文档库 最新最全的文档下载
当前位置:文档库 › 对我国电力系统自动化发展的简论

对我国电力系统自动化发展的简论

对我国电力系统自动化发展的简论
对我国电力系统自动化发展的简论

对我国电力系统自动化发展的简论

摘要:电力系统自动化科技含量高,自动控制系统的水平将直接反映电力系统的运行、管理水平,也直接影响着电力系统的运行效率。

关键词:电力系统自动化阶段应用发展趋势

引言电力系统是指发电、变电、输电、配电、用电等设备和相对应的辅助系统,按照规定的

经济和技术要求构成的,把一次能源转换成电能并输送和分配到各个用户的同一系统。电力

系统自动化不断地革新将极大的提高一次能源的利用率,改造传统的电能生产和运行管理方

式对经济的健康发展产生深远的影响。

一、电力系统自动化的概念

电力系统自动化是指应用各种具有自动检测、决策和控制功能的装置、通过信号系统和数据

传输系统对电力系统各元件、局部系统或全系统进行就地或远方的自动监视、调节和控制,

以保证电力系统安全经济地运行和具有合格的电量质量。

二、电力自动化的必要性

1)电网规模扩大。电网系统庞大,其中被控对象及其复杂、参数极多、还包括复杂的MIMO。

2)电能质量要求。经济的不断发展,使电网负荷不可预测,干扰严重、加上本身负荷存在

敏感性,电力市场的需求量增大等

3)管理方式转变。现代管理模式替代传统管理模式是大势所趋,管理的目的是减员增效,

实现无人值守的状态,最终向电子化管理模式靠拢。

三、电力系统自动化的发展阶段

1)手工阶段

电力工业萌芽阶段,电厂小,就近供电。在发电机、开关设备旁就近监视设备和手工调节操作。阶段特点为:单独运行、就近供电、手工操作。

2)简单自动装置阶段

用电设备增多、发电设备规模扩大,对电能质量和安全可靠性提出了要求,开始出现单一功

能的自动装置。包括:继电保护、断路器自动操作、发电机自动调压和调速等。阶段特点为:电能质量要求、单一的电力自动装置。

3)传统调度中心阶段

这一阶段出了互联电网,保证供电可靠性和经济性的必然选择。电网设立调度中心,统一调

度电厂和处理电网的异常和事故。电话是通信联络的主要方式。阶段特点:电网互联、同意

调度、电话通信。

4)现代调度的初级阶段

这一阶段出现远动装置,实现“四遥”(遥测、遥信、遥控、遥调),满足实时调度的要求。

阶段特点:远动四遥,实时调度。

5)综合自动化阶段

浅谈电力系统自动化

浅谈电力系统自动化 “安全、可靠、经济、优质”的电能供应是现代社会对电力事业的要求,自动化的电力系统成为现代社会的发展趋势,而且电力系统自动化技术也不断地从低级到高级,从局部到整体。本文试对电力系统自动化发展趋势及新技术的应用作简要阐述。 标签:电力系统自动化探讨 1 电力系统自动化总的发展趋势 1.1 当今电力系统的自动控制技术正趋向于: ①在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。②在设计分析上日益要求面对多机系统模型来处理问题。③在理论工具上越来越多地借助于现代控制理论。④在控制手段上日益增多了微机、电力电子器件和远程通信的应用。⑤在研究人员的构成上益需要多“兵种”的联合作战。 1.2 整个电力系统自动化的发展则趋向于: ①由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。②由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。③由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。④由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。⑤装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。⑥追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。⑦由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 2 具有变革性重要影响的三项新技术 2.1 电力系统的智能控制电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:

电力系统自动化的应用及发展趋势

电力系统自动化的应用及发展趋势 摘要:在电力事业不断发展的形势下,作为一项重要且不容忽视的现代科学技术,电力系统自动化能够在推进电力系统的发展方面发挥积极的作用。随着科学 水平的提升和社会的进步,电力系统自动化技术引起了社会各界的密切关注并且 有了更加广泛的应用,对于深入研究电力系统有着非同一般的意义。基于此,本 文就电力系统自动化的相关应用及其发展趋势做了一定深度的研究,希望为有关 的研究者提供一定意义上的理论参考。 关键词:电力系统自动化;应用;发展趋势 电力行业是一个国家国民经济的重大命脉,它对国家的商业、军事、生产、交通等各个 行业的发展都有着极大的影响,只有拥有一套“安全、稳定、优质”的电力系统,才能保证国 民经济快速健康稳步发展。电力系统自动化的发展和不断壮大,是国民经济和社会稳步发展 的必要条件,也是一个国家现代化程度的体现。 一、电力系统自动化概述 电力系统主要由发电、变电、输电、配电和用电等环节组成,其原理是通过发电设备把 风能、水能、光能等转化为电能,并经变电系统、输电系统和配电系统将电能传送给用电设备,以实现电能向热能、光能的转化,从而满足群众的生活、工作和生产需要。电力系统自 动化是利用计算机操作系统,按照预先设计好的程序远程控制电力系统的设备,使其在没有 人直接参与的情况下自动完成各项任务,并自动修复电力设备在运行过程中出现的各种故障。电力系统自动化的目的是更加安全、高效、快捷地利用电能,对发电、送电和配电过程进行 自动控制、自动调度,从而实现对电力系统的自动化管理。我国电力系统自动化主要包括变 电站自动化及智能保护、电力系统管理自动化、电力系统自动化技术的应用、人工智能在电 力系统中的应用、电气设备自动检测及故障诊断和修复等。电力系统自动化按照电能的生产 和分配可分为发电系统自动化、供电系统自动化、电网调度自动化、电力信息传送自动化、 电力事故处理自动化、电力管理自动化等。 二、电力系统自动化的相关应用 1、变电站自动化 在电力系统中,变电站是联系发电厂与电力用户的主要环节。和传统变电站工作相比, 变电站自动化对人工监视和人工操作在很大程度上实现了自动化,并且对于变电站的监控范 围也有了很大程度的扩大,大大地提高了变电站的的运行以及工作效率。在自动化应用中常 见的是采用计算机技术来代替电力信号电缆,不断的实现计算机操作的自动化和屏幕化,从 运行管理和记录的统计方面全面实现自动化。 2、发电厂自动化 应用自动化技术,不仅能够使发电厂的发电量受到严格的控制,还能维护相关电力设备 的高效、稳定以及安全运行,促进电力设备以及系统的自动化。除此以外,变电站在电力系 统中还能与相关的网络技术共同实现电能的配备以及输送,紧密的连接用户以及电厂,更好 的了解以及满足用户的多元化需求。因此要实现发电厂人机的一体化,进一步的改善生产模式,提高自动化水平以及电力生产的效率,就必须有机的融合网络技术以及电力自动化技术,如此才能大大的提高电厂的效率,赋予电能更高的质量,使发电厂更好的监控电力设备,维 护设备的正常运行。 3、电网调度自动化 电力系统自动化的重要部分之一就是电网调度的自动化,在我国电网调度自动化中,可 按级别分为国家、地区、省级、和县级的电网调度。电网调度自动化实现了电力生产过程中 的数据实时采集,能够科学地估计和分析电力系统状态,从而使电力负荷预测、自动发电控制、经济调度等都得到了充分的实现,并且逐渐适应了电力市场中的运营需求。 4、配电自动化 配电系统是连接用户和供电部门的纽带,配电系统的管理直接关系着电力系统的安全、 经济和高效运行。目前我国配电网覆盖区域大,在空间和布局上有不同的要求,其中配电设

