文档库 最新最全的文档下载
当前位置:文档库 › 第四章电涡流传感器

第四章电涡流传感器

第四章电涡流传感器
第四章电涡流传感器

教师授课方案(首页)

授课班级09D电气1、电气2 授课日期

课节 2 课堂类型讲授

课题第四章电涡流传感器第一节电涡流传感器的工作原理第二节电涡流传感器的结构与特性第三节测量转换电路第四节电涡流传感器的应用

第四节电涡流接近开关

教学目的与要求【知识目标】1、了解电涡流传感器的工作原理2、掌握电涡流传感器的

测量转换电路(AM、FM)3、了解电涡流传感器的应用4、电涡流式接

近开关的原理、结构、特性参数、应用及掌握接线方法。

【能力目标】培养学生NPN、PNP常开、常闭接线的技能及理论联系

实际的能力。

【职业目标】通过学生理论及技能的学习,培养学生爱岗敬业的情感目标。

重点难点重点:1、掌握电涡流传感器的测量转换电路(AM、FM)2、电涡流式接近开关的接线

难点:电涡流式接近开关NPN、OC门常开输出电路

教具教学辅助活动教具:微波炉、电涡流传感器、多媒体课件、习题册教学辅助活动:提问、学生讨论

一节教学过程安排复习分钟讲课

1、了解电涡流传感器的工作原理

2、掌握电涡流传感器的测量转换电路(AM、

FM)

3、了解电涡流传感器的应用

4、电涡流式接近开关的原理、结构、特性参

数、应用及掌握接线方法。

78分钟小结

利用10分钟时间与学生互动答疑

10分钟作业习题册第四章电涡流传感器习题2分钟

任课教师:叶睿2011年1月20日审查教师签字:年月日

教案附页【复习提问】

上节课知识点:

因上节课做过阶段性复习

第四章电涡流式传感器

第一节电涡流传感器的工作原理

【本节内容设计】

通过课件与教师讲授电涡流效应及肌肤效应,掌握电涡流传感器的工作原理、并举例电磁炉的工作加以巩固。

【授课内容】

一、电涡流效应以及集肤效应

金属导体置于变化的磁场中时,导体表面就会有感应电流产生。电流的流线在金属体内自行闭合,这种由电磁感应原理产生的旋涡状感应电流称为电涡流,这种现象称为电涡流效应。

当高频(100kHz左右)信号源产生的高频电压施加到一个靠近金属导体附近的电感线圈L1时,将产生高频磁场H1。如被测导体置于该交变磁场范围之内时,被测导体就产生电涡流i2。i2在金属导体的纵深方向并不是均匀分布的,而只集中在金属导体的表面,这称为集肤效应(也称趋肤效应)。

二、结论:如果控制上式中的f、 、σ、r不变,电涡流线圈的阻抗Z 就成为间距x的单值函数,这样就成为非接触位移传感器。

如果控制x、i1、f不变,就可以用来检测与表面电导率σ有关的表面温度、表面裂纹等参数,或者用来检测与材料磁导率μ有关的材

料型号、表面硬度等参数。

高频电流通过励磁线圈,产生交变磁场,在铁质锅底会产生无数的电涡流,使锅底自行发热,烧开锅内的食物。

第二节传感器的结构及特性

【本节内容设计】

通过课件与教师简介电涡流传感器的探头及特性

【授课内容】

一、电涡流探头结构

电涡流传感器的传感元件是一只线圈,俗称为电涡流探头。激励源频率较高(数十千赫至数兆赫)。

1-电涡流线圈2-探头壳体3-壳体上的位置调节螺纹4-印制电路板5-夹持螺母6-电源指示灯7-阈值指示灯8-输出屏蔽电缆线

9-电缆插头

二、特性

探头的直径越大,测量范围就越大,但分辨力就越差,灵敏度也降低。举例:大直径电涡流探雷器定性测量。探头的直径越大,测量范围也越大,分辨力越差,灵敏度越低。

三、被测体材料、形状、大小对灵敏度的影响

1、被测体为圆盘状物体的平面时,物体的直径大于线圈直径的2倍以上,否则将使灵敏度降低;被测体为轴状圆柱体的圆弧表面时,它的直径应大于线圈直径的4倍以上。

2、被测物体厚度为0.2mm

3、测量时,尽量避开其它导体,以免干扰磁场,引起线圈的附加损失。

第三节传感器的测量转换电路

【本节内容设计】

通过课件与教师讲授电涡流传感器的测量转换电路重点使学生掌握(AM、FM)两种转换电路。应用、以及电涡式接近开关,重点使学生掌握测量转换电路、电涡流式接近开关的接线。

【授课内容】

一、调幅式转换电路(AM)

1、谐振时:

石英振荡器产生稳频稳幅高频振荡电压(100kHz~1MHz)用于激励电涡流线圈。金属材料远离探头,调节C0,产生谐振输出较大Uo 2、被测体靠近探头时:

在高频磁场中产生电涡流,引起电涡流线圈端电压的衰减,再经高放、检波、低放电路,最终输出的直流电压U o反映了金属体对电涡流线圈的影响(例如两者之间的距离等参数)。

被测体可以是导磁性物体也可以是非导磁性物体,与探头间距越小,输出电压就越低。

缺点是:不是线性关系,必须用千分尺逐点标定后经计算机线性化处理用数码管显示。

温漂较大,需要采取补偿电路。

定频调幅式测量转换电路

二、调频式电路(FM)

在电涡流传感器中,以LC振荡器的频率f作为输出量。当电涡流线圈与被测体的距离x改变时,电涡流线圈的电感量L也随之改变,引起LC振荡器的输出频率变化,此频率可以通过F/V转换器(又称为鉴频器),将?f转换为电压?U o,由表头显示出电压值。也可以直接将频率信号(TTL电平)送到计算机的计数/定时器,测量出频率的变化。鉴频器特性如图所示。

调频式测量转换电路原理框图及特性

a)信号流程b)鉴频器特性

第四节电涡流传感器的应用

【本节内容设计】

通过课件与教师讲授电涡流传感器的应用。

【授课内容】

电涡流探头线圈的阻抗受众多因素影响,例如金属材料的厚度、尺寸、形状、电导率、磁导率、表面因素、距离等。只要固定一个量就可以用电涡流传感器来测量剩下的一个因素。应用十分广泛,属于定性测量。

