文档库 最新最全的文档下载
当前位置:文档库 › C语言堆和栈的区别

C语言堆和栈的区别

C语言堆和栈的区别
C语言堆和栈的区别

堆和栈的区别

一、预备知识—程序的内存分配

一个由c/C++编译的程序占用的内存分为以下几个部分

1、栈区(stack)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。

2、堆区(heap)—一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。

3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放

4、文字常量区—常量字符串就是放在这里的。程序结束后由系统释放

5、程序代码区—存放函数体的二进制代码。

二、例子程序

这是一个前辈写的,非常详细

//main.cpp

int a = 0; 全局初始化区

char *p1; 全局未初始化区

main()

{

int b; 栈

char s[] = "abc"; 栈

char *p2; 栈

char *p3 = "123456"; 123456\0在常量区,p3在栈上。

static int c =0;全局(静态)初始化区

p1 = (char *)malloc(10);

p2 = (char *)malloc(20);

分配得来得10和20字节的区域就在堆区。

strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。

}

二、堆和栈的理论知识

2.1申请方式

stack:

由系统自动分配。例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间heap:

需要程序员自己申请,并指明大小,在c中malloc函数

如p1 = (char *)malloc(10);

在C++中用new运算符

如p2 = (char *)malloc(10);

但是注意p1、p2本身是在栈中的。

2.2

申请后系统的响应

栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,

会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

2.3申请大小的限制

栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M (也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。

堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

2.4申请效率的比较:

栈由系统自动分配,速度较快。但程序员是无法控制的。

堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.

另外,在WINDOWS下,最好的方式是用V irtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。

2.5堆和栈中的存储内容

栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。

当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。

堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

2.6存取效率的比较

char s1[] = "aaaaaaaaaaaaaaa";

char *s2 = "bbbbbbbbbbbbbbbbb";

aaaaaaaaaaa是在运行时刻赋值的;

而bbbbbbbbbbb是在编译时就确定的;

但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。

比如:

#include

void main()

{

char a = 1;

char c[] = "1234567890";

char *p ="1234567890";

a = c[1];

a = p[1];

return;

}

对应的汇编代码

10: a = c[1];

00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]

0040106A 88 4D FC mov byte ptr [ebp-4],cl

11: a = p[1];

0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]

00401070 8A 42 01 mov al,byte ptr [edx+1]

00401073 88 45 FC mov byte ptr [ebp-4],al

第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。

2.7小结:

堆和栈的区别可以用如下的比喻来看出:

使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

windows进程中的内存结构

在阅读本文之前,如果你连堆栈是什么多不知道的话,请先阅读文章后面的基础知识。

接触过编程的人都知道,高级语言都能通过变量名来访问内存中的数据。那么这些变量在内存中是如何存放的呢?程序又是如何使用这些变量的呢?下面就会对此进行深入的讨论。下文中的C语言代码如没有特别声明,默认都使用VC编译的release版。

首先,来了解一下 C 语言的变量是如何在内存分部的。C 语言有全局变量(Global)、本地变量(Local),静态变量(Static)、寄存器变量(Regeister)。每种变量都有不同的分配方式。先来看下面这段代码:

#include

int g1=0, g2=0, g3=0;

int main()

{

static int s1=0, s2=0, s3=0;

int v1=0, v2=0, v3=0;

//打印出各个变量的内存地址

printf("0x%08x\n",&v1); //打印各本地变量的内存地址

printf("0x%08x\n",&v2);

printf("0x%08x\n\n",&v3);

printf("0x%08x\n",&g1); //打印各全局变量的内存地址

printf("0x%08x\n",&g2);

printf("0x%08x\n\n",&g3);

printf("0x%08x\n",&s1); //打印各静态变量的内存地址

printf("0x%08x\n",&s2);

printf("0x%08x\n\n",&s3);

return 0;

}

编译后的执行结果是:

0x0012ff78

0x0012ff7c

0x0012ff80

0x004068d0

0x004068d4

0x004068d8

0x004068dc

0x004068e0

0x004068e4

输出的结果就是变量的内存地址。其中v1,v2,v3是本地变量,g1,g2,g3是全局变量,s1,s2,s3是静态变量。你可以看到这些变量在内存是连续分布的,但是本地变量和全局变量分配的内存地址差了十万八千里,而全局变量和静态变量分配的内存是连续的。这是因为本地变量和全局/静态变量是分配在不同类型的内存区域中的结果。对于一个进程的内存空间而言,可以在逻辑上分成3个部份:代码区,静态数据区和动态数据区。动态数据区一般就是―堆栈‖。―栈(stack)‖和―堆(heap)‖是两种不同的动态数据区,栈是一种线性结构,堆是一种链式结构。进程的每个线程都有私有的―栈‖,所以每个线程虽然代码一样,但本地变量的数据都是互不干扰。一个堆栈可以通过―基地址‖和―栈顶‖地址来描述。全局变量和静态变量分配在静态数据区,本地变量分配在动态数据区,即堆栈中。程序通过堆栈的基地址和偏移量来访问本地变量。

├———————┤低端内存区域

│……│

├———————┤

│动态数据区│

├———————┤

│……│

├———————┤

│代码区│

├———————┤

│静态数据区│

├———————┤

│……│

├———————┤高端内存区域

堆栈是一个先进后出的数据结构,栈顶地址总是小于等于栈的基地址。我们可以先了解一下函数调用的过程,以便对堆栈在程序中的作用有更深入的了解。不同的语言有不同的函数调用规定,这些因素有参数的压入规则和堆栈的平衡。windows API的调用规则和ANSI C的函数调用规则是不一样的,前者由被调函数调整堆栈,后者由调用者调整堆栈。两者通过―__stdcall‖和―__cdecl‖前缀区分。先看下面这段代码:

#include

void __stdcall func(int param1,int param2,int param3)

{

int var1=param1;

int var2=param2;

int var3=param3;

printf("0x%08x\n",?m1); //打印出各个变量的内存地址

printf("0x%08x\n",?m2);

printf("0x%08x\n\n",?m3);

printf("0x%08x\n",&var1);

printf("0x%08x\n",&var2);

printf("0x%08x\n\n",&var3);

return;

}

int main()

{

func(1,2,3);

return 0;

}

编译后的执行结果是:

0x0012ff78

0x0012ff7c

0x0012ff80

0x0012ff68

0x0012ff6c

0x0012ff70

├———————┤<—函数执行时的栈顶(ESP)、低端内存区域│……│

├———————┤

│ var 1 │

├———————┤

│ var 2 │

├———————┤

│ var 3 │

├———————┤

│ RET │

├———————┤<—―__cdecl‖函数返回后的栈顶(ESP)

│ parameter 1 │

├———————┤

│ parameter 2 │

├———————┤

│ parameter 3 │

├———————┤<—―__stdcall‖函数返回后的栈顶(ESP)

│……│

├———————┤<—栈底(基地址 EBP)、高端内存区域

上图就是函数调用过程中堆栈的样子了。首先,三个参数以从又到左的次序压入堆栈,先压―param3‖,再压―param2‖,最后压入―param1‖;然后压入函数的返回地址(RET),接着跳转到函数地址接着执行(这里要补充一点,介绍UNIX下的缓冲溢出原理的文章中都提到在压入RET后,继续压入当前EBP,然后用当前ESP代替EBP。然而,有一篇介绍windows 下函数调用的文章中说,在windows下的函数调用也有这一步骤,但根据我的实际调试,并未发现这一步,这还可以从param3和var1之间只有4字节的间隙这点看出来);第三步,将栈顶(ESP)减去一个数,为本地变量分配内存空间,上例中是减去12字节(ESP=ESP-3*4,每个int变量占用4个字节);接着就初始化本地变量的内存空间。由于―__stdcall‖调用由被调函数调整堆栈,所以在函数返回前要恢复堆栈,先回收本地变量占用的内存(ESP=ESP+3*4),然后取出返回地址,填入EIP寄存器,回收先前压入参数占用的内存(ESP=ESP+3*4),继续执行调用者的代码。参见下列汇编代码:

;--------------func 函数的汇编代码-------------------

:00401000 83EC0C sub esp, 0000000C //创建本地变量的内存空间

:00401003 8B442410 mov eax, dword ptr [esp+10]

:00401007 8B4C2414 mov ecx, dword ptr [esp+14]

