文档库 最新最全的文档下载
当前位置:文档库 › 《勾股定理》案例

《勾股定理》案例

《勾股定理》案例
《勾股定理》案例

《勾股定理》教学案例

一、问题导入

问题:一个门框,长2m,宽1m;一块长3m,宽2.5m的薄木板能否从门框内通过?

分析:从实际简单的问题出发,激起学生的好奇心,引发学生的学习兴趣。不过,薄木板能改成长2.5m,宽为2.2m,就更好了。因为这样,粗看,学生会认为不能通过,但经过勾股定理证明,其实是可以通过的,学生对勾股定理更感兴趣。

二、自主学习

1、观察在网格中的正方形,并填写表格,最后用文字表示出猜想结果。

分析:作为研究定理的初始阶段,这个过程的学习任务比较轻,非常适合学生的认知过程,从而很顺利的对“勾股定理”有了一个初步认识。

2、教师用几何画板演示:在一个直角三角形中,随着鼠标的拖动,三边不停的改变,唯一不变的是三者的关系式。让学生观察。

分析:通过科学用具的演示,让学生直观的感受“勾股定理”。如果老师在另一方面:动角,即不是直角三角形时,关系式是否还成立?使学生对“勾股定理”的前提条件(在直角三角形中)印象更为深刻。

三、合作探究

活动:每组发两张彩纸,小组合作,裁剪并拼图,然后用科学的方法证明“勾股定理”,最后代表展示。

分析:这个环节的任务对于学生来讲相对比较困难,但是,通过这个环节,学生对于“勾股定理”会达到一个更深层次的认知,即学生基本上是完全掌握了“勾股定理”。不过,在小组合作过程中,可以让每组派组员到其他组去观摩,即让学生有一个组间交流的过程,这样,就算没有展示,学生也已经知晓其他各组的成果,即省时间,也更活跃氛围。同时,这一阶段所用时间较长,教师在活动前可以给学生限时,提高学生的学习效率。

四、整理学案

1、谈收获

分析:及时总结即可以强化记忆,更是对知识提升的一个手段。当然,最好

是学生自己总结,而不是老师总结。教师可以让学生说,或者用简单的思维导图写出来。

2、当堂检测

分析:因为时间仓促,所以这一部分匆匆带过,以致学生在运用“勾股定理”这一点上没得到训练强化,这就意味着下节课得再讲。而且,对于本节课的易错点(斜边的确定)没有说明,学生在做题过程中会很容易犯错而不自知。

当然,本节课,从整个教学设计上讲是非常完美的,充分发挥了学生的能动性,给予了学生十足的信任。这是一节相当优秀的课。

勾股定理提高练习题精编

勾股定理练习(根据对称求最小值) 基本模型:已知点A、B为直线m 同侧的两个点,请在直线m上找一点M,使得AM+BM 有最小值。 1、已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N, 使得EN+BN有最小值,并求出最小值。 2、.已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N, 使得EN+BN有最小值,并求出最小值。 3、如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到 直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=() A. 6 B.8 C.10 D.12

4、已知AB=20,DA⊥AB于点A,CB⊥AB于点B,DA=10,CB=5. (1)在AB上找一点E,使EC=ED,并求出EA的长; (2)在AB上找一点F,使FC+FD最小,并求出这个最小值 5、如图,在梯形ABCD 中,∠C=45°,∠BAD=∠B=90°,AD=3 ,CD=2 2, M为BC上一动点,则△AMD 周长的最小值为. 6、如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB边 上一点,则EM+BM的最小值为.

7、如图∠AOB = 45°,P是∠AOB内一点,PO = 10,Q、R分别是OA、OB上的动点,求 △PQR周长的最小值. 8.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为() A.2 B.2 6C.3 D.6 9、在边长为2 cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________cm 10、在长方形ABCD中,AB=4,BC=8,E为CD边的中点,若P、Q是BC边上的两动点,且PQ=2,当四边形APQE的周长最小时,求BP的长.