如果要做定量测量,也要用到前面学习的逐点标定、计算机线性纠正。本节课就位移、振动、转速、镀层厚度、安全检查门、表面探伤六个应用加以学习。

一、位移测量

测量过程

电涡流位移传感器是一种输出为模拟电压的电子器件。接通电源后,在电涡流探头的有效面(感应工作面)将产生一个交变磁场。当金属物体接近此感应面时,金属表面将吸取电涡流探头中的高频振荡能量,使振荡器的输出幅度线性地衰减,根据衰减量的变化,可地计算出与被检物体的距离、振动等参数。这种位移传感器属于非接触测量,工作时不受灰尘等非金属因素的影响,寿命较长,可在各种恶劣条件下使用。

三、振动测量

测量过程:

用多个传感器放在机械不同部位检测,得到各个位置的振幅值和相位值,画出振动波形图,由频谱仪分析输出波形的振幅及频率,频谱仪在第九章学习。

三、转速测量 测量过程:

若转轴上开z 个槽(或齿),频率计的读数为f (单位为Hz ),则转轴的转速n (单位为r/min )的计算公式为:

z

f

n 60

图4-8 转速测量

a )带有凹槽的转轴及输出波形

b )带有凸槽的转轴及输出波形

1-传感器 2-被测物

四、 镀层厚度测量 测量过程:

由于存在集肤效应,镀层或箔层越薄,电涡流越小。测量前,可先用电涡流测厚仪对标准厚度的镀层和铜箔作出“厚度-输出”电压的标定曲线,以便测量时对照。 五、安全门检查 测量过程

安检门的内部设置有发射线圈和接收线圈。当有金属物体通过时,10KHz 的音频信号产生的交变磁场就会在该金属导体表面产生电涡流,会在接收线圈中感应出电压,计算机根据感应电压的大小、相位来判定金属物体的大小。在安检门的侧面还安装一台“软x 光”扫描仪,它对人体、胶卷无害,用软件处理的方法,可合成完整的光学图像。 六、表面探伤 测量过程:

检查金属表面(已涂防锈漆)的裂纹以及焊接处的缺陷等。在探伤中,传感器应与被测导体保持距离不变。由于缺陷将引起导体电导率、磁导率的变化,使电涡流变小,从而引起输出电压的变化。

第五节 接近开关及应用

【本节内容设计】

通过课件与教师讲授电涡式接近开关,重点使学生掌握电涡流式接近开关的接线。

【授课内容】

接近开关又称无触点开关,它能在一定的距离(几毫米至几十毫米)内检测有无物体靠近。当物体与其接近到设定距离时,就发出动作信号,多数能直接驱动中间继电器。

用于高速计数、测速,确定物体存在和位置,测量物体和液位,用于人体保护和防盗以及无触点按钮。

一、接近开关的特点:

与机械开关相比,接近开关具有如下特点:①非接触检测,不影响被测物的运行工况;②不产生机械磨损和疲劳损伤,工作寿命长;

③响应快,一般响应时间可达几毫秒或十几毫秒;④采用全密封结构,防潮、防尘性能较好,工作可靠性强;⑤无触点、无火花、无噪声,所以适用于要求防爆的场合(防爆型);⑥输出信号大,易于与计算机或PLC等接口;⑦体积小,安装、调整方便。它的缺点是“触点”容量较小,输出短路时易烧毁。

二、接近开关的分类

自感式、差动变压器式:对导磁物体

电涡流式:对导电良好的金属

电容式:对接地的金属或地电位的导电物体

磁性干簧开关(干簧管):对磁性较强的物体

霍尔式:对磁性物体

光电传感器、微波和超声波传感器属于电子

开关,检测距离可较大。

接近开关的主要性能指标

(1)额定动作距离在规定的条件下所测定到的接近开关的动作距离(单位为mm);

(2)工作距离接近开关在实际使用中被设定的安装距离。在此距离内,不产生误动作;

(3)动作滞差指动作距离与复位距离之差的绝对值。滞差大,对外界的干扰以及被测物的抖动等的抗干扰能力就强;

(4)重复定位精度(重复性) 它表征多次测量动作距离。其数值的离散性的大小一般为动作距离的1%~5%。离散性越小,重复定位精度越高。

(5)动作频率指每秒连续不断地进入接近开关的动作距离后又离开的被测物个数或次数。

四、接近开关的规格及接线方式

接近开关的一种典型三线制接线方式

引线的颜色:

棕色引线为正电源(18~35V);蓝色接地(电源负极);黑色为输出端。

接近开关的一种典型三线制接线方式及特性

a)三线制接近开关b)NPN、OC门常开输出电路接法

分析工作过程:

当被测物体未靠近接近开关时,U B=0,I B=0,OC门截止,OUT 端为高阻态(接入负载后为接近电源电压的高电平);当被测体靠近到动作距离(x nin)时,OC门的输出端对地导通,OUT端对地为低电平(约0.3V)。将中间继电器KA跨接在+V CC与OUT端上时,KA就处于吸合(得电)状态。

当被测物体远离该接近开关,到达x max时,OC门再次截止,KA 失电。通常将接近开关设计为具有“施密特特性”,Δx为接近开关的动作滞差(也称为“动作回差”)。回差越大,抗机械振动干扰的能力就越强。

接续流二极管的原因

工作过程中,若续流二极管VD虚焊或未接,当接近开关复位的瞬间,KA产生的过电压(e=-N d i/d t)有可能将OC门击穿。

注意事项:

如果不慎将+V CC与OUT端短接,在接近开关动作时,就会有过电流流入OC门的集电极,并可能将其烧毁。

五、接近开关的应用

1、生产工件加工定位与计数

待加工的金属工件运送到5时,该接近开关动作,传送机构减速;工件到6时,接近开关动作,传动带停止,同时,接近开关动作一次,计数一次。

2、成品零件缺位检测在流水线的最后一道工序,安装一套多种微型开关的装置,位置与被检测零件位置对应,调节每个接近开关的灵敏度,缺少零件时报警。

[知识小结]:

通过对电涡流式传感器的原理、测量转换电路、应用以及接近开关的学习,学生掌握AM、FM测量转换电路以及接近开关的接线方法。[教学后记]:通过课堂习题的检验,作业的批改,第二堂课的提问,检验出学生对本节课的知识掌握良好,可以顺利地进行下一阶段的学习.