:0040100B 8B542418 mov edx, dword ptr [esp+18]

:0040100F 89442400 mov dword ptr [esp], eax

:00401013 8D442410 lea eax, dword ptr [esp+10]

:00401017 894C2404 mov dword ptr [esp+04], ecx

……………………(省略若干代码)

:00401075 83C43C add esp, 0000003C ;恢复堆栈,回收本地变量的内存空间

:00401078 C3 ret 000C ;函数返回,恢复参数占用的内存空间

;如果是―__cdecl‖的话,这里是―ret‖,堆栈将由调用者恢复

;-------------------函数结束-------------------------

;--------------主程序调用func函数的代码--------------

:00401080 6A03 push 00000003 //压入参数param3

:00401082 6A02 push 00000002 //压入参数param2

:00401084 6A01 push 00000001 //压入参数param1

:00401086 E875FFFFFF call 00401000 //调用func函数

;如果是―__cdecl‖的话,将在这里恢复堆栈,―add esp, 0000000C‖

聪明的读者看到这里,差不多就明白缓冲溢出的原理了。先来看下面的代码:

#include

#include

void __stdcall func()

{

char lpBuff[8]="\0";

strcat(lpBuff,"AAAAAAAAAAA");

return;

}

int main()

{

func();

return 0;

}

编译后执行一下回怎么样?哈,―"0x00414141"指令引用的"0x00000000"内存。该内存不能为"read"。‖,―非法操作‖喽!"41"就是"A"的16进制的ASCII码了,那明显就是strcat这句出的问题了。"lpBuff"的大小只有8字节,算进结尾的\0,那strcat最多只能写入7个"A",但程序实际写入了11个"A"外加1个\0。再来看看上面那幅图,多出来的4个字节正好覆盖了RET的所在的内存空间,导致函数返回到一个错误的内存地址,执行了错误的指令。如果能精心构造这个字符串,使它分成三部分,前一部份仅仅是填充的无意义数据以达到溢出的目的,接着是一个覆盖RET的数据,紧接着是一段shellcode,那只要着个RET地址能指向这段shellcode的第一个指令,那函数返回时就能执行shellcode了。但是软件的不同版本和不同的运行环境都可能影响这段shellcode在内存中的位置,那么要构造这个RET是十分困难的。一般都在RET和shellcode之间填充大量的NOP指令,使得exploit有更强的通用性。

├———————┤<—低端内存区域

│……│

├———————┤<—由exploit填入数据的开始

││

│ buffer │<—填入无用的数据

││

├———————┤

│ RET │<—指向shellcode,或NOP指令的范围

├———————┤

│ NOP │

│……│<—填入的NOP指令,是RET可指向的范围

│ NOP │

├———————┤

││

│ shellcode │

││

├———————┤<—由exploit填入数据的结束

│……│

├———————┤<—高端内存区域

windows下的动态数据除了可存放在栈中,还可以存放在堆中。了解C++的朋友都知道,C++可以使用new关键字来动态分配内存。来看下面的C++代码:

#include

#include

#include

void func()

{

char *buffer=new char[128];

char bufflocal[128];

static char buffstatic[128];

printf("0x%08x\n",buffer); //打印堆中变量的内存地址

printf("0x%08x\n",bufflocal); //打印本地变量的内存地址

printf("0x%08x\n",buffstatic); //打印静态变量的内存地址

}

void main()

{

func();

return;

}

程序执行结果为:

0x004107d0

0x0012ff04

0x004068c0

可以发现用new关键字分配的内存即不在栈中,也不在静态数据区。VC编译器是通过windows下的―堆(heap)‖来实现new关键字的内存动态分配。在讲―堆‖之前,先来了解一下和―堆‖有关的几个API函数:

HeapAlloc 在堆中申请内存空间

HeapCreate 创建一个新的堆对象

HeapDestroy 销毁一个堆对象

HeapFree 释放申请的内存

HeapWalk 枚举堆对象的所有内存块

GetProcessHeap 取得进程的默认堆对象

GetProcessHeaps 取得进程所有的堆对象

LocalAlloc

GlobalAlloc

当进程初始化时,系统会自动为进程创建一个默认堆,这个堆默认所占内存的大小为1M。堆对象由系统进行管理,它在内存中以链式结构存在。通过下面的代码可以通过堆动态申请内存空间:

HANDLE hHeap=GetProcessHeap();

char *buff=HeapAlloc(hHeap,0,8);

其中hHeap是堆对象的句柄,buff是指向申请的内存空间的地址。那这个hHeap究竟是什么呢?它的值有什么意义吗?看看下面这段代码吧:

#pragma comment(linker,"/entry:main") //定义程序的入口

#include

_CRTIMP int (__cdecl *printf)(const char *, ...); //定义STL函数printf

/*---------------------------------------------------------------------------

写到这里,我们顺便来复习一下前面所讲的知识:

(*注)printf函数是C语言的标准函数库中函数,VC的标准函数库由msvcrt.dll模块实现。由函数定义可见,printf的参数个数是可变的,函数内部无法预先知道调用者压入的参数个数,函数只能通过分析第一个参数字符串的格式来获得压入参数的信息,由于这里参数的个数是动态的,所以必须由调用者来平衡堆栈,这里便使用了__cdecl调用规则。BTW,Windows 系统的API函数基本上是__stdcall调用形式,只有一个API例外,那就是wsprintf,它使用

__cdecl调用规则,同printf函数一样,这是由于它的参数个数是可变的缘故。

---------------------------------------------------------------------------*/

void main()

{

HANDLE hHeap=GetProcessHeap();

char *buff=HeapAlloc(hHeap,0,0x10);

char *buff2=HeapAlloc(hHeap,0,0x10);

HMODULE hMsvcrt=LoadLibrary("msvcrt.dll");

printf=(void *)GetProcAddress(hMsvcrt,"printf");

printf("0x%08x\n",hHeap);

printf("0x%08x\n",buff);

printf("0x%08x\n\n",buff2);

}

执行结果为:

0x00130000

0x00133100

0x00133118

hHeap的值怎么和那个buff的值那么接近呢?其实hHeap这个句柄就是指向HEAP首部的地址。在进程的用户区存着一个叫PEB(进程环境块)的结构,这个结构中存放着一些有关进程的重要信息,其中在PEB首地址偏移0x18处存放的ProcessHeap就是进程默认堆的地址,而偏移0x90处存放了指向进程所有堆的地址列表的指针。windows有很多API都使用进程的默认堆来存放动态数据,如windows 2000下的所有ANSI版本的函数都是在默认堆中申请内存来转换ANSI字符串到Unicode字符串的。对一个堆的访问是顺序进行的,同一时刻只能有一个线程访问堆中的数据,当多个线程同时有访问要求时,只能排队等待,这样便造成程序执行效率下降。

最后来说说内存中的数据对齐。所位数据对齐,是指数据所在的内存地址必须是该数据长度的整数倍,DWORD数据的内存起始地址能被4除尽,WORD数据的内存起始地址能被2除尽,x86 CPU能直接访问对齐的数据,当他试图访问一个未对齐的数据时,会在内部进行一系列的调整,这些调整对于程序来说是透明的,但是会降低运行速度,所以编译器在编译程序时会尽量保证数据对齐。同样一段代码,我们来看看用VC、Dev-C++和lcc三个不同编译器编译出来的程序的执行结果:

#include

int main()

{

int a;

char b;

int c;

printf("0x%08x\n",&a);

printf("0x%08x\n",&b);

printf("0x%08x\n",&c);

return 0;

}

这是用VC编译后的执行结果:

0x0012ff7c

0x0012ff7b

0x0012ff80

变量在内存中的顺序:b(1字节)-a(4字节)-c(4字节)。

这是用Dev-C++编译后的执行结果:

0x0022ff7c

0x0022ff7b

0x0022ff74

变量在内存中的顺序:c(4字节)-中间相隔3字节-b(占1字节)-a(4字节)。

这是用lcc编译后的执行结果:

0x0012ff6c

0x0012ff6b

0x0012ff64

变量在内存中的顺序:同上。

三个编译器都做到了数据对齐,但是后两个编译器显然没VC―聪明‖,让一个char占了4字节,浪费内存哦。

基础知识:

堆栈是一种简单的数据结构,是一种只允许在其一端进行插入或删除的线性表。允许插入或删除操作的一端称为栈顶,另一端称为栈底,对堆栈的插入和删除操作被称为入栈和出栈。有一组CPU指令可以实现对进程的内存实现堆栈访问。其中,POP指令实现出栈操作,PUSH 指令实现入栈操作。CPU的ESP寄存器存放当前线程的栈顶指针,EBP寄存器中保存当前线程的栈底指针。CPU的EIP寄存器存放下一个CPU指令存放的内存地址,当CPU执行完当前的指令后,从EIP寄存器中读取下一条指令的内存地址,然后继续执行。

参考:《Windows下的HEAP溢出及其利用》by: isno

《windows核心编程》by: Jeffrey Richter

摘要:讨论常见的堆性能问题以及如何防范它们。(共 9 页)

前言

您是否是动态分配的 C/C++ 对象忠实且幸运的用户?您是否在模块间的往返通信中频繁地使用了―自动化‖?您的程序是否因堆分配而运行起来很慢?不仅仅您遇到这样的问题。几乎所有项目迟早都会遇到堆问题。大家都想说,―我的代码真正好,只是堆太慢‖。那只是部分正确。更深入理解堆及其用法、以及会发生什么问题,是很有用的。

什么是堆?

