下综合管廊建设思路 基于G-UIM 形成地下综合管廊全生命周期信息化标准体系,建立标准统一、关系清晰、数据一致、互联互通的数据管理与应用服务平台,实现地下综合管廊勘察设计、施工、运营维护各阶段的数据采集、移交和共享,达到设计分析可视化、施工管理精细化和营运维护智能化的目的。

二、智能化地下综合管廊应用规划 应用架构:采用统一的二三维平台和数据标准规范,建立地下综合管廊的全生命周期 数据中心和应用,根据管理需求对其他单位(管网接入单位或政府及相关部门)按权限进行数据输出。

三、地下综合管廊数据中心建设

四、规划设计 4.1 质量管控 将地下综合管廊的规划、设计成果、环境评估成果、外协工作成果与基础地理信息成果可视化集成到统一平台。 1 )建立统一的地下综合管廊数据中心,实现数据的统一管理; 2 )规划设计成果可视化核查,辅助提升设计质量、避免施工过程中现场变更 4.2 G-UIM 模型管理(协同设计) 设计管控——施工图设计管控

(完整版)环境监测系统解决方案

环境监测系统解决方案 一、系统概要本综合管控云平台是一套基于云计算的物联网综合管控云服务平台。平台可适配于各种物联网应用系统,实时监控管理接入设备的状态与运行情况, 并对设备进行远程操作,通过云平台对接物联网设备做到精确感知、精准操作、精细管理,提供稳定、可靠、低成本维护的一站式云端物联网平台。环境监测系统通过对现场温度、湿度、光照、风向、风速、PM2.5、气压等参数的数据采集,将参数数据远传至物联网云平台,实现现场各个设备的数据实时监测,用户可以通过电脑网页或是手机app 实时查看,可以自由设置各个参数的标准值上下限,如果数据超限可以给相关的工作人员发送短信或是微信报警提醒,做到提前预警, 避免造成不必要的损失,实现在远程就能值守现场设备。 二、拓扑图 现场传感器数据通过物联网中继器上传云平台,客户通过电脑网页或是手机app 可以实时监控现场设备数据。

875物联网中继器 传感器 PM 2.5 Pe 端 移动端 Padyf5 ??n ? ?f 光 照 度 二氧化碳

三、系统构成 3.1 系统登陆 ① PC 端登陆: 本系统采用B/S架构,PC端用户只需打开浏览器通过IP地址进入管理系统,凭管理员分配的用户名密码进行登陆管理。(登陆界面可定制企业logo 及信息)如下图: ② 手机端登陆:用户可在任何有本地局域网信号的地方,通过IOS或Android 版本APP登陆系统,登陆账号与PC端账号相同。IOS 版本APP请在Apple Store搜索“易云系统”进行下载,安卓版本请在“易云物联网系统”公众号或PC端系统中扫描二维码进行下载。 3.2 数据监控 能够便捷监控实时数据,并且可通过数据变化自动启停其他设备,各项数据可用数值、图片、文字分别展示,并通过短信等功能向用户发送报警信息。另外,可设定不同的监控点,更直观的监测每个测温点实时情况,模拟真实的设备位置分布。如下图:

生态环境监测网络建设方案

生态环境监测网络建设方案 生态环境监测是生态环境保护的基础,是生态文明建设的重要支撑。目前,我国生态环境监测网络存在范围和要素覆盖不全,建设规划、标准规范与信息发布不统一,信息化水平和共享程度不高,监测与监管结合不紧密,监测数据质量有待提高等突出问题,难以满足生态文明建设需要,影响了监测的科学性、权威性和政府公信力,必须加快推进生态环境监测网络建设。 一、总体要求 (一)指导思想。全面贯彻落实党的十八大和十八届二中、三中、四中全会精神,按照党中央、国务院决策部署,落实《中华人民共和国环境保护法》和《中共中央国务院关于加快推进生态文明建设的意见》要求,坚持全面设点、全国联网、自动预警、依法追责,形成政府主导、部门协同、社会参与、公众监督的生态环境监测新格局,为加快推进生态文明建设提供有力保障。 (二)基本原则。 明晰事权、落实责任。依法明确各方生态环境监测事权,推进部门分工合作,强化监测质量监管,落实政府、企业、社会责任和权利。 健全制度、统筹规划。健全生态环境监测法律法规、标准和技术规范体系,统一规划布局监测网络。 科学监测、创新驱动。依靠科技创新与技术进步,加强监测科研和综合分析,强化卫星遥感等高新技术、先进装备与系统的应用,提高生态环境监测立体化、自动化、智能化水平。 综合集成、测管协同。推进全国生态环境监测数据联网和共享,开展监测大数据分析,实现生态环境监测与监管有效联动。 (三)主要目标。到2020年,全国生态环境监测网络基本实现环境质量、重点污染源、生态状况监测全覆盖,各级各类监测数据系统互联共享,监测预报预警、信息化能力和保障水平明显提升,监测与监管协同联动,初步建成陆海统筹、天地一体、上下协同、信息共享的生态环境监测网络,使生态环境监测能力与生态文明建设要求相适应。 二、全面设点,完善生态环境监测网络 (四)建立统一的环境质量监测网络。环境保护部会同有关部门统一规划、整合优化环境质量监测点位,建设涵盖大气、水、土壤、噪声、辐射等要素,布局合理、功能完善的全国环境质量监测网络,按照统一的标准规范开展监测和评价,客观、准确反映环境质量状况。