[板书设计]:如下

第四节电涡流传感器的应用

第四章电涡流传感器

第一节电涡流传感器的原理

一、电涡流与集服效应

二、原理及举例

第二节电涡流传感器规格、特性

一、规格

二、特性

第三节测量转换电路

一、AM

二、FM

知识小结

电涡流传感器的研究与探讨汇总

档案编号: 毕业设说明书题目:电涡流传感器的研究与探讨 系别:电气工程系 专业:生产过程自动化 班级: 姓名: 指导教师: (共18 页) 年月日

摘要:电涡流传感器是基于涡流效应的新型传感器。由于它具有结构简单、抗干扰能力强、测量精度高、非接触、响应速度快、不受油污等介质影响等优点,因而得到了广泛的应用。但目前的电涡流位移传感器存在着测量范围小,传感器存在非线性问题,这给传感器的应用造成了一定的影响。 本文首先通过对实验室所用的电涡流传感器实验模板的电路进行研究和优化,进而提高电路的抗干扰能力使测量结果的更加准确。其次针对电涡流位移传感器存在的测量范围小,传感器存在非线性问题的改善提出设想即:先对电涡流位移传感器用于位移检测的工作原理及应用进行分析,研究了线圈截面形状及参数变化对涡流传感器线性测量范围和灵敏度的影响;再从电路设计方面提高传感器的稳定性及抗干扰能力,从而为位移测量扩展量程打下基础;最后通过对电涡流传感器测位移实验进行分析处理得出电涡流传感器位移测量范围的扩展方法和改善电涡流传感器非线性问题的方法。 关键词:电涡流传感器; 位移测量; 非线性; 测量范围 Abstract: the eddy current sensor is a new type of sensor based on eddy current effect. Because it is simple in structure, strong anti-jamming capability, high accuracy, non-contact, fast response, not polluted advantages such media influence, and been widely used. But the current electricity eddy displacement sensor measurement range small, there exist nonlinear problem, the sensor to a sensor applications has caused some influence. This paper firstly eddy current sensor used in the laboratory experiment template circuit research and optimization, and improve the anti-interference ability of the circuit more accurate measurement results. Secondly according to the eddy current displacement sensor measurement range small, there exist nonlinear problem of sensor to improve it puts forward the idea of the eddy current is: first displacement detection sensors for displacement of the working principles and applications, research analyzed the coil cross-section

电涡流传感器

电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械的状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 一、电涡流传感器的基本原理 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。 前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定范围内不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z 的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。输出信号的大小随探头到被测体表面之间的间距而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。 其工作过程是:当被测金属与探头之间的距离发生变化时,探头中线圈的Q值

(整理)4第四章传感器的使用.

第四章传感器使用基础 1、振动传感器 现场振动测试采用的传感器一般有非接触式电涡流传感器、速度传感器、加速度传感器和复合传感器(它是由一个非接触式传感器和一个惯性传感器组成)四种。每一种传感器都有它们固有频响特性,其决定了各自的工作范围。如果采用的传感器在超出其线性频响区域工作时,测量得到的读数会产生较大的偏差。下表列出了振动测量中常用的一些传感器的性能和适用范围及优、缺点等。 表1—1 常用的振动传感器及其性能和适应范围 1.1、振动传感器的构成及工作原理 振动传感器是将机械振动量转换为成比例的模拟电气量的机电转换装置。

传感器至少有 机械量的接收和 机电量的转换二 个单元构成。机械 接收单元感受机 械振动,但只接收 位移、速度、加速 度中的一个量;机 电转换单元将接收到的机械量转换成模拟电气量,如电荷、电动势、电阻、电感、电容等;另外,还配有检测放大电路或放大器,将模拟电气量转换、放大为后续分析仪器所需要的电压信号,振动监测中的所有振动信息均来自于此电压信号。 1.2、振动传感器的类型 振动传感器的种类很多,且有不同的分类方法。按工作原理的不同,可分为电涡流式、磁电式(电动式)、压电式;按参考坐标的不同,可分为相对式与绝对式(惯性式);按是否与被测物体接触,可分为接触式与非接触式;按测量的振动参数的不同,可分为位移、速度、加速度传感器;以及由电涡流式传感器和惯性式传感器组合而成的复合式传感器,等等。 在现场实际振动检测中,常用的传感器有磁电式速度传感器(其中又以绝对式应用较多)、压电式加速度传感器和电涡流式位移传感器。其中,加速度传感器应用最广,而大型旋转机械转子振动的测量几乎都是涡流式传感器。 2.电动力式振动速度传感器的工作原理 固定在壳体内部的永久磁铁,随着外壳与振动物体一起振动,同时,由于内部由弹簧固

检测技术第4章部分练习答案

第四章电涡流传感器思考题与习题答案 1. 单项选择题 1)欲测量镀层厚度,电涡流线圈的激励源频率约为___D___。而用于测量小位移的螺线管式自感传感器以及差动变压器线圈的激励源频率通常约为___B___。 A. 50~100Hz B. 1~10kHz C.10~50kHz D. 50kHz~1MHz 2)可以利用电涡流接近开关原理检测出___C___的靠近程度。 A. 人体 B. 水 C. 黑色金属零件 D. 塑料零件 3)电涡流探头的外壳用___B___制作。 A.不锈钢 B.塑料 C.黄铜 D.玻璃 4)当电涡流线圈靠近非磁性导体(铜)板材后,线圈的等效电感L___C___,调频转换电路的输出频率f___B___。 A. 不变 B. 增大 C. 减小 5)欲探测埋藏在地下的金银财宝,应选择直径为___D___左右的电涡流探头。欲测量油管表面和细小裂纹,应选择直径为___B___左右的探头。 A. 0.1mm B. 5mm C. 50mm D. 500mm 6)用下图的电涡流方法测量齿数Z=60的齿轮的转速,测得f=400Hz,则该齿轮的转速n等于___A___r/min。 A. 400 B. 3600 C. 24000 D. 60 两种测量转速的方法 a)电感b)磁电式(电磁感应式) 1-被测旋转体(钢质齿轮)2-导磁铁心3-绕组4-永久磁铁5-汽车发动机曲轴转子 z-齿数T-传感器输出脉冲的周期 2. 用一电涡流式测振仪测量某机器主轴的轴向窜动,已知传感器的灵敏度为25mV/mm。最大线性范围(优于2.5%)为5mm。现将传感器安装在主轴的右侧,如图a 所示。使用计算机记录仪记录下的振动波形如图b所示。问: 电涡流式测振仪测量示意图 1)轴向振动a m sin t的振幅a m为____A____。 A. 1.6mm B. 3.2mm C. 8.0mm D. 4.0mm 2)主轴振动的基频f是____A____Hz。