(如果您已经知道什么是堆,可以跳到―什么是常见的堆性能问题?‖部分)

在程序中,使用堆来动态分配和释放对象。在下列情况下,调用堆操作:

事先不知道程序所需对象的数量和大小。

对象太大而不适合堆栈分配程序。

堆使用了在运行时分配给代码和堆栈的内存之外的部分内存。下图给出了堆分配程序的不同层。

GlobalAlloc/GlobalFree:Microsoft Win32 堆调用,这些调用直接与每个进程的默认堆进行对话。

LocalAlloc/LocalFree:Win32 堆调用(为了与 Microsoft Windows NT 兼容),这些调用直接与每个进程的默认堆进行对话。

COM 的 IMalloc 分配程序(或 CoTaskMemAlloc / CoTaskMemFree):函数使用每个进程的默认堆。自动化程序使用―组件对象模型(COM)‖的分配程序,而申请的程序使用每个进程堆。C/C++ 运行时 (CRT) 分配程序:提供了 malloc() 和 free() 以及 new 和 delete 操作符。如 Microsoft V isual Basic 和 Java 等语言也提供了新的操作符并使用垃圾收集来代替堆。CRT 创建自己的私有堆,驻留在 Win32 堆的顶部。

Windows NT 中,Win32 堆是 Windows NT 运行时分配程序周围的薄层。所有 API 转发它们的请求给 NTDLL。

Windows NT 运行时分配程序提供 Windows NT 内的核心堆分配程序。它由具有 128 个大小从 8 到 1,024 字节的空闲列表的前端分配程序组成。后端分配程序使用虚拟内存来保留和提交页。

在图表的底部是―虚拟内存分配程序‖,操作系统使用它来保留和提交页。所有分配程序使用虚拟内存进行数据的存取。

分配和释放块不就那么简单吗?为何花费这么长时间?

堆实现的注意事项

传统上,操作系统和运行时库是与堆的实现共存的。在一个进程的开始,操作系统创建一个默认堆,叫做―进程堆‖。如果没有其他堆可使用,则块的分配使用―进程堆‖。语言运行时也能在进程内创建单独的堆。(例如,C 运行时创建它自己的堆。)除这些专用的堆外,应用程序或许多已载入的动态链接库 (DLL) 之一可以创建和使用单独的堆。Win32 提供一整套 API 来创建和使用私有堆。有关堆函数(英文)的详尽指导,请参见 MSDN。

当应用程序或 DLL 创建私有堆时,这些堆存在于进程空间,并且在进程内是可访问的。从给定堆分配的数据将在同一个堆上释放。(不能从一个堆分配而在另一个堆释放。)

在所有虚拟内存系统中,堆驻留在操作系统的―虚拟内存管理器‖的顶部。语言运行时堆也驻留在虚拟内存顶部。某些情况下,这些堆是操作系统堆中的层,而语言运行时堆则通过大块的分配来执行自己的内存管理。不使用操作系统堆,而使用虚拟内存函数更利于堆的分配和块的使用。

典型的堆实现由前、后端分配程序组成。前端分配程序维持固定大小块的空闲列表。对于一次分配调用,堆尝试从前端列表找到一个自由块。如果失败,堆被迫从后端(保留和提交虚拟内存)分配一个大块来满足请求。通用的实现有每块分配的开销,这将耗费执行周期,也减少了可使用的存储空间。

Knowledge Base 文章 Q10758,―用 calloc() 和 malloc() 管理内存‖(搜索文章编号), 包含了有关这些主题的更多背景知识。另外,有关堆实现和设计的详细讨论也可在下列著作中找到:―Dynamic Storage Allocation: A Survey and Critical Review‖,作者 Paul R. Wilson、Mark S. Johnstone、Michael Neely 和 David Boles;―International Workshop on Memory Management‖,作者 Kinross, Scotland, UK, 1995 年 9 月

(https://www.wendangku.net/doc/6015410382.html,/users/oops/papers.html)(英文)。

Windows NT 的实现(Windows NT 版本 4.0 和更新版本)使用了 127 个大小从 8 到 1,024 字节的 8 字节对齐块空闲列表和一个―大块‖列表。―大块‖列表(空闲列表[0])保存大于 1,024 字节的块。空闲列表容纳了用双向链表链接在一起的对象。默认情况下,―进程堆‖执行收集操作。(收集是将相邻空闲块合并成一个大块的操作。)收集耗费了额外的周期,但减少了堆块

的内部碎片。

单一全局锁保护堆,防止多线程式的使用。(请参见―Server Performance and Scalability Killers‖中的第一个注意事项, George Reilly 所著,在―MSDN Online Web Workshop‖上(站点:

https://www.wendangku.net/doc/6015410382.html,/workshop/server/iis/tencom.asp(英文)。)单一全局锁本质上是用来保护堆数据结构,防止跨多线程的随机存取。若堆操作太频繁,单一全局锁会对性能有不利的影响。

什么是常见的堆性能问题?

以下是您使用堆时会遇到的最常见问题:

分配操作造成的速度减慢。光分配就耗费很长时间。最可能导致运行速度减慢原因是空闲列表没有块,所以运行时分配程序代码会耗费周期寻找较大的空闲块,或从后端分配程序分配新块。

释放操作造成的速度减慢。释放操作耗费较多周期,主要是启用了收集操作。收集期间,每个释放操作―查找‖它的相邻块,取出它们并构造成较大块,然后再把此较大块插入空闲列表。在查找期间,内存可能会随机碰到,从而导致高速缓存不能命中,性能降低。

堆竞争造成的速度减慢。当两个或多个线程同时访问数据,而且一个线程继续进行之前必须等待另一个线程完成时就发生竞争。竞争总是导致麻烦;这也是目前多处理器系统遇到的最大问题。当大量使用内存块的应用程序或 DLL 以多线程方式运行(或运行于多处理器系统上)时将导致速度减慢。单一锁定的使用—常用的解决方案—意味着使用堆的所有操作是序列化的。当等待锁定时序列化会引起线程切换上下文。可以想象交叉路口闪烁的红灯处走走停停导致的速度减慢。

竞争通常会导致线程和进程的上下文切换。上下文切换的开销是很大的,但开销更大的是数据从处理器高速缓存中丢失,以及后来线程复活时的数据重建。

堆破坏造成的速度减慢。造成堆破坏的原因是应用程序对堆块的不正确使用。通常情形包括释放已释放的堆块或使用已释放的堆块,以及块的越界重写等明显问题。(破坏不在本文讨论范围之内。有关内存重写和泄漏等其他细节,请参见 Microsoft V isual C++(R) 调试文档。)

频繁的分配和重分配造成的速度减慢。这是使用脚本语言时非常普遍的现象。如字符串被反复分配,随重分配增长和释放。不要这样做,如果可能,尽量分配大字符串和使用缓冲区。另一种方法就是尽量少用连接操作。

竞争是在分配和释放操作中导致速度减慢的问题。理想情况下,希望使用没有竞争和快速分配/释放的堆。可惜,现在还没有这样的通用堆,也许将来会有。

在所有的服务器系统中(如 IIS、MSProxy、DatabaseStacks、网络服务器、 Exchange 和其他), 堆锁定实在是个大瓶颈。处理器数越多,竞争就越会恶化。