关于城市地下综合管廊建设的调研

关于城市地下综合管廊建设的调研 地下综合管廊,是指现代化城市地下用于集中建设电力、通讯、燃气、广电、给水、雨污水等市政管线的公共隧道,被喻为城市的毛细血管及中枢神经,是保障城市正常运行的“生命线”。地下综合管廊是新型城市市政基础设施现代化的重要标志之一,它避免了由于重新埋设或维修管线而导致道路重复开挖的麻烦,避免了土壤对管线的腐蚀,延长管线的使用寿命。 一、推进地下综合管廊建设的意义 (一)节约地下空间。由于建设初期没有充分估计地下管网的需求,造成了大量的重复性建设,建设占用了大量的地下空间资源,没有做到合理使用。 (二)节省养护成本。地下综合管廊建设可以使管线使用寿命及安全性得到明显提升,因为综合管廊的建设是选择混凝土结构,能够避免外力破坏管线,防止管线与污染接触。 (三)改善城市环境。地下综合管廊建设能够使地下空间资源利用得到优化,防止架空线网密集、风险难以预测、管线事故多发、路面反复开挖等情况发生,确保城市交通的畅通。 (四)减少安全隐患。地下综合管廊可以借助动态监测以及各类信息化技术,能够对管线的状态以及运行情况进行实时掌握,及时发现管线中存在的问题,促进城市信息化管理水平提升。 二、我市地下管线的现状

(一)我市的市政管线包括电力、通讯、天然气、给水、雨水、污水。通道主要埋设在道路两侧和非机动及人行道上,以直埋式为主,且已运行时间较长,集约化程度低; (二)部分管线由于建设年代较早,存在设计标准偏低,安全可靠性较差的现象; (三)许多地下管线未进行统一规划,地下管线产权分散,各自为政,造成地下空间拥挤,管线存在大量上下重叠交叉,管线之间安全距离达不到规范要求,对管线的运行和保养带来不便。 三、推进地下综合管廊的建议 (一)强调规划先行 1.应抓紧编制规划。结合**市城市的定位,按照先规划、后建设的原则,在地下管线普查的基础上,统筹各类管线实际发展的需要,把地下综合管廊建设纳入城市建设的总体规划,以确保地下综合管廊的严肃性、连续性、有效性。 2.结合需求,因地制宜。按照**市的总体规划,对于高新区、开发区、保税区及各镇级开发区等新建道路要根据功能要求,同步建设地下综合管廊,对于已建成区规划要及时跟进,对现有管线实际状况与规划结合,调整制定综合管廊专项规划,并结合旧城更新、道路改造、河道治理、地下空间开发等,因地制宜、统筹安排管廊建设。 (二)加强工程管理,保证工程推进

智慧城市综合管廊信息化建设方案

智慧城市综合管廊信息化 建 设 方 案 XXX市政股份有限责任公司

目录 1、城市地下综合管廊(共同沟)综述 (1) 1.1、什么是城市地下综合管廊(共同沟)? (1) 1.2、城市地下综合管廊(共同沟)分类 (3) 1.3、共同沟的发展现状 (4) 1.4、城市地下综合管廊(共同沟)有哪些特点及优点? (7) 2、城市综合管廊物联网大数据云平台设计方案 (12) 2.1、地下综合管廊(共同沟)系统规划相关规定 (12) 2.2、地下综合管廊(共同沟)的设计 (16) 2.3、基于全周期管理的地下综合管廊建设思路 (18) 2.4、智能化地下综合管廊应用规划 (19) 2.5、地下综合管廊数据中心建设 (20) 2.6、规划设计 (20) 2.6.1 质量管控 (20) 2.6.2 G-UIM模型管理(协同设计) (20) 2.7、地下综合管廊施工过程管理 (21) 2.8、施工过程可视化管控 (21) 2.9.应用举例................................... 错误!未定义书签。 2.9.1 基于二三维一体化的地下综合管廊查询.... 错误!未定义书签。 2.9.2 管廊状况监控.......................... 错误!未定义书签。 2.9.3 地下综合管廊智能巡检.................. 错误!未定义书签。 2.9.4 风险隐患监控.......................... 错误!未定义书签。 2.9.5 风险隐患治理监控...................... 错误!未定义书签。 2.9.6“一张图”应急决策支持................. 错误!未定义书签。 2.9.7 智能化综合管理........................ 错误!未定义书签。 3、城市地下综合管廊(共同沟)附属设施技术 (22) 3.1、排水设备 (22) 3.2、通风设备 (22)