电涡流传感器基本原理

电涡流传感器 原理图 1、什么是电涡流效应? 电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。 注意:电涡流传感器要求被测体必须是导体。 传感器探头里有小型线圈,由控制器控制产生震荡电磁场,当接近被测体时,被测体表面会产生感应电流,而产生反向的电磁场。这时电涡流传感器根据反向电磁场的强度来判断与被测体之间的距离。2、电涡流传感器的工作原理与结构

。 传感器线圈由高频信号激励,使它产生一个高频交变磁场φi,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流ie,而此电涡流又将产生一交变磁场φe阻碍外磁场的变化。从能量角度来看,在被测导体内存在着电涡流损耗(当频率较高时,忽略磁损耗)。能量损耗使传感器的Q值和等效阻抗Z 降低,因此当被测体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电感L均发生变化,于是把位移量转换成电量。这便是电涡流传感器的基本原理 3、电涡流传感器的实际应用 电涡流传感器测量齿轮转速的应用

4、使用电涡流传感器时的注意事项 对被测体的要求 为了防止电涡流产生的磁场影响仪器的正常输出安装时传感器头部四周必须留有一定范围的非导电介质空间,如果在某一部位要同时安装两个以上的传感器,就必须考虑是否会产生交叉干扰,两个探头之间一定要保持规定的距离,被测体表面积应为探头直径3倍以上,当无法满足3倍的要求时,可以适当减小,但这是以牺牲灵敏度为代价的,一般是探头直径等于被测体表面积时,灵敏度降低至70%,所以当灵敏度要求不高时可适当缩小测量表面积。

电涡流式传感器

第四章电涡流式传感器 教学要求 1.了解电涡流效应和等效阻抗分析。 2.熟悉电涡流探头结构和被测体材料、形状和大小对灵敏度的影响。 3.熟悉电涡流式传感器的测量转换电路。 4.掌握电涡流式传感器的应用。 5.掌握接近开关的分类和特点。 教学手段多媒体课件、各种电涡流传感器演示 教学课时3学时 教学内容: 第一节电涡流传感器工作原理 一、电涡流效应(演示) 从金属探测器的探测过程导出电涡流传感器的电涡流效应。从金属探测器的结构来说明图4-1电涡流传感器工作原理。 二、等效阻抗分析 图4-1中的电感线圈称为电涡流线圈。分析它的等效电路:一个电阻R和一个电感L 串联的回路。电涡流线圈受电涡流影响时的等效阻抗Z的函数表达式(分析其实际价值)Z=R+jωL=f(i1、f、μ、σ、r、x)(4-1)结论:电涡流线圈的阻抗与μ、σ、r、x之间的关系均是非线性关系,解决方法:必须由微机进行线性化纠正。 第二节电涡流传感器结构及特性 一、电涡流探头结构(实物演示) 电涡流传感器的传感元件是一只线圈,俗称为电涡流探头。 线圈结构:用多股较细的绞扭漆包线(能提高Q值)绕制而成,置于探头的端部,外部用聚四氟乙烯等高品质因数塑料密封,(图4-2)。CZF-1系列电涡流探头的性能: 表4-1 CZF-1系列传感器的性能 提问:请同学由上表分析得出结论:探头的直径越大,测量范围就越大,但分辨力就越差,灵敏度也降低。 二、被测体材料、形状和大小对灵敏度的影响 线圈阻抗变化与哪些因素有关:金属导体的电导率、磁导率等。 第三节测量转换电路 (简单介绍调幅式和调频式测量转换电路。) 一、调幅式电路 调幅式:以输出高频信号的幅度来反映电涡流探头与被测金属导体之间的关系。图4-3:高频调幅式电路的原理框图。 ?

北航电涡流传感器实验报告

电涡流传感器实验报告 38030414蔡达 一、实验目的 1.了解电涡流传感器原理; 2.了解不同被测材料对电涡流传感器的影响。 二、实验仪器 电涡流传感器实验模块,示波器:DS5062CE,微机电源:WD990型,士12V,万用表:VC9804A型,电源连接电缆,螺旋测微仪 三、实验原理 电涡流传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,在与其平行的金属片上会感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关,当平面线圈、被测体(涡流片)、激励源确定,并保持环境温度不变,阻抗Z只与距离X有关,将阻抗变化转为电压信号V输出,则输出电压是距离X的单值函数。

四. 实验数据及处理 1.铁片 0.5 1 1.52 2.5 3 3.5 电涡流传感器电压位移曲线—铁片 电压/V 位移/mm

0.5 1 1.5 2 2.53 3.5 电涡流传感器电压位移拟合曲线—铁片 电压/V 位移/mm 其线性工作区为0.6——3.4,对该段利用polyfit 进行函数拟合,可得V=-1.0488X-1.2465 2.铜片

电涡流传感器电压位移曲线—铜片 电压/V 位移/mm 2.2 2.4 2.6 2.83 3.2 3.4 3.6 -6-5.95-5.9-5.85 -5.8-5.75-5.7 -5.65-5.6-5.55-5.5电涡流传感器电压位移拟合曲线—铜片 电压/V 位移/mm 其线性工作区为2.4——3.4,对该段利用polyfit 进行函数拟合,可得V= -0.4500X -4.4667

电涡流式传感器的应用

电涡流式传感器的应用 摘要:随着现代测量、控制盒自动化技术的发展,传感器技术越来越受到人们的重视。特别是近年来,由于科学技术的发展及生态平衡的需要,传感器在各个领域的作用也日益显著。传感器技术的应用在许多个发达国家中,已经得到普遍重视。电涡流传感器已成为目前电测技术中非常重要的检测手段,广泛的应用于工程测量和科学实验中。 关键词:电涡流式传感器传感器技术 引言:电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 一.电涡流传感器的工作原理: 电涡流传感器利用检测线圈与被测导体之间的涡流效应进行测量,具有非接触测量、灵敏度高、频响特性好、抗干扰能力强等优点,其基本原理如图l所示。当线圈l通以交流电I1时,其产生的交变磁场H1会在被测导体2中产生电涡流 I2,而I2又产生一交变磁场H2 来阻碍H1的变化,从而使线圈的 等效电感L发生变化。当被测导 体的电阻率、磁导率都确定,只 有x发生变化时,通过分析提取 等效电感与测量位移间的关系, 就可以建立电涡流位移传感器。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子