尽量减少堆的使用

现在您明白使用堆时存在的问题了,难道您不想拥有能解决这些问题的超级魔棒吗?我可希望有。但没有魔法能使堆运行加快—因此不要期望在产品出货之前的最后一星期能够大为改观。如果提前规划堆策略,情况将会大大好转。调整使用堆的方法,减少对堆的操作是提高性能的良方。

如何减少使用堆操作?通过利用数据结构内的位置可减少堆操作的次数。请考虑下列实例:

struct ObjectA {

// objectA的数据

}

struct ObjectB {

// objectB 的数据

}

// 同时使用 objectA和 objectB

//

// 使用指针

//

struct ObjectB {

struct ObjectA * pObjA;

// objectB 的数据

}

//

// 使用嵌入

//

struct ObjectB {

struct ObjectA pObjA;

// objectB 的数据

}

//

// 集合–在另一对象内使用 objectA和 objectB

//

struct ObjectX {

struct ObjectA objA;

struct ObjectB objB;

}

避免使用指针关联两个数据结构。如果使用指针关联两个数据结构,前面实例中的对象 A和 B 将被分别分配和释放。这会增加额外开销—我们要避免这种做法。

把带指针的子对象嵌入父对象。当对象中有指针时,则意味着对象中有动态元素(百分之八十)和没有引用的新位置。嵌入增加了位置从而减少了进一步分配/释放的需求。这将提高应用程序的性能。

合并小对象形成大对象(聚合)。聚合减少分配和释放的块的数量。如果有几个开发者,各自开发设计的不同部分,则最终会有许多小对象需要合并。集成的挑战就是要找到正确的聚合边界。

内联缓冲区能够满足百分之八十的需要(aka 80-20 规则)。个别情况下,需要内存缓冲区来保存字符串/二进制数据,但事先不知道总字节数。估计并内联一个大小能满足百分之八十需要的缓冲区。对剩余的百分之二十,可以分配一个新的缓冲区和指向这个缓冲区的指针。这样,就减少分配和释放调用并增加数据的位置空间,从根本上提高代码的性能。

在块中分配对象(块化)。块化是以组的方式一次分配多个对象的方法。如果对列表的项连续跟踪,例如对一个 {名称,值} 对的列表,有两种选择:选择一是为每一个―名称-值‖对分

配一个节点;选择二是分配一个能容纳(如五个)―名称-值‖对的结构。例如,一般情况下,如果存储四对,就可减少节点的数量,如果需要额外的空间数量,则使用附加的链表指针。块化是友好的处理器高速缓存,特别是对于 L1-高速缓存,因为它提供了增加的位置—不用说对于块分配,很多数据块会在同一个虚拟页中。

正确使用 _amblksiz。C 运行时 (CRT) 有它的自定义前端分配程序,该分配程序从后端(Win32 堆)分配大小为 _amblksiz 的块。将 _amblksiz 设置为较高的值能潜在地减少对后端的调用次数。这只对广泛使用 CRT 的程序适用。

使用上述技术将获得的好处会因对象类型、大小及工作量而有所不同。但总能在性能和可升缩性方面有所收获。另一方面,代码会有点特殊,但如果经过深思熟虑,代码还是很容易管理的。

其他提高性能的技术

下面是一些提高速度的技术:

使用 Windows NT5 堆

由于几个同事的努力和辛勤工作,1998 年初 Microsoft Windows(R) 2000 中有了几个重大改进:

改进了堆代码内的锁定。堆代码对每堆一个锁。全局锁保护堆数据结构,防止多线程式的使用。但不幸的是,在高通信量的情况下,堆仍受困于全局锁,导致高竞争和低性能。Windows 2000 中,锁内代码的临界区将竞争的可能性减到最小,从而提高了可伸缩性。

使用―Lookaside‖列表。堆数据结构对块的所有空闲项使用了大小在 8 到 1,024 字节(以 8-字节递增)的快速高速缓存。快速高速缓存最初保护在全局锁内。现在,使用 lookaside 列表来访问这些快速高速缓存空闲列表。这些列表不要求锁定,而是使用 64 位的互锁操作,因此提高了性能。

内部数据结构算法也得到改进。

这些改进避免了对分配高速缓存的需求,但不排除其他的优化。使用 Windows NT5 堆评估您的代码;它对小于 1,024 字节 (1 KB) 的块(来自前端分配程序的块)是最佳的。GlobalAlloc() 和 LocalAlloc() 建立在同一堆上,是存取每个进程堆的通用机制。如果希望获得高的局部性能,则使用 Heap(R) API 来存取每个进程堆,或为分配操作创建自己的堆。如果需要对大块操作,也可以直接使用 VirtualAlloc() / V irtualFree() 操作。

上述改进已在 Windows 2000 beta 2 和 Windows NT 4.0 SP4 中使用。改进后,堆锁的竞争率显著降低。这使所有 Win32 堆的直接用户受益。CRT 堆建立于 Win32 堆的顶部,但它使用自己的小块堆,因而不能从 Windows NT 改进中受益。(Visual C++ 版本 6.0 也有改进的堆分配程序。)

使用分配高速缓存

分配高速缓存允许高速缓存分配的块,以便将来重用。这能够减少对进程堆(或全局堆)的分配/释放调用的次数,也允许最大限度的重用曾经分配的块。另外,分配高速缓存允许收集统计信息,以便较好地理解对象在较高层次上的使用。

典型地,自定义堆分配程序在进程堆的顶部实现。自定义堆分配程序与系统堆的行为很相似。主要的差别是它在进程堆的顶部为分配的对象提供高速缓存。高速缓存设计成一套固定大小(如 32 字节、64 字节、128 字节等)。这一个很好的策略,但这种自定义堆分配程序丢失与分配和释放的对象相关的―语义信息‖。

与自定义堆分配程序相反,―分配高速缓存‖作为每类分配高速缓存来实现。除能够提供自定义堆分配程序的所有好处之外,它们还能够保留大量语义信息。每个分配高速缓存处理程序

与一个目标二进制对象关联。它能够使用一套参数进行初始化,这些参数表示并发级别、对象大小和保持在空闲列表中的元素的数量等。分配高速缓存处理程序对象维持自己的私有空闲实体池(不超过指定的阀值)并使用私有保护锁。合在一起,分配高速缓存和私有锁减少了与主系统堆的通信量,因而提供了增加的并发、最大限度的重用和较高的可伸缩性。

需要使用清理程序来定期检查所有分配高速缓存处理程序的活动情况并回收未用的资源。如果发现没有活动,将释放分配对象的池,从而提高性能。

可以审核每个分配/释放活动。第一级信息包括对象、分配和释放调用的总数。通过查看它们的统计信息可以得出各个对象之间的语义关系。利用以上介绍的许多技术之一,这种关系可以用来减少内存分配。

分配高速缓存也起到了调试助手的作用,帮助您跟踪没有完全清除的对象数量。通过查看动态堆栈返回踪迹和除没有清除的对象之外的签名,甚至能够找到确切的失败的调用者。

MP 堆

MP 堆是对多处理器友好的分布式分配的程序包,在 Win32 SDK(Windows NT 4.0 和更新版本)中可以得到。最初由 JV ert 实现,此处堆抽象建立在 Win32 堆程序包的顶部。MP 堆创建多个 Win32 堆,并试图将分配调用分布到不同堆,以减少在所有单一锁上的竞争。

本程序包是好的步骤—一种改进的 MP-友好的自定义堆分配程序。但是,它不提供语义信息和缺乏统计功能。通常将 MP 堆作为 SDK 库来使用。如果使用这个 SDK 创建可重用组件,您将大大受益。但是,如果在每个 DLL 中建立这个 SDK 库,将增加工作设置。

重新思考算法和数据结构

要在多处理器机器上伸缩,则算法、实现、数据结构和硬件必须动态伸缩。请看最经常分配和释放的数据结构。试问,―我能用不同的数据结构完成此工作吗?‖例如,如果在应用程序初始化时加载了只读项的列表,这个列表不必是线性链接的列表。如果是动态分配的数组就非常好。动态分配的数组将减少内存中的堆块和碎片,从而增强性能。