电力系统自动化报告

电力系统及其自动化实验报告 学院: 专业:电气工程及其自动化 班级: 姓名: 学号: 指导老师: THLZD-2型电力系统综合自动化实验平台认识THLZD-2 型电力系统综合自动化实验平台是一套集多种功能于一体的综合

型实验装置,展示了现代电能发出和输送全过程的工作原理。这套实验装置由THLZD-2 电力系统综合自动化实验台(简称“实验台”)、THLZD-2 电力系统综合自动化控制柜(简称“控制柜”)、无穷大系统和发电机组和三相可调负载箱等组成。 一、THLZD-2 型电力系统综合自动 化实验台包括以下单元: 1.输电线路单元:采用双回路输电线路,每回输电线路分两段,并设置有中间开关站,可以构成四种不同的联络阻抗。输电线路的具体结构如下图所示: 图1-3单机-无穷大系统电力网络结构图 输电线路分“可控线路”和“不可控线路”,在线路 XL4 上可设置故障,该线路为“可控线路”,其他线路不能设置故障,为“不可控线路”。 2.微机线路保护单元:采用TSL-300/01微机线路保护装置,主要实现线路保护和自动重合闸等功能,配合输电线路完成稳态非全相运行和暂态稳定等相关实验项目,使用说明见附录六。 3.控制方式选择单元:包括发电机组的运行方式、同期方式和励磁方式的选择,可通过调节实验台面板上的凸轮开关旋钮来实现不同的控制方式。 4.监测仪表单元:采用模拟式仪表,测量信号为交流信号。包括3只交流电压表、3只交流电流表、2 只频率表、1 只三相有功功率表、1 只三相无功功率表、1 只功率因数表和 1 只同期表。 5.指示单元:包括光字牌指示和并网指示。 二、THLZD-2型电力系统综合自动 化控制柜包括以下单元: 1.测量仪表单元:采用指针式测量仪表,包括2只直流电压表、2只直流电流表和1只交流电压表。可测量如下电量参数:原动机电枢电压,原动机电枢电流,发电机励磁电压,发电机励磁电流和单相电源电压(该电源为隔离电源)。各测量仪表的量程和精度等级见表 1-2 所示。 注:各仪表请不要超量程使用,以免损坏设备。2.原动机控制单元:包括原动机电源,ZKS-15型调速器和THLWT-3型微机调速装置。具