《勾股定理》教学案例

《勾股定理》教学案例 《勾股定理》教学案例 教学目标:灵活运用勾股定理及其逆定理解决问题。 教学重点:勾股定理及其逆定理的灵活运用。 教学难点:勾股定理及其逆定理在实际生活中的运用。 教学过程: 教师出示大家易错的解答题第4题:一个长方体木块,长30厘米、宽24厘米、高18厘米,一只蚂蚁在木块表面从A点爬到B点,求这只蚂蚁爬行的最短路线。 同学们在小组内交流,得出如下方案: (1)前、右两面展开,沿展开面的对角线爬行; (2)前、上两面展开,沿展开面的对角线爬行; (3)左、上两面展开,沿展开面的对角线爬行。 这三种方案通过计算对比得出,将前、右两面展开,小蚂蚁走展开面的对角线路线最短。 教师根据自己的教学经验及时进行变式训练:一个圆柱体,底面直径6厘米,高5厘米,蚂蚁沿外表面爬行,从左下角A点爬到相对的右上角B点,求蚂蚁爬行的最短路线。 经同学们思考得到解题方法:将圆柱体的侧面展开得到一个长方形,将此长方形纵切平分,沿平分后矩形的对角线

走路线最短。 为强化学生掌握解题方法王老师又给学生出了这样一道变式题:一个圆柱体,底面直径4厘米,高8厘米,蚂蚁沿外表面从圆柱体左下角A点爬到相对的右上角B点,求蚂蚁爬行的最短路线。 同学们根据刚才的方法很快地求出了答案。 … … 教学探究: 王老师在出这道变式题时,我在想:蚂蚁若从A点沿着侧面的高线和上底面的直径爬到B点,这样走路线是否最短呢?以变式二为例我将两种方法对比计算,得出还是上述方法正确。 但这一想法促使我继续思考,假如圆柱体的地面直径和高变了,结果又怎样呢?我自己设计了一道变式题:一个圆柱体,底面直径5厘米,高2厘米,蚂蚁从圆柱体左下脚A 点爬到相对的右上B点,求蚂蚁爬行的最短路线。通过计算比较得到,蚂蚁蚂蚁沿着侧面的高线和上底面的直径爬,这样走路线是否最短。 引发我深层次地思考探究:在不同的情况下到底选用哪种方法? 课后,为探究这一问题,我编了三道变式题: (1)一个圆柱体,底面直径2厘米,高5厘米,蚂蚁

《勾股定理》典型例题

《勾股定理》典型例题 例1 在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗? 它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52. (1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢? (2)请你观察下列图形,直角三角形ABC 的两条直角边的长分别为AC =7,BC =4,请你研究这个直角三角形的斜边AB 的长的平方是否等于42+72? 解: (1)边长的平方即以此边长为边的正方 形的面积,故可通过面积验证.分别以这个直 角三角形的三边为边向外做正方形,如右 图:AC =4,BC =3, S 正方形ABED =S 正方形FCGH -4S Rt △ABC =(3+4)2-4×2 1×3×4=72-24=25 即AB 2=25,又AC =4,BC =3, AC 2+BC 2=42+32=25 ∴AB 2=AC 2+BC 2 (2)如图(图见题干中图)

S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×2 1×4×7=121-56=65=42+72 例2 下图甲是任意一个直角三角形ABC ,它的两条直角边的边长分别为a 、b ,斜边长为c .如图乙、丙那样分别取四个与直角三角形ABC 全等的三角形,放在边长为a +b 的正方形内. ①图乙和图丙中(1)(2)(3)是否为正方形?为什么? ②图中(1)(2)(3)的面积分别是多少? ③图中(1)(2)的面积之和是多少? ④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么? 由此你能得到关于直角三角形三边长的关系吗? 解: ①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a 为边长的正方形, (2)是以b 为边长的正方形,(3)的四条边长都是c ,且每个角都是直角,所以(3)是以c 为边长的正方形. ②图中(1)的面积为a 2,(2)的面积为b 2,(3)的面积为c 2. ③图中(1)(2)面积之和为a 2+b 2. ④图中(1)(2)面积之和等于(3)的面积. 因为图乙、图丙都是以a +b 为边长的正方形,它们面积相等,(1)(2)的面