减少需要的小对象的数量减少堆分配程序的负载。例如,我们在服务器的关键处理路径上使用五个不同的对象,每个对象单独分配和释放。一起高速缓存这些对象,把堆调用从五个减少到一个,显著减少了堆的负载,特别当每秒钟处理 1,000 个以上的请求时。

如果大量使用―Automation‖结构,请考虑从主线代码中删除―Automation BSTR‖,或至少避免重复的 BSTR 操作。(BSTR 连接导致过多的重分配和分配/释放操作。)

摘要

对所有平台往往都存在堆实现,因此有巨大的开销。每个单独代码都有特定的要求,但设计能采用本文讨论的基本理论来减少堆之间的相互作用。

评价您的代码中堆的使用。

改进您的代码,以使用较少的堆调用:分析关键路径和固定数据结构。

在实现自定义的包装程序之前使用量化堆调用成本的方法。

如果对性能不满意,请要求 OS 组改进堆。更多这类请求意味着对改进堆的更多关注。

要求 C 运行时组针对 OS 所提供的堆制作小巧的分配包装程序。随着 OS 堆的改进,C 运行时堆调用的成本将减小。

操作系统(Windows NT 家族)正在不断改进堆。请随时关注和利用这些改进。

Murali Krishnan 是 Internet Information Server (IIS) 组的首席软件设计工程师。从 1.0 版本开

始他就设计 IIS,并成功发行了 1.0 版本到 4.0 版本。Murali 组织并领导 IIS 性能组三年 (1995-1998), 从一开始就影响 IIS 性能。他拥有威斯康星州 Madison 大学的 M.S.和印度 Anna 大学的 B.S.。工作之外,他喜欢阅读、打排球和家庭烹饪。

https://www.wendangku.net/doc/6015410382.html,/Expert/FAQ/FAQ_Index.asp?id=172835

我在学习对象的生存方式的时候见到一种是在堆栈(stack)之中,如下

CObject object;

还有一种是在堆(heap)中如下

CObject* pobject=new CObject();

请问

(1)这两种方式有什么区别?

(2)堆栈与堆有什么区别??

---------------------------------------------------------------

1) about stack, system will allocate memory to the instance of object automatically, and to the

heap, you must allocate memory to the instance of object with new or malloc manually.

2) when function ends, system will automatically free the memory area of stack, but to th

e

heap, you must free the memory area manually with free or delete, else it will result in memory

leak.

3)栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。

4)堆上分配的内存可以有我们自己决定,使用非常灵活。

利用栈实现c语言计算器

栈的应用:C实现简单计算器(表达式的计算) 作为栈的著名应用,表达式的计算可以用下面方法实现: 首先建立两个栈,操作数栈NUM_S和运算符栈OPR_S。 其中,操作数栈用来存储表达式中的操作数;运算符栈用来存储表达式中的运算符。可以用字符‘=’来表示表达式结束符。 自左至右的扫描待处理的表达式,并假设当前扫描到的符号为W,根据不同的符号W 做如下不同的处理: 1.若W为操作数,则将W压入操作数栈NUM_S,且继续扫描下一个字符; 2.若W为运算符,则根据运算符的性质做相应的处理: (0)若符号栈为空,无条件入栈当前指针指向的字符 (1)若w为不大于运算符栈栈顶的运算符,则从操作数栈NUM_S中弹出两个操作数,设先后弹出的操作数为a、b,再从运算符栈 OPR_S中弹出一个运算符,比如为+,然后作运算a+b,并将运算结果压入操作数栈NUM_S。 (2)若w为左括号或者运算符的优先级大于运算符栈栈顶的运算符,则将运算符W 压入运算符栈OPR_S,并继续扫描下一个字符。 (3)若运算符W为右括号,循环操作(设先后弹出的操作数为a、b,再从运算符栈OPR_S中弹出一个运算符,比如为+,然后作运 算a+b, 并将运算结果压入操作数栈NUM_S),直到从运算符栈中弹出第一个左括号。 (4)若运算符W为表达式结束符‘=’,循环操作(设先后弹出的操作数为a、b,再从运算符栈OPR_S中弹出一个运算符,比如为 +,然后作运算a+b, 并将运算结果压入操作数栈NUM_S),直到运算符栈为空为止。此时,操作数栈栈顶元素即为表达式的 值。 ====================================================================== === 举例:计算3+(5-2*3)/4-2= (1)开始栈为空,3入栈,+入栈,(无条件入栈,5入栈,-号优先级比(高,所以-号入栈,2入栈,*优先级比目前栈顶的-号优先级高,所以*入栈,3入栈,接着扫描到)括号,)括号不入栈 | | | | --------- ---------- | 3 | | * | --------- ---------- | 2 | | - |

C语言 栈的使用

C语言栈的使用 #include #include #define TRUE 1 #define FALSE 0 #define MAXSIZE 100 #define ERROR 0 typedef int Elemtype; typedef struct { Elemtype data[MAXSIZE]; int top; }SqStack; void InitStack(SqStack *s) {s->top=-1; } int StackEmpty(SqStack *s) { return(s->top==-1?TRUE:FALSE); } int StackFull(SqStack *s) { return(s->top==MAXSIZE-1?TRUE:FALSE);} int Push(SqStack *s,Elemtype e) { if (StackFull(s)) return ERROR; s->top++; s->data[s->top]=e; } int Pop(SqStack *s,Elemtype &e) { if (StackEmpty (s)) return ERROR; e=s->data[s->top]; s->top--; } void Conversion(int N,int r) { SqStack s; int e; InitStack(&s);

while(N!=0) {Push (&s,N%r); N=N/r; } while(!StackEmpty(&s)) { Pop(&s,e); cout<>N; cin>>r; Conversion(N,r); }

c语言实现一.二叉树操作 二.用栈实现算术表达式求值 课设报告

目录 题目一.二叉树操作(1)二.算术表达式求 (1) 一、课程设计的目的 (1) 二、课程设计的内容和要求 (1) 三、题目一设计过程 (2) 四、题目二设计过程 (6) 五、设计总结 (17) 六、参考文献 (18)

题目一.二叉树操作(1)二.算术表达式求 一、课程设计的目的 本学期我们对《数据结构》这门课程进行了学习。这门课程是一门实践性非常强的课程,为了让大家更好地理解与运用所学知识,提高动手能力,我们进行了此次课程设计实习。这次课程设计不但要求学生掌握《数据结构》中的各方面知识,还要求学生具备一定的C语言基础和编程能力。 (1)题目一的目的: 1、掌握二叉树的概念和性质 2、掌握二叉树的存储结构 3、掌握二叉树的基本操作 (2)题目二的目的: 1、掌握栈的顺序存储结构和链式存储结构 2、掌握栈的先进后出的特点 3、掌握栈的基本运算 二、课程设计的内容和要求 (1)题目一的内容和要求: 1、编写已知二叉树的先序、中序序列,恢复此二叉树的程序 2、编写求二叉树深度的程序 (2)题目二的内容和要求: 1、算术表达式由操作数、运算符和界限符组成。操作数是正整数,运算符为 加减乘除,界限符有左右括号和表达式起始 2、将一个表达式的中缀形式转化为相应的后缀形式 3、依据后缀表达式计算表达式的值

三、题目一设计过程 1、题目分析 现已知一棵二叉树的先序遍历序列和中序遍历序列,依次从先序遍历序列中取结点,由先序序列确定根结点(就是第一个字母),每次取出一个结点就与中序遍历的序列进行比较,当相等的时候,中序遍历序列就被分成以该结点为根的二叉树子树,该结点左部分为左子树,右部分为右子树,直到取完先序列里的所有结点,则二叉树构造完毕(树用链式存储结构存储),用递归实现! 由建好的二叉树,先判断这棵树是否为空,若不为空则找数的左子树,统计它的高度,然后找树的右子树,统计它的高度,比较左子树和右子树的高度,然后返回其中大的那个值加一,则求出数的高度。这里用递归实现! 2、算法描述 main ( )(主函数) 先构造一颗二叉树,初始化为空,用来存储所构造的二叉树,并输入一棵树的先序序列和中序序列,并统计这个序列的长度。然后调用实现功能的函数。 void CreateBiTree(BiTree *T,char *pre,char *in,int len)(由先序序列和中序序列构造二叉树) 根据前序遍历的特点, 知前序序列(pre)的首个元素(pre[0])为根(root), 然后在中序序列(in)中查找此根(pre[0]), 根据中序遍历特点, 知在查找到的根(root) 前边的序列为左子树, 后边的序列为右子树。设根前边有n个元素,则又有, 在前序序列中,紧跟着根(root)的n个元素序列(即pre[1...n]) 为左子树, 在后边的为右子树,而构造左子树问题其实跟构造整个二叉树问题一样,只是此时前序序列为pre[1...n]), 中序序列为in[0...n-1], 分别为原序列的子串, 构造右子树同样。这里用递归实现! int Depth(BiTree T)(求树的深度) 当所给的参数T是NULL时,返回0。说明这个树只有一个叶子节点深度为0,当所给的参数不是NULL时,函数调用自己看看这个参数的左分支是不是NULL,