(完整版)电力系统自动化的发展趋势和前景

目前电力系统市场发展中的自动控制技术趋向于控制策略的日益优化,呈现出适应性强、协调控制完善、智能优势明显、区域分布日益平衡的发展趋势。在设计层面电力自动化系统更注重对多机模型的问题处理,且广泛借助现代控制理论及工具实现综合高效的控制。在实践控制手段的运用中合理引入了大量的计算机、电子器件及远程通信应用技术。而在研究人员的组合构建中电力企业本着精益求精、综合适用的原则强调基于多功能人才的联合作战模式。在整体电力系统中,其工作方式由原有的开环监测合理向闭环控制不断发展,且实现了由高电压等级主体向低电压丰富扩展的安全、合理性过度,例如从能量管理系统向配电管理系统合理转变等。再者电力系统自动化实现了由单个元件到部分甚至全系统区域的广泛发展,例如实现了全过程的监测控制及综合数据采集发展、区域电力系统的稳定控制发展等。相应的其单一功能也实现了向多元化、一体化综合功能的发展,例如综合变电站实现了自动化发展与提升。系统中富含的装置性功能更是向着灵活、快速及数字化的方向发展;系统继电保护技术实现了全面更新及优势发展等。依据以上创新发展趋势电力系统自动化市场的发展目标更加趋于优化、协调与智能的发展,令潮流及励磁控制成为市场新一轮的发展研究目标。因此我们只有在实践发展中不仅提升系统的安全运行性、经济合理性、高效科学性,同时还应注重向自动化服务及管理的合理转变,引入诸如管理信息系统等高效自动化服务控制体系,才能最终令电力系统自动化市场的科学发展之路走的更远。 电力系统自动化市场科学发展前景 经过了数十年的研究发展,我国先进的计算机管理技术、通信及控制技术实现了跨越式提升,而新时期电力系统则毋庸置疑的成为集计算机、通信、控制与电力设备、电力电子为一体的综合自动化控制系统,其应用内涵不断扩充、发展外延继续扩展,令电力系统自动化市场中包含的信息处理量越来越庞大、综合因素越来越复杂,可观、可测的在数据范围越来越广阔,能够合理实施闭环控制、实现良好效果的控制对象则越来越丰富。由此不难看出电力系统自动化市场已摒弃了传统的单一式、滞后式、人工式管理模式,而全面实现了变电站及保护的自动化发展市场、调度自动化市场、配电自动化市场及综合的电力市场。在变电站及保护的自动化市场发展中,我国的500千伏变电站的控制与运行已经全面实现了计算机化综合管理,而220千瓦变电站则科学实现了无人值班看守的自动化控制。当然我国众多变配电站的自动化控制程度普及还相对偏低,同时新一轮变电站自动化控制系统标准的广泛推行及应用尚处在初级阶段,因此在未来的发展中我们还应继续强化自动化控制理念的科学引入,树立中小变电站的自动化控制观念、提升大型变电站的自动化控制水平,从而继续巩固电力自动化系统在整体市场中占据的排头兵位置,令其持之以恒的实现全面自动化发展。 电力调度及配电自动化市场的前景发展 随着我国电力系统自动化市场的不断发展电力调度自动化的市场规模将继续上升,省网及地方调度的自动化普及率将提升至近一半的比例,且市场需求将不断扩充。电力调度系统

电力系统自动化习题及答案

第一章发电机的自动并列习题 1、同步发电机并网(列)方式有几种?在操作程序上有何区别?并网效果 上有何特点? 分类:准同期,自同期 程序:准:在待并发电机加励磁,调节其参数使之参数符合并网条件,并入电网。 自:不在待并电机加励磁,当转速接近同步转速,并列断路器合闸,之后加励磁,由系统拉入同步。 特点:准;冲击电流小,合闸后机组能迅速同步运行,对系统影响最小 自:速度快,控制操作简单,但冲击电流大,从系统吸收无功,导致系统电压短时下降。 2、同步发电机准同期并列的理想条件是什么?实际条件的允许差各是多 少? 理想条件:实际条件(待并发电机与系统) 幅值相等:UG=UX 电压差Us不能超过额定电压的5%-10% 频率相等:ωG=ωX 频率差不超过额定的0.2%-0.5% 相角相等:δe=0(δG=δX)相位差接近,误差不大于5° 3、幅值和频率分别不满足准同期理想并列条件时对系统和发电机分别有何 影响? 幅值差:合闸时产生冲击电流,为无功性质,对发电机定子绕组产生作用力。 频率差:因为频率不等产生电压差,这个电压差是变化的,变化值在0-2Um之间。 这种瞬时值的幅值有规律地时大时小变化的电压成为拍振电压。它产生的 拍振电流也时大时小变化,有功分量和转子电流作用产生的力矩也时大时 小变化,使发电机振动。频率差大时,无法拉入同步。 4、何为正弦脉动电压?如何获得?包含合闸需要的哪些信息?如何从波形上获得?

5、何为线形整步电压?如何得到线形整步电压?线性整步电压的特点是什么? 6、线性整步电压形成电路由几部分组成?各部分的作用是什么?根据电网电压和发电机端电压波形绘制出各部分对应的波形图。 书上第13页,图1-12 组成:由整形电路,相敏电路,滤波电路组成 作用:整形电路:是将Ug和Ux的正弦波转变成与其频率和相位相同的一系列方波,其幅值与Ug和Ux无关。 相敏电路:是在两个输出信号电平相同时输出高电平,两者不同时输出低电平。 滤波电路:有低通滤波器和射极跟随器组成,为获得线性整步电压Us和&e的线性相关,采用滤波器使波形平滑 7、简述合闸条件的计算过程。 Step 1:计算Usmin,如果Usmin≤USy转Step 2;否则调整G来改变UG Step 2:ωsy的计算 Step 3:如果ωs≤ωsy继续Step 4;否则调整G来改变ωG,ωs=ωG-ωX Step 4:δe的计算:δe=tYJ?ωs Step5:δe≤δey合闸;否则调整G来改变ωG,从而δe 8、简述同步发电机并列后由不同步到同步的过程(要求画图配合说明)。 书上第7页,图1-4 说明:1、如果发电机电压Ug超前电网电压Ux,发电机发出功率,则发电机将被制动减速,当Ug落后Ux,发电机吸收无功,则发电机加速。 2、当发电机刚并入时处于a电,为超前情况,Ws下降---到达b点,Wg=Wx,&e最 大,W下降,&e下降——处于原点,Ug=Ux----&e=0,Wg<Wx——过原点后, &e<0,——Wg上升 总之。A-b-0-c,c-0-a,由于阻尼等因素影响,摆动幅度逐渐减小到同步角9、准同期并列为什么要在δ=0之前提前发合闸脉冲?提前时间取决于什么?恒定越前时间并列装置的恒定越前时间如何设定? 10、恒定越前时间并列装置如何检测ωs<ωSY?