八年级数学勾股定理拓展提高(勾股定理)拔高练习

八年级数学勾股定理拓展提高(勾股定理)拔高练习 一、填空题(共5道,每道4分) 1.教材1题:△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是_______. 2.教材3题:在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_______. 3题图5题图 3.教材4题:△ABC周长是24,M是AB的中点,MC=MA=5,则△ABC的面积是_____. 4.教材5题:将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是_____. 5.教材10题:矩形ABCD中,BC=4,DC=3,将该矩形沿对角线BD折叠,使点C落在点F处,求EF的长_____. 二、解答题(共5道,每道10分) 1.教材9题:如图,有一个直角三角形纸片,两直角边AC=8cm,BC=6cm,现将直角边BC沿直线BD折叠,使它落在斜边AB上的点C′处,求CD的长以及折痕BD的平方 1题图2题图 2.教材8题:如图,已知DE=m,BC=n,∠EBC与∠DCB互余,求+的值. 3.教材12题:如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,求CN和AM的长. 3题图4题图5题图 4.教材14题:如图,某隧道的截面是一个半径为3.6米的半圆形,一辆高2.4米,宽3米的卡车能通过该隧道吗? 5.教材16题:如图,某沿海城市A接到台风警报,在该市正南方向150km的B处有一台风中心正以20km/h的速度向BC方向移动,已知城市A到BC的距离AD=90km(1)台风中心经过多长时间从B点移到D点?(2)如果在距台风中心30km的圆形区域内都有受到台风破坏的危险,为让D点的游人脱离危险,游人必顺在接到台风警报后的几小时内撤离(撤离速度为6km/h)? 三、证明题(共3道,每道10分) 1.教材2题:如图,在正方形ABCD中,E是DC的中点,F为BC上的一点且BC=4CF,试说明△AEF是直角三角形.

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

勾股定理能力提高练习题.doc

《勾股定理》练习题一、选择题(12×3′=36′) 1.已知一个Rt△的两边长分别为3和4,则第三边长的平方是() A、25 B、14 C、7 D、7或25 2.下列各组数中,以a,b,c为边的三角形不是Rt△的是() A、a=1.5,b=2,c=3 B、a=7,b=24,c=25 C、a=6,b=8,c=10 D、a=3,b=4,c=5 3.若线段a,b,c组成Rt△,则它们的比为() A、2∶3∶4 B、3∶4∶6 C、5∶12∶13 D、4∶6∶7 4.Rt△一直角边的长为11,另两边为自然数,则Rt△的周长为() A、121 B、120 C、132 D、不能确定 5.如果Rt△两直角边的比为5∶12,则斜边上的高与斜边的比为() A、60∶13 B、5∶12 C、12∶13 D、60∶169 6.如果Rt△的两直角边长分别为n2-1,2n(n>1),那么它的斜边长是() A、2n B、n+1 C、n2-1 D、n2+1 7.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是() A、24cm2 B、36cm2 C、48cm2 D、60cm2 8.等腰三角形底边上的高为8,周长为32,则三角形的面积为() A、56 B、48 C、40 D、32 9.三角形的三边长为(a+b)2=c2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角

形. 10.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要() A、450a元 B、225a 元 C、150a元 D、300a元 11.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为() A、6cm2 B、8cm2 C、10cm2 D、12cm2

勾股定理教学案例

《勾股定理》教学案例 鱼窝头中学初三级何辉琼 一、教材分析 (一)教材的地位与作用 勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。 它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标 基于以上分析和数学课程标准的要求,制定了本节课的教学目标。 知识与技能: 1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。 2、了解勾股定理的内容。 3、能利用已知两边求直角三角形另一边的长。 数学思考: 在勾股定理的探索过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想。 解决问题: 1、通过拼图活动,体验数学思维的严谨性,发展形象思维。 2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。 情感与态度: 1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的 研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。 2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养 合作意识和探索精神。 (三)教学重、难点 重点:探索和证明勾股定理 难点:用拼图方法证明勾股定理 二、学情分析 学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。现在

的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。 三、教学策略 本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。 四、教学程序 地面图18.1-1

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

勾股定理提高经典练习

勾股定理专题复习 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 举一反三 【变式】:如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2、如图,已知:在中,,,.求:BC的长. 举一反三【变式1】如图,已知:,,于P.求证:. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程. 类型四:利用勾股定理作长为的线段 5、作长为、、的线段。 【变式】在数轴上表示的点。

6、如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。 举一反三【变式1】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 【变式2】已知:△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形. 【变式3】如图正方形ABCD,E为BC中点,F为AB上一点,且BF=AB。请问FE与DE是否垂直?请说明。 类型一:勾股定理及其逆定理的基本用法 1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。 【变式1】等边三角形的边长为2,求它的面积。

《勾股定理》教学设计方案#(精选.)