栈的基本操作c语言

#include #include #include //函数结果状态代码 #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 //Status 是函数的类型,其值是函数结果状态代码 typedef int Status; typedef int SetElemType; typedef SetElemType ElemType; #include "tou.h" #include #include typedef char SElemType; // 栈的元素类型 #define STACK_INIT_SIZE 100 // 存储空间初始分配量 #define STACKINCREMENT 10 // 存储空间分配增量 // 栈的顺序存储表示P46 typedef struct SqStack { SElemType *base; // 在栈构造之前和销毁之后,base的值为NULL SElemType *top; // 栈顶指针 int stacksize; // 当前已分配的存储空间,以元素为单位 }SqStack; // 顺序栈 // 构造一个空栈S。 int InitStack(SqStack *S) { // 为栈底分配一个指定大小的存储空间 (*S).base = (SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType)); if( !(*S).base ) exit(OVERFLOW); // 存储分配失败 (*S).top = (*S).base; // 栈底与栈顶相同表示一个空栈

数据结构(C语言)栈的基本操作

实验名称栈的基本操作 实验目的 掌握栈这种抽象数据类型的特点及实现方法。 实验内容 从键盘读入若干个整数,建一个顺序栈或链式栈,并完成下列操作: (1)初始化栈; (2)判栈为空; (3)出栈; (4)入栈。 算法设计分析 (一)数据结构的定义 struct stackNode{ int data; struct stackNode *nextPtr; }; typedef struct stackNode listStact; typedef listStact *stackNodePtr; (二)总体设计 程序由主函数、入栈函数,出栈函数,删除函数判官是否为空函数和菜单函数组成。 (1)主函数:调用各个函数以实现相应功能

(三)各函数的详细设计: Function1: void instruct() //菜单 (1):使用菜单显示要进行的函数功能; Function2:void printStack(stackNodePtr sPtr) //输出栈 (1):利用if判断栈是否为空; (2):在else内套用while(头指针不为空条件循环)循环输出栈元素; Function3:void push(stackNodePtr *topPtr,int value //进栈 (1):建新的头指针; (2):申请空间; (3):利用if判断newPtr不为空时循环进栈 (4):把输入的value赋值给newPtr,在赋值给topPtr,再指向下一个位置; Function4:int pop(stackNodePtr*topPtr) //删除 (1):建新的头指针newPtr; (2):利用if判断newPtr是否为空,再删除元素。 (3):把topPtr等于newPtr,把头指针指向的数据赋值给topValue,输出要删除的数据值,头指针指向下一个位置,并清空newPtr; (4):完成上述步骤后,return toPvalue,返回;

详解堆栈的几种实现方法——C语言版

详解堆栈的几种实现方法——C语言版 基本的抽象数据类型(ADT)是编写C程序必要的过程,这类ADT有链表、堆栈、队列和树等,本文主要讲解下堆栈的几种实现方法以及他们的优缺点。 堆栈(stack)的显著特点是后进先出(Last-In First-Out, LIFO),其实现的方法有三种可选方案:静态数组、动态分配的数组、动态分配的链式结构。 静态数组:特点是要求结构的长度固定,而且长度在编译时候就得确定。其优点是结构简单,实现起来方便而不容易出错。而缺点就是不够灵活以及固定长度不容易控制,适用于知道明确长度的场合。 动态数组:特点是长度可以在运行时候才确定以及可以更改原来数组的长度。优点是灵活,缺点是由此会增加程序的复杂性。 链式结构:特点是无长度上线,需要的时候再申请分配内存空间,可最大程度上实现灵活性。缺点是链式结构的链接字段需要消耗一定的内存,在链式结构中访问一个特定元素的效率不如数组。 首先先确定一个堆栈接口的头文件,里面包含了各个方案下的函数原型,放在一起是为了实现程序的模块化以及便于修改。然后再接着分别介绍各个方案的具体实施方法。 堆栈接口stack.h文件代码: [cpp]view plaincopy 1./* 2.** 堆栈模块的接口 stack.h 3.*/ 4.#include 5. 6.#define STACK_TYPE int /* 堆栈所存储的值的数据类型 */ 7. 8./* 9.** 函数原型:create_stack 10.** 创建堆栈,参数指定堆栈可以保存多少个元素。 11.** 注意:此函数只适用于动态分配数组形式的堆栈。 12.*/ 13.void create_stack(size_t size); 14. 15./* 16.** 函数原型:destroy_stack 17.** 销毁一个堆栈,释放堆栈所适用的内存。 18.** 注意:此函数只适用于动态分配数组和链式结构的堆栈。 19.*/ 20.void destroy_stack(void); 21. 22./*

C语言 用栈实现进制转换

C语言用栈实现进制转换 #include #include #include #include #define S_SIZE 100 //栈所占空间的大小 #define STACKINCREAMENT 10 //扩充空间时一次扩充十个字节struct SqStack { int *base; //栈底 int *top; //栈顶 int stacksize;//栈当前的存储空间 }*S; //主函数开始 void main() { //子函数声明 void InitStack(S);//初始化空栈 int StackEmpty(SqStack S);//判栈空 void GetTop(SqStack S,int &e);//获得栈顶元素 void push(SqStack &S,int e);//进栈 void pop(SqStack &S,int &e);//出栈 void convert(SqStack &5,int N,int n);//十进制转N进制 int i,num; unsigned n,N;//要转换的进制数及要转换的数 SqStack s; InitStack(s);//初始化空栈 printf("输入要转换的十进制数和要转换为的进制数:\n"); scanf("%d,%d",&N,&n); printf("%d转换为%d进制后为:\n",N,n); convert(s,N,n); } void InitStack(SqStack &S) { S.base = (int *)malloc(S_SIZE*sizeof(int)); S.stacksize=S_Size; S.top=S.base;//初始化空栈 } int StackEmpty(SqStack S) {

C语言实现进栈和出栈

使用C++中STL的stack,只有C++中有,C标准库没有STL。 程序:(单整数) #include #include using namespace std; stacks; int main() { int a,b; scanf("%d",&a); s.push(a); printf("%d\n",s.top()); s.pop(); return 0; } 方法二: 自己写程序(整数): #include const static int g_iStackSize = 100; //定义栈长度,为100 static int g_iStackPoint = -1; //初始化栈指针为-1,也就是栈里一个元素都没有//定义栈元素数据结构,可以扩展为任意类型数据 typedef struct tagStackData { int iData; //栈元素的数据,整型 }stStackData,* pstStackData; //栈只保存栈元素指针 pstStackData g_arrStack[g_iStackSize];//这个就是栈体了,一个长度为stacksize的数组//压元素入栈,可以返回栈指针当前位置 //@param data 压入栈的元素 //@return int 为100时就是满了 int push(const pstStackData data) { if(g_iStackPoint >= g_iStackSize)//也就是栈满了 { //提示栈满 printf("stack is full.\n"); //返回栈指针位置 return g_iStackPoint; } else//栈还没满 {

C语言栈的各种基本运算代码

题目: 实现顺序栈的各种基本运算,并在此基础上设计一个主程序完成如下功能: (1) 初始化栈S; (2) 判断栈S是否为空; (3) 依次使元素a, b, c, d, e进栈; (4) 判断栈S是否为空; (5) 输出栈的长度; (6) 输出从栈顶到栈底元素; (7) 输出出栈序列; (8) 判断顺序栈S是否为空; (9) 释放栈 代码; #include #include #define MaxSize 50 typedef char ElemType; typedef struct { ElemType data[MaxSize]; int top; //栈顶指针 }SqStack; //顺序栈顶类型定义 //初始化栈 void InitStack(SqStack* &s) { s=(SqStack*)malloc(sizeof(SqStack)); s->top=-1; } //销毁栈 void ClearStack(SqStack *&s) { free(s); } //求栈的长度 int StackLength(SqStack *s) { return(s->top+1); } //判断栈是否为空 int StackEmpty(SqStack *s)