浅谈电力系统自动化技术的现状及发展趋势 陈祖耀

浅谈电力系统自动化技术的现状及发展趋势陈祖耀 发表时间:2018-07-31T10:35:09.733Z 来源:《基层建设》2018年第18期作者:陈祖耀[导读] 摘要:随着科学技术和经济的快速发展,电力系统自动化技术的作用越来越重要。 国网福鼎市供电公司福建宁德 355200 摘要:随着科学技术和经济的快速发展,电力系统自动化技术的作用越来越重要。电力系统自动化技术作为一项新兴技术实现了电力技术与电子信息技术的融合,对国民经济的发展起到了巨大的推动作用,对电力传输系统的发展产生了深远的影响。目前,电力系统自动化技术已渗透到电力系统的各个方面,取得了显着成效。本文介绍了电力系统自动化技术的现状,并展望了其发展趋势。 关键词:电力系统自动化;技术现状;发展趋势引言 中国目前电力严重短缺。如何采用先进的管理方法和模式实现电力系统的全行业遥控,遥测,遥调,遥信和遥控,已成为保证电力系统高效,安全,可持续运行的重要课题。就目前的发展趋势而言,电网的不断发展,电网运行管理的需求在不断变化。为确保电力生产安全有序发展,有必要进一步将电力系统的自动化控制技术应用于中国电力系统,以促进中国电力系统的健康发展。 1电力系统自动化内涵 电力系统一般由发电,输电,变电站,供电等几个环节联结起来,各控制系统有自己的联系。电力系统自动化不仅对电力供应的稳定性,安全性和可持续性起着决定性的作用,而且可以减少电力系统工人的数量,减少劳动强度,降低事故率,延长设备使用寿命,提高设备性能,电网管理和维护快捷方便。最重要的是电力系统自动化能够有效防止电力系统事故,如大面积停电等严重连锁事故,确保电力支持经济运行稳定可靠,意义长远而深远。电力系统自动化的主要特点是:电力系统是一个动态系统,具有模型不确定性和强非线性;电力系统需要高度的适应性;电力系统自动化难以控制的不确定因素多因素。电力系统自动化的困难包括:电力系统自动化中的多目标优化和多工作模式下故障条件下的稳健性;单个链路上更多的电力系统链路和控制需要该链路和其他链路的协调和配合。电力系统自动化技术应用于电力调度系统,配电网系统和变电站系统。电力调度系统自动化技术的主要应用是电荷预测,发电规划,网络拓扑分析,电力系统状态评估,暂态静态安全分析和自控发电等功能。配电系统中的有线通信促进了内部信息的交换,并提高了实时控制的性能,稳定性,效率和可靠性。变电站系统自动化技术可以收集来自电源线的实时参数,如电流,电压和电抗。通过对主控终端的分析,可以对远端供电设备进行调整,以满足客户的用电需求,保证供电质量。同时,我们可以分析电力需求的趋势,预测趋势并更好地调配电力。 2电力自动化技术的探讨分析 2.1无线技术 无线技术可以实现远程控制和管理,具有高度的信息共享,还可以减少线路的铺设。目前有很多无线技术,但由于无线信号在空间传输过程中所携带的带宽,无线信号的物理障碍,抗干扰,可扩展性和投资成本的易感性随着无线网络技术的不同而不同,因此适合的电力只有几种自动化。用户根据无线技术的环境选择适当的无线技术。目前的无线技术主要是GPRS/GSM,ZIEBB,WIMAX,WIFI和AdHoc 网络,但现在发展最快的网络是WIMAX和WIFI,因为它们在带宽和安全性方面更好,灵活性高,成本更低。 2.2信息化技术 电力信息化是电力自动化的核心,包括发电,调度自动化和管理信息自动化。配备电脑监控系统的发电厂和变电站,实现少数值班人员甚至无人值班,可以改善电厂自动化生产过程中的自动化监控系统。 2.3信息安全技术 现代人的生活离不开电力。电力是社会和经济发展的生命线。电力系统运行的安全和稳定对社会经济发展至关重要。电力系统的安全性是一个世界性的问题,目前尚未解决。尽管电力系统不太可能发生故障,但如果发生故障,将会造成巨大的经济损失和社会影响。在我国,电力系统发生重大事故。现在我们局已经试点建设智能电网,智能电网可以最大限度地减少电力系统故障的发生,减少停电造成的损失。中国经济高速发展,电力系统也迎来了前所未有的速度和发展规模,三峡电站,西电东送等一系列重大电网项目已建成并投入运行,电网安全,设备安全,电力工作者被提出更高的更新要求。 2.4传动技术 动力传动技术主要是实现变频调速,主变频器实现变频调速。变频器是节能减排的首选,已被广泛应用于电力设备和技术上也相当成熟。由于其在节能降耗方面的作用,变频器已成为电力行业改革技术的首要目标。ABB目前是该行业最大的电力自动化领导者,建立了世界上最大的变压器制造基地和绝缘子制造中心。该公司的变频器,PLC,仪器仪表等行业得到了很好的应用。 3电力系统自动化技术发展的现状 3.1自动化技术在电网调度中的应用 现代电网调度自动控制系统以计算机技术为核心,计算机技术对电力系统的实时运行信息进行监测,采集和分析,完成系统的高效运行。电网调度自动化操作通过自动控制技术的应用,实现对电网运行状态的实时监控,保证电网运行的质量和可靠性,实现电能的充足供应,使人们需求得到满足。在自动化技术应用的同时,能源损失最小化,保证了电源的经济和环保,实现了节能。 3.2自动化技术在配电网络中的应用 计算机技术在配电网自动化控制中发挥着重要作用。随着电网技术的不断发展,现代化程度和配电网络化程度越来越高,实现了配电网主站,变电站和轻轨终端三层结构,配电网发展,通信传输速度有保证,自动化系统的性能得到提高。加强系统继电保护控制,减少大面积停电现象,保证供电,提高电力系统可靠性和安全性,优化电网事故快速消除机制,科学事故应急响应机制建立,停电时间明显缩短;电力公司要加强对电力系统的控制,使电力系统的运行状况更加方便了解;正常值班模式被打破,无人值班的电厂出现,工作人员的工作效率大大提高。 3.3自动化技术在变电系统中的应用 通过计算机技术,通信技术和网络技术的应用,变电站系统实现了对二次系统的监控。通过功能设计的优化和科学综合系统的协调,可以方便地收集设备的运行信息。 4电力系统自动化技术发展的展望