教学设计(《勾股定理》为主题) 班级:2015级3班学号:2015060336 姓名:吴玲性别:女 序言:勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。 勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。

教学活动1 活动一:故事场景→发现新知 毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角 形的三边之间的某种数量关系。 地面 同学们,请你也来观察下图中的地面,看看能发现些什么? 提问:1)上图中的等腰直角三角形有什么特点? 2)等腰直角三角形是特殊的直角三角形,一般的的直 角三角形是否也满足这种特点? 引导学生分析情景、提出问题: 你是怎样观察这个砖铺的现场的? (从基本砖铺材料、图形单元、位置形态进行观察:铺设材料是 正方形砖块,其中丰富的图案都是由等腰Rt△色块作为基本单元 构成。) A B 由于对角线的作用,通过进一步的观察或者手工拼图可以发现用等腰直角三角形拼正方形的基本方法(充分展示出了等腰直 角三角形与正方形的结构关系)。

3)在课堂上开展分组活动,让学生亲手操作:对正方形进行 剪切、拼贴然后再将它们关联(由正方形的边长关系到等腰直角 三角形)起来从而实现真正意义上的发现----合围(以等腰直角三 角形的三边为边) 教学活动2 活动二、深入探究→网络信息 等腰Rt△有上述性质其它的Rt△是否也具有这个性质呢? 网格 提问: (1)你是如何计算那个建立在Rt△斜边上的正方形面积的? 怎样探索“其它”的Rt△的三边关系呢? 目标体验:有区别的看待直角三角形(从地板上的等腰直角三角 形出发,构建“其它”直角三角形并且在它的三边建立正方形以 突出便利于探究性学习的网格图形)。 (2)要求学生画一个两直角边分别为2,3的直角三角形,并以它的三边为边长(根据定义法辅用以直尺)建立正方形。 (3)计算各正方形面积并验证这个Rt△的三边存在的关 系。

勾股定理典型题总结(较难)

勾股定理 一.勾股定理证明与拓展 模型一 . 图中三个正方形面积关系 思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系? 例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 . 变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.

变式2:如图,四边形ABCD 中,AD ∥BC ,∠ABC +∠DCB =90°,且BC =2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为S 1、S 2、S 3,若S 1=3,S 3=9,求S 2. (变式2) (变式3) 变式3:如图,Rt △ABC 的面积为10cm 2 ,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 . (难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB = 90°,以△ABC 的各边为边作三个正方形,点 G 落在 HI 上,若 AC +BC =6,空白部分面积为 10.5,则阴影部分面积 模型二 外弦图 D C B A 内弦图 G F E H 例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为 13,每个直角三角形两直角边的和是5。求中间小正方形的面积为__________;

勾股定理提高练习题精编

勾股定理提高练习题精编

勾股定理练习(根据对称求最小值) 基本模型:已知点A、B为直线m 同侧的两个点,请在直线m上找一点M,使得AM+BM 有最小值。 1、已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N, 使得EN+BN有最小值,并求出最小值。 2、.已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N, 使得EN+BN有最小值,并求出最小值。 3、如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到 直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=() A. 6 B.8 C.10 D.12 4、已知AB=20,DA⊥AB于点A,CB⊥AB于点B,DA=10,CB=5. (1)在AB上找一点E,使EC=ED,并求出EA的长; (2)在AB上找一点F,使FC+FD最小,并求出这个最小值

几何体展开求最短路径 1、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm,3dm,2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B 点的最短路程是多少dm? 2、如图:一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程. 3、如图,一个高18m,周长5m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长? (建议:拿一张白纸动手操作,你一定会发现其中的奥妙) 4、如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少? 5、如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离。

勾股定理经典例题(含答案)

勾股定理经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32

=16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于 , 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