智慧环保在线监测系统解决方案

环保在线监测系统设计 1总体设计 系统由污染排放在线监测系统、污染净化设施运行监测系统、预警预告系统、初级控制执行系统、紧急控制执行系统五大系统组成。 对排污数据和环境治理设备运行状况同时进行监测,综合分析两方面的数据,确保排污单位排污状况真实可靠,污染净化设施有效运行。 对企业污染物超标排放或者环保设备偷停不运转的情况,系统会启动生产控制执行程序,远程下达命令,分层断电,及时制止排污行为,改变了传统设备“只监不控”的方式。 对突发性污染事故隐患和污染物泄露事故,系统会立即执行重大事故应急预案,启动排污单位的紧急ESD系统,紧急规避危险,预防灾难性污染事故的发生。 如果企业排污超标,系统会在排污单位和环保部门同时报警,并将报警信息通过短信息在第一时间发送到相关单位负责人和管理者的手机上,督促管理者及时处理问题。 系统监控设备监控一体化功能,使排污单位必须自觉维护好系统,因为一旦运行不好,上传数据不正确,没有数据上传视同违法,系统仍然会报警,有效遏止人为破坏,保证系统运行正常。

2功能设计 2.1方便的污染源管理 本模块利用GIS技术把环境污染源应用软件构筑于污染源数据库管理系统和图形库管理系统之上,提供具备空间信息管理、信息处理和直观表达能力的应用。能综合分析环境情况,实现污染源信息的综合查询,为计划决策提供信息支持,为有关的评价、预测、规划、决策等服务。其检索查询功能,可对行政区划、年份等进行条件统计汇总,统计结果可用表格、统计图、文字等多种方式表示。 2.2动态数据成图 系统可根据测量得到的数据,自动对区域环境状况进行直观表现,提供描绘全场平面、立体等值线图,各种数据可生成饼图、柱状图、线状图等多种表现形式,能动态外挂图、文、声、像等多媒体数据。 2.3环境质量监测 系统分为对大气、水、噪声、固体废弃物、土壤及农作物等方面的监测,其主要功能:专题的监测点位图的显示、点位查询、区域查询、信息查询、全区环境分布、全区或个别点环境平均状况随时间的变化情况等。并实现了数据地图化功能,可自动生成交通线上的噪声污染图,功能区噪声图等。

环保监测布点图

洗煤破碎除尘器监测结果及达标情况详见表4-1-2,监测点位详见图4-1。 图4-1 洗煤破碎除尘器监测点位示意图 表4-1-2 洗煤破碎除尘器监测结果及达标情况

结果表明:监测期间,洗煤破碎除尘器排气筒颗粒物的排放浓度、排放速率均达到《大气污染物综合排放标准》(GB16297-1996)表2中的二级标准限值要求,达标率均为100%。除尘效率为 96%。 4.3焦炉烟囱监测结果及分析 焦炉烟囱监测结果及达标情况详见表4-1-3,监测点位详见图4-2。 图4-2 焦炉监测点位示意图 表4-1-3 焦炉烟囱监测结果及达标情况

结果表明:监测期间,焦炉烟囱烟尘、SO2、氮氧化物的排放浓度、排放量均达到《大气污染物综合排放标准》(GB16297-1996)表2中的二级标准限值要求,达标率均为100%。 4.4地面站装煤监测结果及分析 地面站装煤监测结果及达标情况详见表4-1-4、表4-1-5,监测点位详见图4-3。 图4-3 装煤、推焦二合一地面除尘站监测点位示意图