电涡流式传感器

电涡流式传感器 根据初中学的法拉第电磁感应原理,块状金属导体置于变化的磁场中,导体内将产生呈涡旋状的感应电流,称之为电涡流或涡流,这种现象称为涡流效应。 电涡流传感器是利用电涡流效应,将位移、温度等非电量转换为阻抗的变化或电感的变化从而进行非电量电测的。 目前生产的变间隙位移传感器,器量程范围为300m~800mm。 将块状金属导体置于通有交变电流的传感器线圈磁场中。根据法拉第电磁感应原理,由于电流的变化,在线圈周围就产生一个交变磁场,当被测导体置于该磁场范围之内,被测导体内便产生电涡流,电涡流也将产生一个新磁场,和方向相反,抵消部分原磁场,从而导致线圈的电感量、阻抗和品质因素发生变化。

一、电涡流式传感器的结构 电涡流式传感器结构比较简单,主要由一个安置在探头壳体的扁平圆形线圈构成。 二、电涡流式传感器的测量电路 利用电涡流式变换元件进行测量时,为了得到较强的电涡流效应,通常激磁线圈工作在较高频率下,所以信号转换电路主要有调幅电路和调频电路两种。 调幅式(AM)电路

调频式(FM)电路 调频式电路(100kHz~1MHz)结构如图所示: 当电涡流线圈与被测体的距离x改变时,电涡流线圈的电感量L 也随之改变,引起LC振荡器的输出频率变化,此频率可直接用计算机测量。 如果要用模拟仪表进行显示或记录时,必须使用鉴频器,将△?转换为电压U0。 三、电涡流式传感器的应用电路 电涡流式传感器具有测量范围大、灵敏度高、结构简单、抗干扰能力强和可以非接触测量等优点,被广泛应用于工业生产和科学研究各个领域中。 1、电磁炉

电磁炉是我们日常生活中必备的家用电器之一,涡流传感器是其核心器件之一,高频电流通过励磁线圈,产生交变磁场;在铁质锅底会产生无数的电涡流,使锅底自行发热,烧开锅内的食物。 2、电涡流探雷器 3、电涡流式接近开关 接近开关又称无触点行程开关。它能在一定的距离(几毫米至几十毫米)内检测有无物体靠近。 当物体接近到设定距离时,就可发出“动作”信号。接近开关的核心部分是“感辨头”,它对正在接近的物体有很高的感辨能力。这种接近开关只能检测金属。

电涡流传感器应用设计实验

电涡流传感器应用设计实验 一、创新实践目的 熟悉和掌握电涡流传感器测量原理,及其位移测量电路、设计方法和应用。 二、器件与仪器 1、主要器件:电涡流传感实验模板、电涡流传感器、振动台(2000型)、直流稳压电源、 低通滤波模板、螺旋测微头、不同面积的铝被测体、铜和铝的被测体圆盘、铁圆片、导线若干。 2、主要仪器:数显表、频率表、示波器、电压表。 三、基础设计与实践 1、设计内容 (1)设计一种利用电涡流传感器检测到不同金属静态位移的系统; (2)设计一种电涡流传感器测量振动的方法。 2、研究内容 (1)研究不同的被测体材料对电涡流传感器性能的影响; (2)研究电涡流传感器在实际应用中其位移特性与被测体的形状和尺寸的关系; (3)研究电涡流传感器的动态性能及测量原理与方法。 3、设计提示 (1)电涡流传感器的原理参考教材《检测与转换技术》(童敏明、唐守锋编); (2)电涡流传感器测量电路框图如图7所示,其中涡流线圈L和测量电器中的电容C 组成谐振电路,谐振频率为: f= 图7 电涡流传感器测量电路框图 (3)电涡流传感器的变频调幅式测量电路原理如图8所示;

图8 变频调幅式测量电路原理 (4)电涡流传感器的位移检测电路如图9所示。 图9 电涡流传感器位移检测电路 (5)电涡流传感器的静态位移测量安装如图10(a)所示,振动测量安装如图10(b)所示; (a)静态位移测量安装图;(b)振动测量安装如图 图10 电涡流传感器的安装示意图

四、基础实践注意事项 (1)被测体与电涡流传感器测试试头平面必须平行并将测头尽量对准被测体中间,以减少涡流损失; (2)传感器在测铁材料初始时可能会出现一段死区; (3)振动幅度不宜过大,以免撞击机壳,损坏仪器。 五、创新设计与实践 题目一、根据所掌握的传感器知识,设计一个金属零件计数分装系统。 1、设计要求: (1)选用合适的传感器了类型,将传感器探头安装在适当的位置上; (2)金属零件陆续从落料管中落到正下方的零件盒中时,能够有效地检测下落零件的个数; (3)当零件盒中的数量达到设定值N时停止落料,传送机构动作,将下一个空盒传送到落料管的正下方。 2、设计提示: 如下图所示为金属零件自动装箱检测控制系统示意图。 金属零件分装、计数系统 根据要求不能采用电涡流接近开关,而只能采用输出模拟电压的电涡流传感器及配套的测量转换电路(应考虑下落物体位置的随机性)。 3、创新实践要求: (1)依据设计思路画出传感器安装简图,测量转换电路图,并说明其工作原理及优缺点; (2)进行硬件电路连接测试,实现设计功能要求。 4、设计报告要求: (1)画出传感器安装图、测量转换电路图; (2)传感器原理说明和电路工作原理说明; (3)各元器件的选择与计算; (4)实践结果。

电涡流位移传感器的原理..

电涡流位移传感器的工作原理: 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。 在高速旋转机械和往复式运动机 械状态分析,振动研究、分析测 量中,对非接触的高精度振动、 位移信号,能连续准确地采集到 转子振动状态的多种参数。如轴 的径向振动、振幅以及轴向位置。 电涡流传感器以其长期工作可靠 性好、测量围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。

前置器中高频振荡电流通过延伸电缆流入探头线圈, 在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I 和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定围不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。

电涡流传感器详解

电涡流传感器详解 一、电涡流传感器的基本类型 分为高频反射式电涡流传感器和低频透射式电涡流传感器。 激励频率的选择原则为:待测导体的厚度大,应选择较低的激励频率以保证线性度,反之则使用较高激励频率以提高灵敏度。 二、电涡流传感器的典型应用 电涡流传感器系统广泛应用于电力、石油、化工、冶金等行业和一些科研单位。对汽轮机、水轮机、鼓风机、压缩机、空分机、齿轮箱、大型冷却泵等大型旋转机械轴的径向振动、轴向位移、键相器、轴转速、胀差、偏心、以及转子动力学研究和零件尺寸检验等进行在线测量和保护。 胀差测量 斜坡式胀差测量 补偿式胀差测量 双斜面胀差测量 振动测量 轴位移测量 轴心轨迹测量 差动测量 动力膨胀 转子动平径向运动分析 转速和相位差测试 转速测量 表面不平整度测量 裂痕测量 非导电材料厚度测量 金属元件合格检测 轴承测量 换向片测量