人教版数学八年级下册:勾股定理提高测试题

八年级数学勾股定理单元提高题 一、选择题( 1. 如图:a ,b ,c A. a 2 + b 2=c 2 B. ab=c C. a+b=c D. a+ b=c 2 2. 下列各组数中以a ,b ,c 为边的三角形不是Rt △的是 ( ) A 、a=2,b=3,c=4 B 、a=7,b=24,c=25 C 、a=6,b=8,c=10 D 、3.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、32 4. 如右图,小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) A. 25 B. 12.5 C. 9 D. 8.5 5.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A 、450a 元 B 、225a 元 C 、150a 元 D 、300a 元 6.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A 、25海里 B 、30海里 C 、35海里 D 、40海里 7.一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为( ) A .60 B .30 C .24 D .12 8.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121 B 、120 C 、132 D 、不能确定 9.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向 岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( ) A. 2m; B. 2.5m; C. 2.25m; D. 3m. 10.直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( ) \ A. ab=h 2 B. a 2 +b 2 =2h 2 C. a 1+b 1=h 1 D. 2 1a +21b = 21h 二、填空题(8小题,每小题3分,共24分) 北 南 A 东 第6题图 150° 20m 30m 第5题图 A D B C 第7题

《勾股定理》教学案例

教学案例13 勾股定理(第一课时) 一、教材分析 (一)教材的地位和作用 “勾股定理”是人教版《数学》八年级下册第十八章第一节内容,分三课时完成。本节说课为第一课时,主要讲解勾股定理的探索证明以及简单应用。 勾股定理是几何中几个重要的定理之一,它揭示了直角三角形三边之间的一种美妙的数量关系,将数与形密切联系起来,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础,因此这节课在知识体系中有着承上启下的作用。 本课时内容有学习勾股定理的发现、证明及简单应用。勾股定理的发现主要让学生亲自动手,在实践中观察、分析、发现、猜想得出直角三角形三边之间的数量关系,再对a2+b2=c2的直角三角三边之间的数量关系,再对a2、b2、c2的结构特点与几何中正方形的面积公式产生联想,确定以面积来证明猜想的基本思想。 (二)学情分析 (1)学生的认知基础:八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法,但是学生对用割补法和面积法证明几何命题还存在障碍,不能快速有效地将数与形有机结合起来。 (2)学生年龄心理特点:八年级的学生在心理与生理方面已经较为成熟,对待事物的看法有一定的个性见解,探究欲强。 二、教学任务 (一)教学目标 【知识与技能目标】 理解并掌握勾股定理的内容和证明,能够简单的运用勾股定理。 【过程与方法目标】 在学生经历“观察—猜想—归纳—验证”勾股定理的过程中,发展合情推理能力,体会数形结合和从特殊到一般的数学思想。

【情感态度与价值观目标】 通过对勾股定理历史的了解,感受数学文化,培养学生的民族自豪感,激发学习兴趣,在探究活动中,培养学生的合作交流意识和探索精神。 (二)教学重点、难点 【教学重点】探索发现并验证勾股定理。 【教学难点】用面积法和拼图法证明勾股定理。 三、教法与学法分析 (一)教法分析 好的课堂结构不是那种“填鸭式、膨胀式”的结构,而应该是留有很大余地的可塑性结构,充分调动学生学习的积极性和主动性。贯彻“以学生为主体,教师为主导”的教学原则,培养学生自主学习的能力和创新意识。根据教学内容的特点和学生的实际情况,本节课采用“自主探究”式的教学方法。 (二)学法分析 我国古代《学记》说,教师应做到“道而弗牵,强而弗抑,开而弗达”。意思是:引导学生而不牵着学生走,激励他们而不强加逼迫,启发他们独立思考,而不直接把结论告诉学生。在学习定理时,先设计好观察、实验用的图形。通过自己观察、实践探究出的新知识,进一步亲自动手尝试,对图形割、补、拼、凑,从而达到面积割补法的证明思想,从而让学生得到学习成功的体验。同时,在定理证明的探究过程中,以充满启发性的问题引路,并渗透“数形”结合的思想。 (三)、教学策略 【教法】引导探索法 【学法】自主探索合作交流 【教学手段】多媒体辅助教学 【学具准备】剪刀四个全等直角三角形 正是基于上述的指导,因此设计了以下的教学过程。 四、教学过程