电力系统自动化复习 总结

1、同步发电机的并列方法可分为准同期并列和自同期并列两种。 2、脉动电压含有同期合闸所需的所有信息:电压幅值差、频率差和合闸相角差。 对同步发电机的励磁进行控制,是对发电机的运行实行控制的重要内容之一。 3、同步发电机励磁系统一般由励磁功率单元和励磁调节器两个部分组成。 4、整个励磁自动控制系统是由励磁调节器、励磁功率单元、发电机构成的一个反馈控制系统。 5,发电机发出的有功功率只受调速器控制,与励磁电流的大小无关。6,与无限大容量母线并联运行的机组,调节它的励磁电流可以改变发电机无功功率的数值。 7,同步发电机的励磁自动控制系统还负担着并联运行机组间无功功率合理分配的任务。 8,电力系统的稳定分为静态稳定和暂态稳定两类。 9,发电机励磁电流的变化只是改变了机组的无功功率和功率角δ值的大小。 交流主励磁机的频率机,其频率都大于50Hz,一般主励磁机为100Hz,有实验用300Hz以上。 10,他励交流励磁机系统的主副励磁机的频率都大于50Hz ,只励磁机的频率为100Hz ,副励磁机的频率一般为500Hz ,以组成快速的励磁系统。其励磁绕组由本机电压经晶闸管整流后供电。

11,静止励磁系统,由机端励磁变压器供电给整流器电源,经三相全控整流桥直接控制发电机的励磁。 12,交流励磁系统中,如果采用了晶闸管整流桥向转子供应励磁电流时,就可以考虑用晶闸管的有源逆变特性来进行转子回路的快速灭磁。 13,交流励磁系统中,要保证逆变过程不致“颠覆”,逆变角β一般取为 40·,即α取 140·,并有使β不小于 30·的限制元件。 14,励磁调节器基本的控制由测量比较,综合放大,移相触发单元组成。15,综合放大单元是沟通测量比较单元与移相触发单元的一个中间单元。16,输入控制信号按性质分为:被调量控制量(基本控制量),反馈控制量(为改善控制系统动态性能的辅助控制),限制控制量(按发电机运行工况要求的特殊限制量)。 17,发电机的调节特性是发电机转子电流I EF与无功负荷电流I Q的关系。18,采用电力系统稳定器(PSS)的作用是产生正阻尼以抵消励磁控制系统引起的负阻尼转矩,有效的抑制低频率震荡。 K L*=1-3。 *为负荷的频率调节效应系数,一般 20.电力系统主要是由发电机组,输电网络及负荷组成 21.电力系统中所有并列运行的发电机组都装有调速器。电力系统中所有发电厂分为调频厂和非调频厂。调频承担电力系统频率的二次调节任务,而非调频厂只参加频率的一次调节任务。 22.启动频率:一般的一轮动作频率整定在49HZ。末轮启动频率:自动减负荷装置最后一轮的动作频率最好不低于。 23. 电力系统中的有功功率电源是集中在各类发电厂中的发电机。无功功率

电力系统自动化论文

电力系统自动化论文 —————电子产品提高抗干扰能力的措施

时间飞逝,这一学期的电力系统自动化课程结束了,我们每一个同学都有一些意犹未尽的感觉,因为老师新颖的教学方法充分的调动了电动了我们的积极性,让我们融入到了学习的良好氛围中。针对这一学期的学习,结合我自身的了解和在图书馆查阅的书籍资料,我主要谈一下有关电磁干扰的一些问题。 一、要特别注意需要抗电磁干扰的系统: (1) 微控制器时钟频率特别高,总线周期特别快的系统。 (2) 系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 (3) 含微弱模拟信号电路以及高精度A/D变换电路的系统。 二、为增加系统的抗电磁干扰能力采取如下措施: (1) 选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。 (2) 减小信号传输中的畸变 微控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。 信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微控制器构成的系统中常用逻辑电话元件的Tr(标准延迟时间)为3到18ns之间。 在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在4~20ns之间。也就是说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。而且过孔数目也应尽量少,最好不多于2个。 当信号的上升时间快于信号延迟时间,就要按照快电子学处理。此时要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td>Trd的情况,印刷线路板越大系统的速度就越不能太快。 用以下结论归纳印刷线路板设计的一个规则: 信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。 (3) 减小信号线间的交叉干扰: A点一个上升时间为Tr的阶跃信号通过引线AB传向B端。信号在AB线上的延迟时间是Td。在D点,由于A点信号的向前传输,到达B点后的信号反射和AB线的延迟,Td 时间以后会感应出一个宽度为Tr的页脉冲信号。在C点,由于AB上信号的传输与反射,会感应出一个宽度为信号在AB线上的延迟时间的两倍,即2Td的正脉冲信号。这就是信号间的交叉干扰。干扰信号的强度与C点信号的di/at有关,与线间距离有关。当两信号线不是很长时,AB上看到的实际是两个脉冲的迭加。 CMOS工艺制造的微控制由输入阻抗高,噪声高,噪声容限也很高,数字电路是迭加100~200mv噪声并不影响其工作。若图中AB线是一模拟信号,这种干扰就变为不能容忍。如印刷线路板为四层板,其中有一层是大面积的地,或双面板,信号线的反面是大面积的地