{ return(s->top==-1); } //进栈 int Push(SqStack *&s,ElemType e) { if(s->top==MaxSize-1) return 0; s->top++; s->data[s->top]=e; return 1; } //出栈 int Pop(SqStack *&s,ElemType &e) { if(s->top==-1) return 0; e=s->data[s->top]; s->top--; return 1; } //取出栈顶元素 int GetTop(SqStack *s, ElemType &e) { if(s->top==-1) return 0; e=s->data[s->top]; return 1; } //显示栈中元素 void DispStack(SqStack *s) { int i; for(i=s->top;i>=0;i--) printf("%c ",s->data[i]); printf("\n"); } int main() { ElemType e; SqStack *s; printf(" 初始化栈s\n ");

基于栈的c语言迷宫问题与实现 (2)

数据结构与算法实验报告

基于栈的C语言迷宫问题与实现 一.问题描述 多年以来,迷宫问题一直是令人感兴趣的题目。实验心理学家训练老鼠在迷宫中寻找食物。许多神秘主义小说家也曾经把英国乡村花园迷宫作为谋杀现场。于是,老鼠过迷宫问题就此产生,这是一个很有趣的计算机问题,主要利用“栈”是老鼠通过尝试的办法从入口穿过迷宫走到出口。 迷宫只有两个门,一个叫做入口,另一个叫做出口。把一只老鼠从一个无顶盖的大盒子的入口处赶进迷宫。迷宫中设置很多隔壁,对前进方向形成了多处障碍,在迷宫的唯一出口处放置了一块奶酪,吸引老鼠在迷宫中寻找通路以到达出口。求解迷宫问题,即找出从入口到出口的路径。 一个迷宫可用上图所示方阵[m,n]表示,0表示能通过,1 表示不能通过。现假设耗子从左上角[1,1]进入迷宫,编写算法,寻求一条从右下角[m,n] 出去的路径。下图是一个迷宫的示意图: 入口 出口

迷宫示意图 二.算法基本思想 迷宫求解问题是栈的一个典型应用。基本算法思想是:在某个点上,按照一定的顺序(在本程序中顺序为上、右、下、左)对周围的墙、路进行判断(在本程序中分别用1、0)代替,若周围某个位置为0,则移动到该点上,再进行下一次判断;若周围的位置都为1(即没有通路),则一步步原路返回并判断有无其他通路,然后再次进行相同的判断,直到走到终点为止,或者确认没有任何通路后终止程序。 要实现上述算法,需要用到栈的思想。栈里面压的是走过的路径,若遇到死路,则将该位置(在栈的顶层)弹出,再进行下一次判断;若遇到通路,则将该位置压栈并进行下一次判断。如此反复循环,直到程序结束。此时,若迷宫有通路,则栈中存储的是迷宫通路坐标的倒序排列,再把所有坐标顺序打印后,即可得到正确的迷宫通路。 三.程序具体部分的说明 1.迷宫的生成 根据题目的要求,迷宫的大小是自定义输入的。所以在程序中用malloc申请动态二维数组。数组中的元素为随机生成的0、1。数组周围一圈的元素全部定义为1,以表示边界。 2.栈的C语言实现 为了实现栈的功能,即清空、压栈、弹出、返回栈顶元素,在程序中编写了相应的函数。 MakeNULL 清空栈 Push 将横、纵坐标压栈 Topx 返回栈顶存储的横坐标 Topy 返回栈顶存储的纵坐标 Pop 弹出栈顶元素 3.具体的判断算法

顺序存储结构线性表基本操作 纯C语言实现

/////////////////////////////////////////////////////////// //--------------------------------------------------------- // 顺序存储结构线性表基本操作纯C语言实现 // // a simple example of Sq_List by C language // // by wangweinoo1[PG] //--------------------------------------------------------- /////////////////////////////////////////////////////////// #include #include //以下为函数运行结果状态代码 #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 #define LIST_INIT_SIZE 5 //线性表存储空间的初始分配量 #define LISTINCREMENT 1 //线性表存储空间分配增量 typedef int Status; //函数类型,其值为为函数结果状态代码 typedef int ElemType; //假设数据元素为整型 typedef struct { ElemType*elem; //存储空间基址 int length; //当前长度 int listsize; //当前分配的存储容量 }Sqlist; //实现线性表的顺序存储结构的类型定义 static Sqlist L;//为了引用方便,定义为全局变量 static ElemType element; /////////////////////////////////////// //函数名:InitList() //参数:SqList L

链式栈基本操作C语言实现学习代码

#define_CRT_SECURE_NO_WARNINGS #include #include #define datatype int struct stack1 { int num; datatype data; struct stack1*pnext; }; typedef struct stack1stack; stack*init(stack*phead);//初始化 stack*push(stack*phead,int num,datatype data);//压栈stack*pop(stack*phead,stack*tnode);//出栈 stack*freeall(stack*phead);//清空 void printf1(stack*phead);//打印 源文件 #define_CRT_SECURE_NO_WARNINGS #include #include #include"abc.h" stack*init(stack*phead) { return NULL; } stack*push(stack*phead,int num,datatype data) { stack*p=(stack*)malloc(sizeof(stack)); p->num=num; p->data=data; p->pnext=NULL; if(phead==NULL) { phead=p; return phead; } else { stack*q=phead; while(q->pnext!=NULL)

C语言中栈的基本操作

#include #include #include //#include #include typedef int ElemType; #define STACK_SIZE 10 #define STACK_INCRE 3 #define N 8 //定义栈的存储结构 struct Sqstack{ ElemType *base; ElemType *top; int stacksize; }; //初始化栈s void InitStack(Sqstack &s) { s.base=(ElemType*)malloc(STACK_SIZE*sizeof(ElemType)) ; if(!s.base) exit(1); s.top=s.base ; s.stacksize =STACK_SIZE ; printf("栈s已被初始化:\n"); } //向栈s的第i个位置压入元素e void Push(Sqstack &s,ElemType e,int i) { //static int i=1; if(s.top-s.base==STACK_SIZE) { s.base=(ElemType*)realloc(s.base,(s.stacksize +STACK_INCRE)*sizeof(ElemType)); s.top=s.base+s.stacksize; s.stacksize+=STACK_INCRE; } *(s.top)=e; s.top++; printf("向栈中已经成功压入第%d个元素:%d\n",i,e); //i++;

c语言编写的栈的实现

stack.h #ifndef _STACK_H_ #define _STACK_H_ #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define STACK_INIT_SIZE 100 // 栈储存空间的初始分配量 #define STACKINCREMENT 10 // 储存空间分配增量 typedef int Status typedef char SElemType typedef struct { SElemType *base;// 储存数据元素的数组 SElemType *top; // 栈顶指针 int stacksize; // 当前分配的栈空间大小,以sizeof(SElemType)为单位 }SqStack;

//** 构造一个空栈 Status InitStack(SqStack *S); //** 销毁栈 Status DestroyStack(SqStack *S); //** 栈是否为空 Status StackEmpty(SqStack *S); //** 入栈 Status Push(SqStack *S,SElemType e); //**取栈顶 SElemType GetTop(SqStack *S); //** 出栈 SElemType Pop(SqStack *S); //** 栈长度 int StackLength(SqStack *S);

//** 遍历 Status StackTraverse(SqStack *S,Status( *visit)(SElemType)); Status visit(SElemType e); #endif stack.c #include #include #include #include"stack.h" /*********************************************** ************************************************/ int main(int argc,char* argv[]) { SqStack S; //=(SqStack *)malloc(sizeof(SqStack));

C语言实现十进制转换为任意进制(栈)