勾股定理典型题型

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少 米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,. 已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到 D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如 图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾 股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=AD 2 设水深AC= x 米,那么AD=AB=AC+CB=x +0.5 x 2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

勾股定理学案

课题:18.1勾股定理(第1课时) 一、学习目标 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。 3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 二、重点:勾股定理的内容及证明。 难点:勾股定理的证明。 三、学习准备: 预习课本P22———24页 四、课堂阅读 1. 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地 球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 2.让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。 你是否发现32+42与52的关系,52+122和132的关系,即_______________,那么就有 ________________ 对于任意的直角三角形也有这个性质吗? 五、例习题分析 例1(补充)已知:在△ABC 中,∠C=90°, ∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。 ⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 ________________________ ______________ ⑶发挥学生的想象能力拼出不同的图形,进行证明。 ⑷ 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。 例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 分析:左右两边的正方形边长相等,则两个正方形的面积相等。 A B b b

勾股定理典型练习题

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15) 4、最短距离问题:主要运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆. 2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半 圆的面积之间的关系.

3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、在直线l 上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是 1、2、3,正放置的四个正方形的面积依次是S S 12、、 S S S S S S 341234、,则+++=_____________。 考点二:在直角三角形中,已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . 2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是 3、已知直角三角形两直角边长分别为5和12, 求斜边上的高. S 3 S 2 S 1

八年级数学勾股定理拓展提高拔高练习

5?教材16题:如图,某沿海城市 A 接到台风警报,在该市正南方向 150km 的B 处有一台风中心正以 20km/h 的速度向 BC 方向移动,已知城市 A 到BC 的距离AD=90km (1)台风中心经过多长时间从 30km 的圆形区域内都有受到台风破坏的危险, 为让D 点的游人脱离危险, 游人必顺在接到台风警报后的几小时内撤离 (撤离速度为6km/h ) 三、证明题(共3道,每道10分) 1?教材2题:如图,在正方形 ABCD 中,E 是DC 的中点,F 为BC 上的一点且BC=4CF 试说明△ AEF 是直角三角形 1题图 2题图 3题图 2?作业1题:如图,已知 P 是矩形 ABCD 内任一点,求证: PA2+PC2=PB2+PD2 3?教材6题:如图所示.已知:在正方形 ABCD 中,/ BAC 的平分线交 BC 于E ,作EF 丄AC 于F ,作FG 丄AB 于G .求证: AB2=2FG2. 八年级数学勾股定理拓展提高(勾股定理)拔高练习 一、填空题(共5道,每道4分) 1?教材 1 题:△ ABC 中,AB=15, AC=13,高 AD=12,则△ ABC 的周长是 _______ ? 2?教材3题:在直线I 上依次摆放着七个正方形(如图所示)?已知斜放置的三个正方形的面积分别是 1、2、3,正放置 的四个正方形的面积依次是 S1、S2、S3 S4,贝U S1+ S2+ S3+ S4= ________ ? 5题图 3?教材4题:△ ABC 周长是24, M 是AB 的中点,MC = MA = 5,则A ABC 的面积是 _______ . 4.教材5题:将一根长24 cm 的筷子,置于底面直径为 5cm 、高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长为 hcm ,则h 的取值范围是 _______________ ? 5?教材10题:矩形ABCD 中,BC=4, DC=3,将该矩形沿对角线 BD 折叠,使点C 落在点F 处,求EF 的长 ____________ ? 二、解答题(共5道,每道10分) 1?教材9题:如图,有一个直角三角形纸片,两直角边 AC=8cm , BC=6cm,现将直角边 BC 沿直线BD 折叠,使它落在 斜边AB 上的点C 处,求CD 的长以及折痕BD 的平方 DE=m , BC=n , / EBC 与/DCB 互余,求兰二;上+■汀的值. 1题图 2?教材8题:如图,已知 3?教材12题:如图,四边形 ABCD 是边长为9的正方形纸片,将其沿 MN 折叠,使点B 落在CD 边上的B '处,点A 对 应点为A',且B' C=3求CN 和AM 的长? 3题图 4题图 4?教材14题:如图,某隧道的截面是一个半径为米的半圆形,一辆高米,宽 3米的卡车能通过该隧道吗 B 点移到D 点( 2)如果在距台风中心

相关文档