电力系统自动化未来发展方向

一、电力系统自动化技术 1.电网调度自动化。电网调度自动化主要组成部分由电网调度控制中心的汁算机网络系统、工作站、服务器、大屏蔽显示器、打印设备、通过电力系统专用广域网连结的下级电网调度控制中心、调度范围内的发电厂、变电站终端设备等构成。电网调度自动化的主要功能是电力生产过程实时数据采集与监控电网运行安全分析、电力系统状态估计、电力负荷予测、自动发电控制、自动经济调度并适应电力市场运营的需求等。 2.变电站自动化。电力系统中变电站与输配电线路是联系发电厂与电力用户的主要环节。变电站自动化的目的是取代人工监视和电话人工操作,提高工作效率,扩大对变电站的监控功能,提高变电站的安全运行水平。变电站自动化的内容就是对站内运行的电气设备进行全方位的监视和有效控制,其特点是全微机化的装置替代各种常规电磁式设备;二次设备数字化、网络化、集成化,尽量采用计算机电缆或光纤代替电力信号电缆;操作监视实现计算机屏幕化;运行管理、记录统计实现自动化。变电站自动化除了满足变电站运行操作任务外还作为电网调度自动化不可分割的重要组成部分,是电力生产现代化的一个重要环节。 3.发电厂分散测控系统(DCS)。 过程控制单元(PCU)由可冗余配置的主控模件(MCU)和智能l/O模件组成。MCU模件通过冗余的l/O总线与智能l/O模件通讯。PCU直接面向生产过程,接受现场变送器、热电偶、热电阻、电气量、开关量、脉冲量等信号,经运算处理后进行运行参数、设备状态的实时显示和打印以及输出信号直接驱动执行机构,完成生产过程的监测、控制和联锁保护等功能。 运行员工作站(OS)和工程师工作站(ES)提供了人机接口。运行员工作站接收PCU发来的信息和向PCU发出指令,为运行操作人员提供监视和控制机组运行的手段。工程师工作站为维护工程师提供系统组态设置和修改、系统诊断和维护等手段。 二、电力系统自动化总的发展趋势 (一)当今电力系统的自动控制技术正趋向于 1、在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。 2、在设计分析上日益要求面对多机系统模型来处理问题。 3、在理论工具上越来越多地借助于现代控制理论。 4、在控制手段上日益增多了微机、电力电子器件和远程通信的应用。 (二)整个电力系统自动化的发展则趋向于 1、由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。 2、由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。 3、由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。 4、装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。 5、追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。 2由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制);由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统);由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展;由单一功能向多功能、一体化发展,例如变电站综合自动化的发展;装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变;追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制;由以提高运行的安全、经济、效率为目标向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 三、具有变革性重要影响的三项新技术 (一)电力系统的智能控制 电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:1、电力系统是一个具有强非线性的、变参

电力系统自动化完整版

1. 同步发电机组并列时遵循的原则:(1)并列断路器合闸时,冲击电流应尽可能的小,其瞬时最大值一般不宜超过 1~2 倍的额定电流( 2)发电机组并入电网后,应能迅速进入同步运行状态,其暂态过程要短,以减少对电力系统的扰动。 9. 同步发电机的并列方法:准同期并列,自同期并列。设待并发电机组 G 已经加上了 励磁电流,其端电压为 UG,调节待并发电机组 UG的状态参数使之符合并列条件并将发电机并入系统的操作,成为准同期并列。 10. 发电机并列的理想条件:并列断路器两侧电源电压的三个状态量全部相等。 11. 自同期并列:未加励磁电流的发电机组 12. 脉动电压含有同期合闸所需要的所有信息,即电压幅值差、频率差和合闸相角差。但 是,在实际装置中却不能利用它检测并列条件,原因是它的幅值与发电机电压及系统电压有关。 13. 励磁自动控制系统是由励磁调节器,励磁功率单元和发电机构成的一个反馈控制系统。 14. 同步发电机励磁控制系统的任务:(1)电压控制(2)控制无功功率的分配(3)提 高同步发电机并联运行的稳定性。 15. 为了便于研究,电力系统的稳定分为静态稳定和暂态稳定两类。静态稳定是指电力 系统在正常运行状态下,经受微小扰动后恢复到原来运行状态的能力。暂态稳定是指电力系统在某一正常运行方式下突然遭受大扰动后,能否过渡到一个新的稳定运行状态或者恢复到原来运行状态的能力。 16. 对励磁系统的基本要求:(一)对励磁调节器的要求:O 1具有较小的时间常数,能 迅速响应输入信息的变化;② 系统正常运行时,励磁调节器应能反应 发电机电压高低,以维持发电机电压在给定水平;O 3励磁调节器应能合理分 配机组的无功功率;④ 对远距离输电的发电机组,为了能在人工稳定区域运 行,要求励磁调节器没有失灵区;◎励磁调节器应能迅速反应系统故障,具备强行励磁控制功能,以提高暂态稳定和改善系统运行条件。(二)对励磁功率单元要求: ①要求励磁功率单元有足够的可靠性并具有一定的调节容量;② 具有足够的励磁顶值 电压和电压上升速度。 17. 同步发电机励磁系统分类:直流励磁机励磁系统:①自励②他励;交流励磁机励磁 系统①他励交流励磁机励磁系统②无刷励磁系统;静止励磁系统 18. 励磁调节器的主要功能有二:①保持发电机的端电压不变;②保持并联机组间无功电 流的合理分配。 19. 励磁调节器的型式很多,但自动控制系统核心部分相似。基本控制由测量比较、综 合放大、移相触发单元组成。测量比较单元的作用是测量发电机电压并变换为直流电压,与给定的基准电压相比较,得出电压的偏差信号。综合放大单元是沟通测量比较单元及调差单元与移相触发单元的一个中间单元,来自测量比较单元及调差单元的电压信号在综合放大单元与励磁限制、稳定控制及反馈补偿等其他辅助调节信号加以综合放大,用来得到满足移相触发单元相位控制所需的控制电压。移相触发单元是励磁调节器的输出单元,根 据综合放大单元送来的综合控制信号U SM的变化,产生触发脉冲,用以触发