实验报告 课程名称:数据结构 年级班级:计算机1712 学号姓名:查玉坤 2017116128 任课教师:康长青

实验目的 设计算法,把十进制整数转换为二至九进制之间的任一进制输出。 实验内容 代码如下: #include #include #define INITSIZE 100 typedef int ElemType; typedef struct { int top; ElemType *base; int stacksize; }sqstack; /*初始化操作(创建一个空栈S)*/ void initstack(sqstack *S) { S->base=(ElemType *)malloc(INITSIZE*sizeof(ElemType)); S->top=0; S->stacksize=INITSIZE; } /*入栈操作(将值为x的数据元素插入到栈S中,使之成为栈顶元素)*/ int push(sqstack *S,ElemType x) { if(S->top>=S->stacksize) {S->base=(ElemType*)realloc(S->base,(S->stacksize+1)*sizeof(ElemType)); if(!S->base) return 0; S->stacksize++; } S->base[S->top++]=x; return 1; } /*输出栈操作(输出自栈顶到栈底的元素值)*/ void list(sqstack *S) { int i;

for(i=S->top-1;i>=0;i--) printf("%d",S->base[i]); printf("\n"); } int main(){ int a,b,Jin,x,X,size; a=1; printf("输入一个十进制数\n"); scanf("%d",&x); X=x; printf("需要转化为多少进制数?\n"); scanf("%d",&Jin); sqstack S; initstack(&S); while(x>=Jin){ a=(x%Jin); b=(x/Jin); push(&S,a); x=b; } push(&S,x); printf("转换的%d进制数为:",Jin); list(&S); printf("验证:\n"); for(int i=S.top;i>0;i--){ if(i-1!=0) printf("%d*(%d^%d)+",S.base[i-1],Jin,i-1); else printf("%d*(%d^0)=%d\n",S.base[i-1],Jin,X); } return 0; }

数据结构C语言版顺序栈上机实验

实验3-1 链栈 [目的] 掌握链栈的实现和简单的应用。 [源代码] /**************************************************** @title: 数据结构实验 @name: <实验3-1> 栈的链式存储结构 @object: [实验目的] 采用链式存储结构实现栈的基本操作 [实验提示] 1. 在stack.h中实现栈的基本操作, 在链式存储结构中可是省去头结点。 2. 在dsp0301.cpp中编写适当的代码,进行测试 @include: stack.h [*] 栈的链式实现 @usage: 请查看"TO-DO列表",根据要求完成代码 @copyright: BTC 2004, Zhuang Bo @author: Zhuang Bo @date: 2004 @description: *****************************************************/ #include #include //for system() #include "stack.h" //链栈 //测试链栈的主程序 int main() { LinkStack s; int x; //输入若干正整数以0结束,依次入栈,然后依次出栈并打印InitStack(s); printf("输入若干正整数以0结束:"); scanf("%d",&x); while(x!=0) { Push(s,x); scanf("%d",&x); } printf("\n出栈结果:");

while(!StackEmpty(s)) { Pop(s,x); printf("%4d",x); } //------------------------------------- // TODO (#1#): 其它测试程序 //------------------------------------- DestroyStack(s); //销毁栈 system("PAUSE"); return 0; } /* Name: 栈的链式实现 Copyright: Author: Date: Description: */ #ifndef STACK_H_INCLUDED #define STACK_H_INCLUDED #include "ds.h" //for Status,OK ... #ifndef ElemType #define ElemType int /* 数据元素类型默认为int */ #define ELEMTYPE_TAG #endif /////////////////////////////////////////////////////////// //链栈的存储结构定义 typedef struct LNode { ElemType data; struct LNode *next; } LNode, *LinkList; typedef LinkList LinkStack; //链栈类型

CC语言实现的数据结构课程设计的计算器堆栈

C、C++语言实现的数据结构课程设计的计算器(堆栈) /* // 我真诚地保证: // 我自己独立地完成了整个程序从分析、设计到编码的所有工作。 // 如果在上述过程中,我遇到了什么困难而求教于人,那么,我将在程序实习报告中// 详细地列举我所遇到的问题,以及别人给我的提示。 // 我的程序里中凡是引用到其他程序或文档之处, // 例如教材、课堂笔记、网上的源代码以及其他参考书上的代码段, // 我都已经在程序的注释里很清楚地注明了引用的出处。 // 我从未没抄袭过别人的程序,也没有盗用别人的程序, // 不管是修改式的抄袭还是原封不动的抄袭。 // 我编写这个程序,从来没有想过要去破坏或妨碍其他计算机系统的正常运转。 // <李雷阳> */ /******************************************************************** 用堆栈做的计算器程序* 创建者:李雷阳* 创建时间:2011.03.12 * 最后修改时间:2011.03.15 * /******************************************************************** /******************************************************************** 本程序功能:实现用堆栈处理计算表达式 具体内容: I: 如果算式里面有计算式不应该出现的字符,则将其智能略去 如:将(1.4a54+2f.6)*3.09s+4ff看成(1.454+2.6)*3.09+4 II: 检查括号是否匹配,如果匹配,再检查是否出现在合法位置 如:(8*(7-4)不匹配,以及65*(72+98)(70-45)匹配但是不合法 III: 检查计算数与计算符号的数量是否合格 如:+23-4* 、23-4*、+23-4 等等

C语言 栈的指针实现

C语言栈的指针实现 #include #include #include typedef struct snode *slink; typedef struct snode { //创建栈,储存元素 //StackItem element; int element; slink next; }StackNode; void Error(char *s) { printf("%s\n", s); system("pause"); exit(1); } slink NewStackNode() { slink p; if ((p = (StackNode *)malloc(sizeof(StackNode))) == 0)

Error("Echausted memory."); else return p; } //数据成员element 存储栈元素,next 是指向下一个结点的指针,函数NewStackNode()创建一个新结点 //用指针实现的链栈 typedef struct Istack *Stack; typedef struct Istack { slink top; //栈顶结点指针 }Lstack; /*top 是指向栈顶结点的指针*/ Stack StackInit() //将top 置为空指针,创建一个空栈 { Stack S = (Lstack *)malloc(sizeof*S); S->top = 0; return S; } int StackEmpty(Stack S) //简单的检测指向栈顶的指针top 是否为空指针 { return S->top == 0; } int StackFull(Stack S) //通过StackMenFull()为栈S试分配一个新结点,检测栈空间是否

C语言堆和栈的区别

堆和栈的区别 一、预备知识—程序的内存分配 一个由c/C++编译的程序占用的内存分为以下几个部分 1、栈区(stack)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。 2、堆区(heap)—一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。 3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放 4、文字常量区—常量字符串就是放在这里的。程序结束后由系统释放 5、程序代码区—存放函数体的二进制代码。 二、例子程序 这是一个前辈写的,非常详细 //main.cpp int a = 0; 全局初始化区 char *p1; 全局未初始化区 main() { int b; 栈 char s[] = "abc"; 栈 char *p2; 栈 char *p3 = "123456"; 123456\0在常量区,p3在栈上。 static int c =0;全局(静态)初始化区 p1 = (char *)malloc(10); p2 = (char *)malloc(20); 分配得来得10和20字节的区域就在堆区。 strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。 } 二、堆和栈的理论知识 2.1申请方式 stack: 由系统自动分配。例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间heap: 需要程序员自己申请,并指明大小,在c中malloc函数 如p1 = (char *)malloc(10); 在C++中用new运算符 如p2 = (char *)malloc(10); 但是注意p1、p2本身是在栈中的。 2.2

c语言实现栈的操作

#include #include #define howlarge 100 typedefstruct{ int *top; int *base; int large; }roud; voidcreat(roud&l) { l.base=l.top=(int *)malloc(howlarge*sizeof(int)); if(!l.base) exit(0); https://www.wendangku.net/doc/6015410382.html,rge=howlarge; } void push(roud&l,int n) { if(l.top-l.base>=https://www.wendangku.net/doc/6015410382.html,rge) { l.base=(int *)realloc(l.base,(https://www.wendangku.net/doc/6015410382.html,rge+howlarge)*sizeof(int)); if(!l.base) exit(0); l.top=l.base+howlarge; https://www.wendangku.net/doc/6015410382.html,rge+=howlarge; } int i=0,k=0; for(;i=https://www.wendangku.net/doc/6015410382.html,rge) { l.base=(int *)realloc(l.base,(https://www.wendangku.net/doc/6015410382.html,rge+howlarge)*sizeof(int)); if(!l.base) exit(0); l.top=l.base+howlarge; https://www.wendangku.net/doc/6015410382.html,rge+=howlarge; } int k; printf("请输入栈头元素\n"); scanf("%d",&k); *l.top++=k; l.top--; }

相关文档
相关文档 最新文档