1、相对振动测量 测量径向振动,可以由它分析轴承的工作状态,还可以看到分析转子的不平衡,不对中等机械故障。电涡流传感器系统可以提供对于下列关键或是基础机械状态监测所需要的信息: ●工业透平,蒸汽/燃气●压缩机,径向/轴向 ●膨胀机●动力发电透平,蒸汽/燃气/水利 ●发动马达●发动机 ●励磁机●齿轮箱 ●泵●风箱 ●鼓风机●往复式机械 (1)相对振动测量(小型机械) 振动测量同样可以用于对一般性的小型机械进行连续监测。电涡流传感器系统可为如下各种机械故障的早期判别提供重要信息: ●轴的同步振动●油膜失稳 ●转子摩擦●部件松动 ●轴承套筒松动●压缩机踹振 ●滚动部件轴承失效●径向预载,内部/外部包括不对中 ●轴承巴氏合金磨损●轴承间隙过大,径向/轴向 ●平衡(阻气)活塞●联轴器“锁死”磨损/失效 ●轴裂纹●轴弯曲 ●齿轮咬合问题●电动马达空气间隙不匀 ●叶轮通过现象●透平叶片通道共振 (2)偏心测量 偏心是在低转速的情况下,电涡流传感器系统可对轴弯曲的程度进行测量,这些弯曲可由下列情况引起: ●原有的机械弯曲●临时温升导致的弯曲 ●重力弯曲●外力造成的弯曲 偏心的测量,对于评价旋转机械全面的机械状态,是非常重要的。特别是对于装有透平监测仪表系统(TSI)的汽轮机,在启动或停机过程中,偏心测量已成为不可少的

电涡流位移传感器的原理及应用

《检测技术与仪表》课程设计报告 题目:《电涡流位移传感器的原理及应用》学院: 专业: 姓名: 学号:

设计内容摘要: 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 电涡流位移传感器的工作原理: 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。 在高速旋转机械和往复式运动机 械状态分析,振动研究、分析测 量中,对非接触的高精度振动、 位移信号,能连续准确地采集到 转子振动状态的多种参数。如轴 的径向振动、振幅以及轴向位置。

电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。 前置器中高频振荡电流通过延伸电缆流入探头线圈, 在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的

第四章电涡流传感器

教师授课方案(首页) 授课班级09D电气1、电气2 授课日期 课节 2 课堂类型讲授 课题第四章电涡流传感器第一节电涡流传感器的工作原理第二节电涡流传感器的结构与特性第三节测量转换电路第四节电涡流传感器的应用 第四节电涡流接近开关 教学目的与要求【知识目标】1、了解电涡流传感器的工作原理2、掌握电涡流传感器的 测量转换电路(AM、FM)3、了解电涡流传感器的应用4、电涡流式接 近开关的原理、结构、特性参数、应用及掌握接线方法。 【能力目标】培养学生NPN、PNP常开、常闭接线的技能及理论联系 实际的能力。 【职业目标】通过学生理论及技能的学习,培养学生爱岗敬业的情感目标。 重点难点重点:1、掌握电涡流传感器的测量转换电路(AM、FM)2、电涡流式接近开关的接线 难点:电涡流式接近开关NPN、OC门常开输出电路 教具教学辅助活动教具:微波炉、电涡流传感器、多媒体课件、习题册教学辅助活动:提问、学生讨论 一节教学过程安排复习分钟讲课 1、了解电涡流传感器的工作原理 2、掌握电涡流传感器的测量转换电路(AM、 FM) 3、了解电涡流传感器的应用 4、电涡流式接近开关的原理、结构、特性参 数、应用及掌握接线方法。 78分钟小结 利用10分钟时间与学生互动答疑 10分钟作业习题册第四章电涡流传感器习题2分钟 任课教师:叶睿2011年1月20日审查教师签字:年月日

教案附页【复习提问】 上节课知识点: 因上节课做过阶段性复习 第四章电涡流式传感器 第一节电涡流传感器的工作原理 【本节内容设计】 通过课件与教师讲授电涡流效应及肌肤效应,掌握电涡流传感器的工作原理、并举例电磁炉的工作加以巩固。 【授课内容】 一、电涡流效应以及集肤效应 金属导体置于变化的磁场中时,导体表面就会有感应电流产生。电流的流线在金属体内自行闭合,这种由电磁感应原理产生的旋涡状感应电流称为电涡流,这种现象称为电涡流效应。 当高频(100kHz左右)信号源产生的高频电压施加到一个靠近金属导体附近的电感线圈L1时,将产生高频磁场H1。如被测导体置于该交变磁场范围之内时,被测导体就产生电涡流i2。i2在金属导体的纵深方向并不是均匀分布的,而只集中在金属导体的表面,这称为集肤效应(也称趋肤效应)。 二、结论:如果控制上式中的f、 、σ、r不变,电涡流线圈的阻抗Z 就成为间距x的单值函数,这样就成为非接触位移传感器。 如果控制x、i1、f不变,就可以用来检测与表面电导率σ有关的表面温度、表面裂纹等参数,或者用来检测与材料磁导率μ有关的材

电涡流传感器技术说明

电涡流传感器技术说明-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

电涡流位移、振动传感器 第一节 概述 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械的状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。在所有与机械状态有关的故障征兆中,机械振动测量是最具权威性的,这是因为它同时含有幅值、相位和频率的信息。机械振动测量占有优势的另一个原因是:它能反应出机械所有的损坏,并易于测量。从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 第二节 探头、(延伸电缆)、前置器以及被测体构成基本工作系统 。前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。如果在这一交变磁场的有效范围内没有金属材料靠近,则这一磁场能量会全部损失;当有被测金属体靠近这一磁场,则在此金属表面产生感应电流,电磁学上称之为电涡流。与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定范围内不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金