电力系统自动化

实验一励磁控制基本特性实验 一、实验目的 1)加深理解同步发电机励磁调节原理和励磁控制系统的基本任务。 2)了解微机励磁调节装置的基本控制方式。 3)掌握励磁调节装置的基本使用方法。 二、原理与说明 同步发电机励磁系统由励磁功率单元和励磁调节装置两部分组成,它们和同步发电机结合在一起构成一个闭环反馈控制系统,称为发电机励磁控制系统。励磁控制系统的三大基本任务是:稳定电压、合理分配无功功率和提高电力系统稳定性。 实验用的励磁控制系统示意图1-1如下所示,交流励磁电源取自380V市电,构成他励励磁系统,励磁系统的可控整流模块由TQLC-III微机自动励磁装置控制。 图1-1励磁控制系统示意图 TQLC-III型微机自动励磁装置的控制方式有四种:恒U g(恒机端电压方式,保持机端电压稳定)、恒I L(恒励磁电流方式,保持励磁电流稳定)、恒Q(恒无功方式,保持发电机输出的无功功率稳定)和恒α(恒控制角方式,保持控制角稳定),可以任选一种方式运行。恒Q和恒α方式一般在抢发无功的时候才投入。大多数情况下应选择恒电压方式运行,这样能满足发电机并网后调差要求,恒励流方式下并网的发电机不具备调

差特性。 同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。当操作励磁调节装置的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节装置的增减磁按钮,可以增加或减少发电机的无功输出。 无论是在“手动”还是“自动”方式下,都可以操作增减磁按钮,所不同的是调节的参数不同。在“自动”方式下,调节是的机端电压,也就是上下平移特性曲线,在“手动”方式下,改变的是励磁电流的大小,此时即使在并网的情况下,也不具备调差特性。 三、实验项目与方法 3.1不同α角对应的励磁电压测试 实验准备 1)将发电机组电动机三相电源插头与机组控制屏侧面“电动机出线”插座连接,发电机 三相输出电压插头与“发电机进线”插座连接,发电机励磁电源插头与“励磁出线”插座连接。 2)检查机组控制屏上各指示仪表的指针是否指在0位置,如不在则应调到0位置。 3)合上“调速励磁电源”开关(380V)。注意,一定要先合“220V电源”开关,再合“调 速励磁电源”开关,否则,励磁或调速输出的功率模块可能处于失控状态! 4)检查调速、同期、励磁三个装置液晶显示屏显示和面板指示灯状态,正常情况下,

电力系统自动化技术的应用现状及发展趋势

电力系统自动化技术的应用现状及发展趋势 摘要:计算机技术的应用和发展使得电力系统如今也趋于智能化,现代化。自 动化电路系统确保了电子系统的稳定运行,同时还能够有效提高企业供电能力和 经济效益。本文将对自动化技术在电力系统中的实际应用现状加以分析,通过合 理的预测分析未来行业发展前景,以及提及适当措施保障电力自动化供应能力。 关键词:电力系统;自动化;发展 电力系统与人们的日常生活、有着密切联系。随着经济社会发展和人们生活质量提高, 对电能的需求量也在不断增加。为确保供电顺利进行,提高电力系统的质量是必要的。一般 而言,电力系统主要包括发电、输电、变电、配电和用电五个部分组成,随着电力技术创新 发展,电力系统综合性能、电压等级、供电等级也在不断提升。目前,电力系统逐渐连成网络,结构日趋复杂、规模不断扩大、供电能力也在不断提升。与此同时,为更好满足人们的 用电需要,确保电力系统的安全、稳定以及可靠运行,提高供电质量和效益,发展并利用电 力系统自动化技术显得越来越重要。 1电力系统自动化技术的工作流程 随着自动化技术的应用,电力系统控制中心得到升级和改造,不再采用传统的人工控制 方式,而是在控制中心装备计算机,建立现代化的控制中心,从而有利于全面监测和详细掌 握电力系统运行的基本情况。通常以计算机控制为中心,构建向四周辐射的控制网络体系, 并在整个电力系统之中,建立完整的、立体化的覆盖网络,实现全面而畅通的信息传递和指 令传输。有利于管理人员及时掌握电力系统的基本情况,实现供电的安全、稳定与可靠,进 而满足人们的用电需要。中心控制计算机的主要作用是,整合并使用各种软件,负责对电力 系统进行整体调度和控制,实现电力系统运行、监测等各项操作的自动化。同时,在电力系 统自动化进程中,通常采用分层操作和控制方式,全面掌握系统每层运行的基本情况,对存 在的不足及时改进和调整。从而有利于保障电力系统稳定及可靠运行,提高供电的安全性。 2电力系统自动化技术的控制要求 在自动化技术逐渐推广和应用的前提下,为促进自动化技术得到有效利用,使其在电力 系统之中充分发挥作用,加强自动化控制,提高操作人员素质,把握每个操作控制要点是必 要的。一般而言,自动化控制的要求表现在以下方面:准确并迅速收集电力系统的运行参数,做好电力系统元器件的检测工作,对存在的缺陷及时采取措施修复。加强电力系统运行监控,及时掌握系统运行状况,了解各种元器件的技术、安全和经济节能方面的要求。并注重对系 统操作人员和调控人员的管理培训,让他们把握每个技术要点,严格按要求进行设备操作和 元器件调控。重视电力系统不同层次、局部系统以及各种元器件的综合协调,优化整合各种 资源,为整个电力系统寻找最优质的供电方式,确保电力系统安全有效运行,并且还有利于 节约电能,降低供电成本。总之,通过自动化技术的应用,实现电力系统的自动化调节和控制,不仅可以降低工作人员的劳动强度,节约人力资源和管理成本,还能促进电力设施更为 有效的发挥作用,延长电力设备使用寿命。并改进电力设备的运行性能,实现对安全事故的 预防,减少大面积停电事故发生的可能,确保供电的稳定性与可靠性,为人们日常生活创造 良好条件。 3电力系统自动化技术的应用现状 3.1电网调度自动化技术