结果表明:监测期间装煤推焦“二合一”地面站装煤时颗粒物、BaP的排放浓度、排放速率均达到了《大气污染物综合排放标准》(GB16297-1996)表2中的二级标准限值要求,达标率为100%。SO2排放浓度达标率为100%,排放速率达标率为?%。除尘效率≥96%,BaP的去除效率≥96%。 4.5地面站推焦监测结果及分析 地面站推焦监测结果及达标情况详见表4-1-6、4-1-7,监测点位详见图4-3。 表4-1-6 装煤、推焦二合一地面站(推焦)监测结果表

结果表明:监测期间装煤推焦“二合一”地面站推焦时颗粒物、SO2、BaP 的排放浓度、排放速率均达到了《大气污染物综合排放标准》(GB16297-1996)表2中的二级标准限值要求。SO2排放浓度达标率为100%,排放速率达标率为?%。除尘效率≥95%,BaP的去除效率≥96%。

环境在线监测期末试卷答案版

一、名词解释(10分) 1. 数据交换:在多个数据终端设备(DTE)之间,为任意两个终端设备建立数据通信临时互连通路的过程称为数据交换。 2.CEMS系统:CEMS是英文Continuous Emission Monitoring System的缩写,是指对大气污染源排放的气态污染物和颗粒物进行浓度和排放总量连续监测并将信息实时传输到主管部门的装置,被称为“烟气自动监控系统”,亦称“烟气排放连续监测系统”或“烟气在线监测系统”。 3. 数据的有效性审核:自动监测数据有效性审核是指环保部门按照国家发布的标准、规范等对自动监测设备定期进行的监督考核,确定自动监测设备能否正常运行。国控企业污染源自动监测设备在正常运行状态下所提供的实时监测数据,即为通过有效性审核的污染源自动监测数据。 4. 零气:零气是指调整气体分析仪最小刻度的气体,以及进入分析仪时显示为零的气体。零气应不含有待侧成分或干扰物质,但可以含有与测定无关的成分。一般使用不含待测成分的高纯氮或清洁空气作为零气。零位调整就是使用零气调节分析仪的零点刻度。 8.零点漂移:采用零点校正液为试样连续测试,水污染源在线监测仪器的指示值在一定时间内变化的幅度。 9.量程漂移:采用量程校正液为试样连续测试,相对于水污染源在线监测仪器的测定量程,仪器指示值在一定时间内变化的幅度。 二、填空题(20分) 1. 废水在线自动监测系统是一套以在线自动分析仪器为核心,运用现代_现代传感器技术__、_自动测量技术__、_自动控制技术__、_计算机应用技术___技术及相关的专用分析软件和通讯网络所组成的一个综合性自动监测数据的采集系统。 2. 水质自动监测网国家网由__网络中心站_和_水质自动监测子站__组成。网络中心站设在_中国环境监测总站__,各水质自动监测子站委托_地方环境监测站(简称托管站)__ 负责日常运行和维护。为保证自动监测的数据质量,对在线监测系统必须定期进行_仪器校准_。 3. 环境空气自动监测系统监测项目包括__ SO2、_NO x、PM10 __、_O3 _。水质自动监测站的监测项目包括_水温_、_ pH、_溶解氧(DO)、_电导率_、_浊度__、_高锰酸盐指数__、_总有机碳(TOC) _氨氮___。湖泊水质自动监测站的监测项目还包括_总氮__和_总磷_ 。 4.数据交换操作包括__数字通道___、__模拟通道___、__开关量通道___。数据传输方式有__无线传输方式___、__有线传输方式___。(以太网方式) 5.气态污染物CEMS测量方法有_直接抽取法_、_稀释取样法__、_直接测量法_。 6.CEMS管理系统的参数设置的的内容有__标准曲线参数_、_速度场系数_、_皮托管系数_、_过量空气系数(a)_、_烟道截面积_、_污染物浓度和总量报表__。 7.在线自动监测仪器资质证书包括_中华人民共和国计量器具制造许可证_、_进口仪器具备国家质量技术监督部门的计量器具型式批准证书_、_环境保护部环境监测仪器检测中心适应性检测报告_、_具备国家环境保护产品认证证书(限国家已开展的认证产品)_。 8.在线监测系统包括_数据通讯平台系统_、_监测终端(污染源)仪器集成系统_、_运营维护系统(公司)_系统三部分。(空气质量在线监测系统、水质在线检测系统、污染源在线检测系统) 三、选择题(20分) 1. 通常连接大气自动监测仪器和采气管的材质为(B) A 玻璃B聚四氟乙烯 C 橡胶管 D 氯乙烯管