测试技术复习资料传感器第四章-考试重点

测试技术传感器第四章题型小结 一、选择题 1. 电涡流式传感器是利用什么材料的电涡流效应工作的。( A ) PVF A. 金属导电 B. 半导体 C. 非金属 D. 2 2. 为消除压电传感器电缆分布电容变化对输出灵敏度的影响,可采用(B )。 A. 电压放大器 B. 电荷放大器 C. 前置放大器 D. 电容放大器 3. 磁电式绝对振动速度传感器的数学模型是一个(B )。 A. 一阶环节 B. 二阶环节 C. 比例环节 D. 高阶环节 4. 磁电式绝对振动速度传感器的测振频率应(A )其固有频率。 A. 远高于 B. 远低于 C. 等于 D. 不一定 5. 随着电缆电容的增加,压电式加速度计的输出电荷灵敏度将(C )。 A. 相应减小 B. 比例增加 C. 保持不变 D. 不确定 6. 压电式加速度计,其压电片并联时可提高(B )。 A. 电压灵敏度 B. 电荷灵敏度 C. 电压和电荷灵敏度 D. 保持不变 7. 调频式电涡流传感器的解调电路是(C )。 A. 整流电路 B. 相敏检波电路 C. 鉴频器 D. 包络检波电路 8. 压电式加速度传感器的工作频率应该(C )其固有频率。 A. 远高于 B. 等于 C. 远低于 D. 没有要求 9. 下列传感器中哪个是基于压阻效应的?( B ) A. 金属应变片 B. 半导体应变片 C. 压敏电阻 D. 磁敏电阻 10. 压电式振动传感器输出电压信号与输入振动的(B )成正比。 A. 位移 B. 速度 C. 加速度 D. 频率 11. 石英晶体沿机械轴受到正应力时,则会在垂直于(B )的表面上产生电荷量。 A. 机械轴 B. 电轴 C. 光轴 D. 晶体表面 12. 石英晶体的压电系数比压电陶瓷的(C )。 A. 大得多 B. 相接近 C. 小得多 D. 不确定 13. 光敏晶体管的工作原理是基于( B )效应。 A. 外光电 B. 内光电 C. 光生电动势 D. 光热效应 14. 一般来说,物性型的传感器,其工作频率范围(A )。 A. 较宽 B. 较窄 C. 较高 D. 不确定 15. 金属丝应变片在测量构件的应变时,电阻的相对变化主要由(B )来决定的。 A. 贴片位置的温度变化 B. 电阻丝几何尺寸的变化 C. 电阻丝材料的电阻率变化 D. 电阻丝材料长度的变化 16. 电容式传感器中,灵敏度最高的是(C )。 A. 面积变化型 B. 介质变化型 C. 极距变化型 D. 不确定 17. 极距变化型电容传感器适宜于测量微小位移量是因为(B ) A. 电容量微小影响灵敏度 B. 灵敏度与极距的平方成反比,间距变化大则产生非线性误差 C. 非接触测量 D. 两电容极板之间距离变化小

电涡流传感器的原理以及实际应用和安装

电涡流传感器的原理以及实际应用和安装 一、概述 我公司#1、#2小汽轮机TSI(汽轮机监视系统)使用美国本特立.内华达公司生产的3500 电涡流传感器系统,本系统为我公司#1、#2小机TSI系统提供准确可靠的监测数据。 在#1、#2小机TSI系统中主要使用了本特立.内华达公司的3500 XL 8 mm 电涡流传感器,这种电涡流传感器提供最大80 mils (2 mm)线性范围和200 mV/mil 的输出。它在大多数机械监测应用中用于径向振动、轴向位移、转速和相位的测量。 二、工作原理 电涡流传感器可分为高频反射式和低频透射式两类,我公司主要使用高频反射式电涡流传感器,下面将对其工作原理作以阐述: 电涡流传感器是基于电磁感应原理而工作的,但又完全不同于电磁感应,并且在实际测量中要避免电磁感应对其的干扰。电涡流的形成:现假设有一线圈中的铁心是由整块铁磁材料制成的,此铁心可以看成是由许多与磁通相垂直的闭合细丝所组成,因而形成了许多闭合的回路。当给线圈通入交变的电流时,由于通过铁心的磁通是随着电流做周期性变化的,所以在这些闭合回路中必有感应电动势产生。在此电动势的作用下,形成了许多旋涡形的电流,这种电流就称为电涡流。电涡流传感器的工作原理如下图所示:

当线圈中通过高频电流i时,线圈周围产生高频磁场,该磁场作用于金属体,但由于趋肤效应,不能透过具有一定厚度的金属体,而仅作用于金属表面的薄层内。在交变磁场的作用下金属表面产生了感应电流Ie,即为涡流。感应电流也产生一个交变磁场并反作用于线圈上,其方向与线圈原磁场方向相反。这两个磁场相互叠加,就改变了原来线圈的阻抗Z,Z的变化仅与金属导体的电阻率ρ、导磁率u、激励电磁强度i、频率f、线圈的几何形状r以及线圈与金属导体之间的距离有关。线圈的阻抗可以用如下的函数式表示:Z=F(ρ、u、i、f、d)。当被测对象的材料一定时,ρ、u为常数,仪表中的i、f、d也为定值,于是Z就成为距离d的单值函数。 三、实际应用 电涡流传感器以其测量线性范围大,灵敏度高,结构简单,抗干扰能力强,不受油污等介质的影响,特别是非接触测量等优点,而得到了广泛的应用。在火电厂中主要应用在以下几个监测项目: 1、转子转速:在机组运行期间,连续监视转子的转速,当转速高于给定值时 发出报警信号或停机信号。其工作原理:根据电涡流传感器的工作原理可知,趋近式电涡流探头和运行的转子齿轮之间会产生一个周期性变化的脉冲量,测出这个周期性变化的脉冲量,即可实现对转子转速的监测。