电力系统自动化生产实习报告

河南机电高等专科学校生产实习报告 系部:电气工程系 专业:电力系统自动化 班级: 学生姓名: 学号: 实习时间: 2012年11月2日

目录 第1章生产实习目的及要求 (1) 1.1 实习主要内容 (1) 1.2实习目的 (1) 1.3实习时间 (1) 1.4实习地点 (2) 第2章豫新发电有限公司实习 (3) 2.1 豫新发电有限公司简介 (3) 2.2 安规学习 (3) 2.3火电厂总体生产流程实习 (5) 2.4汽轮机部分实习 (5) 2.5锅炉部分实习 (5) 2.6电气部分实习 (6) 2.7豫新发电有限公司实习心得 (6) 第3章许继集团有限公司实习 (7) 3.1 许继集团有限公司简介 (7) 3.2 实习内容及过程 (7) 3.3 实习总结及体会 (7) 第4章新乡供电公司塔铺500KV变电站实习 (9) 4.1 新乡供电公司塔铺500KV变电站简介 (9) 4.2 塔铺500KV变电站室外部分实习 (9) 4.3 塔铺500KV变电站室内部分实习 (10) 4.4 塔铺500KV变电站实习心得 (11) 结束语 (12)

第1章生产实习的目的及要求 1.1生产实习主要内容: 1.豫新发电有限公司实习生产实习内容: (1)学习火电厂安全规定; (2)火电厂的整体生产流程 (3)火电厂的汽轮机部分 (4)火电厂的锅炉部分 (5)火电厂的电气部分 (6)其他附属系统及设备。 2.许继集团有限公司生产实习内容: (1)许继展厅参观 (2)微机保护生产及装配车间 (3)低压配电安装车间 3.塔铺500KV变电站生产实习内容 (1)变电站室外部分(变电站一次设备) (2)变电站室内部分实习(变电站二次设备) 1.2 生产实习目的: 1.熟悉火电厂的生产流程,认识火电厂常见设备,了解相应设备的工作原理以及的常见操作; 2.认识变电站的常见一、二次设备,熟悉变电站常见的日常操作、巡视项目,并了解变电站异常及事故处理步骤及方法。 3.火电厂的汽轮机部分、锅炉部分、电气部分以及相关附属设备的工作原理,认识相应的设备,并熟悉相关生产流程。 4.熟悉电力系统二次设备的工作原理以及生产流程,并了解常见设备的安装、调试方法。 1.3 生产实习时间: 2012年10月22日至2012年11月2日

电力系统自动化完整版

1.同步发电机组并列时遵循的原则:(1)并列断路器合闸时,冲击电流应尽可 能的小,其瞬时最大值一般不宜超过1~2倍的额定电流(2)发电机组并入电网后,应能迅速进入同步运行状态,其暂态过程要短,以减少对电力系统的扰动。 2.同步发电机的并列方法:准同期并列,自同期并列。设待并发电机组G已经 加上了励磁电流,其端电压为UG,调节待并发电机组UG的状态参数使之符合并列条件并将发电机并入系统的操作,成为准同期并列。 3.发电机并列的理想条件:并列断路器两侧电源电压的三个状态量全部相等。 4.自同期并列:未加励磁电流的发电机组 5.脉动电压含有同期合闸所需要的所有信息,即电压幅值差、频率差和合闸相 角差。但是,在实际装置中却不能利用它检测并列条件,原因是它的幅值与发电机电压及系统电压有关。 6.励磁自动控制系统是由励磁调节器,励磁功率单元和发电机构成的一个反馈 控制系统。 7.同步发电机励磁控制系统的任务:(1)电压控制(2)控制无功功率的分配(3) 提高同步发电机并联运行的稳定性。 8.为了便于研究,电力系统的稳定分为静态稳定和暂态稳定两类。静态稳定是 指电力系统在正常运行状态下,经受微小扰动后恢复到原来运行状态的能力。 暂态稳定是指电力系统在某一正常运行方式下突然遭受大扰动后,能否过渡到一个新的稳定运行状态或者恢复到原来运行状态的能力。 9.对励磁系统的基本要求:(一)对励磁调节器的要求:○1具有较小的时间常 数,能迅速响应输入信息的变化;○2系统正常运行时,励磁调节器应能反应发电机电压高低,以维持发电机电压在给定水平;○3励磁调节器应能合理分配机组的无功功率;○4对远距离输电的发电机组,为了能在人工稳定区域运行,要求励磁调节器没有失灵区;○5励磁调节器应能迅速反应系统故障,具备强行励磁控制功能,以提高暂态稳定和改善系统运行条件。(二)对励磁功率单元要求:○1要求励磁功率单元有足够的可靠性并具有一定的调节容量;○2 具有足够的励磁顶值电压和电压上升速度。 10.同步发电机励磁系统分类:直流励磁机励磁系统:①自励②他励;交流励磁 机励磁系统①他励交流励磁机励磁系统②无刷励磁系统;静止励磁系统11.励磁调节器的主要功能有二:①保持发电机的端电压不变;②保持并联机组 间无功电流的合理分配。 12.励磁调节器的型式很多,但自动控制系统核心部分相似。基本控制由测量比 较、综合放大、移相触发单元组成。测量比较单元的作用是测量发电机电压并变换为直流电压,与给定的基准电压相比较,得出电压的偏差信号。综合放大单元是沟通测量比较单元及调差单元与移相触发单元的一个中间单元,来自测量比较单元及调差单元的电压信号在综合放大单元与励磁限制、稳定控制及反馈补偿等其他辅助调节信号加以综合放大,用来得到满足移相触发

相关文档
相关文档 最新文档