环境监测平台系统产品解决方案

环境监测云平台系统 产 品 解 决 方 案 成都远控科技有限公司技术部二〇一五年一月二十八日

目录 一、引言 (3) 二、产品系统概述 (3) 三、方案特点 (4) 1. 数据精准、监控图像清晰度 (4) 2.网络适应性强、带宽要求低,支持多种有线或无线网络接入方式 (4) 3.可集成性 (4) 4.高传输可靠性 (4) 5.系统建设成本低 (4) 四、系统组成及架构 (5) 五、平台服务端操作及功能介绍 (7) 六、相关硬件产品介绍 (15)

一、引言 防治扬尘污染,保护和改善城市生活环境空气质量,保障人民群众身体健康,一直是国家各级环境保护部门的重要工作内容之一。在所有的扬尘污染中,工程施工扬尘,如房屋建设施工、道路与管线施工、房屋拆除等为主要污染源。为此,在国家各级城市出台的扬尘污染防治管理办法中,都对建设工程施工提出了明确的防尘要求和相应的处罚条款。 目前,我国正处于城市建设的快速发展期,工程施工每天都在众多的、分散的地点同时进行着。而环保部门人员数量有限,不可能每天都到各个施工地点去巡查,因此,对众多分散的工程施工现场进行远程监控,及时发现违反防尘要求、出现扬尘污染的施工地点并及时处理,无疑是监管工程施工扬尘污染的有效途径。然而,传统的视频监控一方面呈现的图像分辨率极为有限,不利于对现场情况的准确辨别;另一方面,远程视频监控需要较高的通信网络带宽做支持,往往需要铺设专门的光纤或电缆、租用昂贵的通信信道;可是工程施工地点数量众多、地理分布复杂,且对于扬尘监控只是阶段性的需求,为此部署大量的视频监控点无疑会给环保部门带来庞大的资金压力,为国家带来不必要的资金消耗。有没有成本更低、部署更方便的监控手段,来实现对工程施工扬尘污染进行远程监控的目的呢? 二、产品系统概述 成都远控科技有限公司开发的“环境监控云平台系统”即是以安装在远程的终端设备通过3G/4G网络实时向云平台服务端上传相关环境监测数据以及监控画面的一种新的监控应用方式。工作人员亦可通过有线或无线网络登陆“环境监控云平台系统”,对远端现场环境作时实监控,提取相关环境污染数据;当环境污染达到上峰值时,安装在施工现场的环境探测感应器或摄像头,将自动记录下相关环境数据并抓拍下现场的高清晰数字图片,并通过有线或无线通信网络自动传输回来,即时呈现在环保机关的各种显示终端上(PC、PDA),让环保工作人员通过高清晰的数字图片,即时了解施工现场的防尘措施实施情况和工地现状,达到对众多分散的工程施工地点进行远程联网监控的目的。 此软硬件系统借助先进的数字通信手段,融合了数字图像处理技术、无线网络通信技术、嵌入式系统技术等多种计算机和通信技术,基于低带宽的IP网络,实现了高清晰图片远程抓拍、即时传输和应用的一体化过程,是一种低成本、易部署、易操作的基于图片的远程监控解决方案。

环境监测综合解决方案

重点污染源企业在线自动监控系统 建设方案书

目录 目录................................. 错误!未定义书签。 第一章概述.......................... 错误!未定义书签。 项目背景..................................................................... 错误!未定义书签。 建设目标..................................................................... 错误!未定义书签。第二章系统方案设计..................... 错误!未定义书签。 项目背景...................................................................... 错误!未定义书签。 建设原则...................................................................... 错误!未定义书签。 建设的必要性.................................................................. 错误!未定义书签。 设计指导思想................................................................ 错误!未定义书签。 设计原则.................................................................... 错误!未定义书签。 系统结构..................................................................... 错误!未定义书签。 平台建设...................................................................... 错误!未定义书签。 监控终端实现功能............................................................. 错误!未定义书签。 管理服务器实现功能............................................................ 错误!未定义书签。 网络基础平台................................................................. 错误!未定义书签。 应用支撑平台.................................................................. 错误!未定义书签。 业务应用平台.................................................................. 错误!未定义书签。 前端站房...................................................................... 错误!未定义书签。第三章设备选型........................ 错误!未定义书签。 UV水质COD在线监测仪........................................................ 错误!未定义书签。 在线氨氮水质自动分析仪.................................................. 错误!未定义书签。 在线PH计.................................................................... 错误!未定义书签。 污染源自动监控(监测)数据采集传输仪 ......................................... 错误!未定义书签。 球型摄像机.................................................................... 错误!未定义书签。 室外红外一体摄像机............................................................ 错误!未定义书签。 网络视频服务器............................................................... 错误!未定义书签。第四章设备配置清单..................... 错误!未定义书签。

相关文档
相关文档 最新文档