电涡流传感器的工作原理

ECT -王素红------------------------------------------------------------利用电涡流传感器测量位移 l 电涡流传感器的工作原理 一块金属放置在一个扁平线圈附近,相互并不接触,如图l所示。当线圈中通过以高频正弦交变电流时,线圈周围的空间就产生交变磁场,此交变磁场在邻近金属导体中产生电涡流。而此电涡流也产生交变磁场阻碍外磁场的变化。由于磁场的反作用,使线圈中电流和相位都发生变化。也即引起线圈的等效阻抗发生变化,线圈的电感量也发生变化,因此可用线圈阻抗的变化来反映金属导体的电涡流效应。这就是电涡流传感器的工作原理。 电涡流传感器的最大特点是非接触测量,这是它引起广泛兴趣的主要原因,其优点是灵敏高、结构简单、抗干扰能力强、不受油污等介质的影响。 涡流传感器提离效应的ANSYS模拟* 任吉林,刁海波,唐继红,俞佳,宋凯 在涡流检测中,提离效应是指应用放置式线圈时,线圈与工件之间的距离变化引起线圈阻抗变化的现象。该提离效应对于涡流检测的不同应用场合,可能是干扰因素需要抑制(如导电材料的探伤或电导率测量),可能是有用信息需要提取(如金属基体表面膜层厚度测量) 在涡流检测中,当有交流电通过放置式线圈时,会产生一个交变磁场,线圈接近金属试块时,由于交变磁场的作用会在金属试块上感生出涡流,此涡流也产生一个与原来磁场相反的交变磁场,两个交变磁场相互叠加,便决定了探头线圈的阻抗。当金属板电导率,形状,有无缺陷或提离间隙等外界条件发生变化时,涡流及涡流产生的反磁场也将发生变化,从而线圈的阻抗也随之发生变化。通过探头线圈阻抗变化的测量便可以推断试件影响因素的变化(如电导率,缺陷,膜层厚度等)。 提离效应随着磁场强度变化的不同也有所不同,当磁场强度变化大时,线圈阻抗的变化率也会随之增大。提离效应表现的也很明显。 对于非铁磁性金属板,随着提离间隙的增大,线圈阻抗增大,反映到电阻和电抗上分 别为:电阻随着提离的增大而减小,电抗随着提离的增大而增大。对于不同电导率的金属,阻抗随提离变化的反映也有所不同,在相同提离变化下,随着金属板电导率的增加,金属板上感生出的涡流变大,涡流产生的反磁场也变大,对阻抗的最终影响是使得阻抗的变化量增大。无论金属板电导率怎么变化,提离的最终结果都是使阻抗值趋于线圈的空载值。对于空芯和带有磁芯的线圈来说,在相同的外界条件和施加载荷下,阻抗变化规律一致,只是阻抗的变化量有所不同。通过实际实验的数据可以看出,实验中测量得到的电阻和电抗的值与ANSYS理论分析值相吻合,检测线圈阻抗的变化规律也与ANSYS理论分析规律相符。利用ANSYS分析软件模拟涡流检测中的提离效应问题是方便可行的,且仿真得出的数据准确可信,为涡流检测的应用提供了有意义 新型电涡流测厚测量在胶片厚度系统中的应用 陈才旷,李文庆 由于各种测量方式本身的原理以及生产过程中的设备和环境的实际情况,使其又具有各自的优缺点,在各自的使用方面有着不同的局限性。其中: (1)射线测量方式:具有精度较高,可对单位重量直接进行测量等特点,所以,国外也称该测量方式为基重测量,但该测量方式最大的问题是安全与环保问题,随着人们环保意识的提高,对于采用射线方式已经逐渐退出历史舞台,特别是老设备上该测量方式的退役、更换,对射源的处理、安全防护要求更高。 (2)激光测量方式:激光测量采用的是CCD激光位移传感器,对被测物位置进行测量,该测量方式精度高、速度快,但对现场使用条件要求高,特别是焦烟、温度的影响,以及测量要

电涡流传感器实验

电涡流传感器实验 实验目的 1 掌握电涡流传感器的基本结构和工作原理。 2 通过实验了解不同材料对电涡流传感器特性的影响。 3 通过电涡流方法测量振幅、重量、电机转速,掌握电涡流传感器的实际应用技术。 4 掌握电涡流传感器的静态标定方法,通过实验进行电涡流传感器的静态标定。 实验原理 电涡流传感器由平面线圈和金属片组成。当线圈中通以高频交变电流后,与其平行的金属片上受感应而产生涡旋状电流,这种现象称为涡流效应。产生的感应电流,又称为电涡流。电涡流传感器正是基于这种涡流效应而工作的。如图1所示,一个通有交变电流? 1I 的线圈,置于一块导电材料附近,由于交变电流的存在,在线圈周围就产生一个交变磁场?1H ,导电材料内便产生电涡流? 2I ,电涡流? 2I 也将产生一个新磁场? 2H ,? 1H 与? 2H 方向相反,因而抵消部分原磁场? 1H ,从而导致线圈的等效阻抗发生变化。可见,线圈与导体之间存在着磁的联系,若把导电材料看成一个具有内阻的线圈,则图1可用图2所示的等效电路表示。 1R 、2R 分别为线圈和导电材料的等效电阻,1L 、2L 分别为线圈和导电材料的等效电感。 M 为互感参数,表征线圈与导电材料之间磁联系强弱。 由图2可列出下列方程 ?????=-+=-+? ??? ??? 1222221111I M j I L j I R U I M j I L j I R ωωωω (1) 解式(1),可得线圈的等效阻抗Z 图1 电涡流效应图 2 电涡流效应的等效电路

L j R L R M L L j L R M R R I U Z ωωωωωω+=+-+++==?? ][2 22222 221222222221 (2) 前两项为等效电阻,第三项为等效电抗,第三项中括号内为等效电感。线圈的品质因数Q 为 22 22 22 2212 2 2222 221][L R M R R L R M L L Q ωωωωω+++-= (3) 由上不难看出,金属导体的电阻率ρ、磁导率μ、线圈与金属导体之间的距离x 以及线 圈激励电流的角频率ω等参数,都将通过电涡流效应与线圈等效阻抗发生联系。或者说.线圈等效阻抗是这些参数的函数,即 ),,,(ωμρx f Z = (4) 若能保持上述ωμρ、x、、四个参数中的任意三个参数恒定,则等效阻抗将与第四个参数之间建立一一对应的关系,构成了从第四个参数到等效阻抗之间的转换关系。 利用位移x 作为变换量,可以非接触的测量位移、厚度、振动、转速等,也可做成接近开关等。图3为电涡流位移传感器的几种具体应用。图(a)为轴的轴向位移的测量,图(b)为先导阀或换向阀位移测量,图(c)为金属热膨胀系数测量。测量位移范围可从0~1mm 到0~30mm .分辨率为满量程的0.1%。 图3 电涡流位移传感器的几种具体应用 图4为利用电涡流传感器测量转速的电路框图。在被测对象上开一条或数条槽或做成齿状,旁边安装一个电涡流式传感器。当转轴转动时,传感器周期地改变着与转轴之间的距离,于是它的输出也周期性地发生变化。此输出信号经放大、变换后,可以用频率计测出其变化频率,从而测出转轴的转速。若转轴上开Z 个槽,频率计读数为f (单位为Hz ) ,则转轴的转速n (单位为r/min )的数值为n=60f/Z 。

相关文档
相关文档 最新文档