文档库 最新最全的文档下载
当前位置:文档库 › 2020届高考物理一轮复习讲义:第十四章 第3讲 热力学定律与能量守恒(含答案)

2020届高考物理一轮复习讲义:第十四章 第3讲 热力学定律与能量守恒(含答案)

2020届高考物理一轮复习讲义:第十四章 第3讲 热力学定律与能量守恒(含答案)
2020届高考物理一轮复习讲义:第十四章 第3讲 热力学定律与能量守恒(含答案)

第3讲热力学定律与能量守恒

板块一主干梳理·夯实基础

【知识点1】热力学第一定律Ⅰ

1.改变物体内能的两种方式

(1)做功;

(2)热传递。

2.热力学第一定律

(1)内容

一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。

(2)表达式:ΔU=Q+W。

(3)ΔU=Q+W中正、负号法则

(4)ΔU=Q+W的三种特殊情况

①若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加。

②若过程是等容的,即W=0,Q=ΔU,物体吸收的热量等于物体内能的增加。

③对于理想气体,若过程是等温的,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量。

【知识点2】热力学第二定律Ⅰ

1.热力学第二定律的三种表述

(1)克劳修斯表述

热量不能自发地从低温物体传到高温物体。

(2)开尔文表述

不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。或表述为“第二类永动机是不可能制成的。”

(3)用熵的概念表示热力学第二定律。

在任何自然过程中,一个孤立系统的总熵不会减小。

2.热力学第二定律的微观意义

一切自发过程总是沿着分子热运动的无序性增大的方向进行。

【知识点3】能量守恒定律Ⅰ

1.能量守恒定律的内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。

2.条件性:能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的。例如,机械能守恒定律具有适用条件,而能量守恒定律是无条件的,是一切自然现象都遵守的基本规律。

3.两类永动机

(1)第一类永动机:不需要任何动力或燃料,却能不断地对外做功的机器。

违背能量守恒定律,因此不可能实现。

(2)第二类永动机:从单一热库吸收热量并把它全部用来对外做功,而不产生其他影响的机器。

违背热力学第二定律,不可能实现。

4.能源的利用

(1)存在能量耗散和品质降低。

(2)重视利用能源时对环境的影响。

(3)要开发新能源(如太阳能、生物质能、风能、水能等)。

板块二考点细研·悟法培优

考点1 热力学第一定律[对比分析]

1.改变内能的两种方式的比较

2.温度、内能、热量、功的比较

例1在如下图所示的坐标系中,一定质量的某种理想气体先后发生以下两种状态变化过程:第一种变化是从状态A到状态B,外界对该气体做功为6 J;第二种变化是从状态A到状态C,该气体从外界吸收的热量为9 J。图线AC的反向延长线过坐标原点O,B、C两状态的温度相同,理想气体的分子势能为零。求:

(1)从状态A到状态C的过程,该气体对外界做的功W1和其内能的增量ΔU1;

(2)从状态A到状态B的过程,该气体内能的增量ΔU2及其从外界吸收的热量Q2。

(1)从A到C状态发生了什么变化?

提示:等容变化。

(2)如何判断气体状态变化过程是吸热还是放热?

提示:根据热力学第一定律ΔU =Q +W ,确定热量Q 的正负,再判断是吸热还是放热。 尝试解答 (1)0__9_J__(2)9_J__3_J 。

(1)由题意知从状态A 到状态C 的过程,气体发生等容变化,外界对该气体做的功W 1=0 根据热力学第一定律有

ΔU 1=W 1+Q 1

内能的增量ΔU 1=Q 1=9 J 。

(2)从状态A 到状态B 的过程,体积减小,温度升高

该气体内能的增量ΔU 2=ΔU 1=9 J

根据热力学第一定律有

ΔU 2=W 2+Q 2

从外界吸收的热量Q 2=ΔU 2-W 2=3 J 。

总结升华

判断物体内能变化的方法

(1)内能的变化都要用热力学第一定律进行综合分析。

(2)做功情况看气体的体积:体积增大,气体对外做功,W 为负;体积缩小,外界对气体做功,W 为正。

(3)与外界绝热,则不发生热传递,此时Q =0。

(4)如果研究对象是理想气体,则由于理想气体没有分子势能,所以当它的内能变化时,主要体现在分子动能的变化上,从宏观上看就是温度发生了变化。

[跟踪训练] [2017·安徽合肥联考](多选)对于一定质量的理想气体,下列说法正确的是

( )

A .体积不变,压强减小的过程,气体一定放出热量,内能减小

B .若气体内能增加,则外界一定对气体做功

C .若气体的温度升高,则每个气体分子的速度一定增大

D .若气体压强不变,气体分子平均距离增大时,则气体分子的平均动能一定增大

E .气体对器壁的压强是由大量气体分子对器壁不断碰撞而产生的

答案 ADE

解析 由理想气体状态方程pV T =C ,可知在体积不变、压强减小时,温度降低;体积不变,

则W =0,温度降低,内能减少,根据热力学第一定律有ΔU =Q <0,可知一定放出热量,故A 正确;若气体内能增加,根据热力学第一定律ΔU =Q +W ,可能从外界吸收热量,不一定是外界对气体做功,故B 错误;气体的温度升高,分子的平均动能增大,但不一定每个气体分子的速度都增大,故C 错误;气体压强不变,气体分子平均距离增大时,体积增

大,由理想气体状态方程pV T =C ,可知温度一定升高,则气体分子的平均动能一定增大,故

D 正确;从微观角度看,气体对器壁的压强是由大量气体分子对器壁的不断碰撞而产生的,故

E 正确。

考点2 热力学第二定律 [对比分析]

1.热力学第一、第二定律的比较

2.两类永动机的比较

例2(多选)下列说法中正确的是()

A.第一类永动机违反能量守恒定律,是不可能制成的

B.第二类永动机违反能量守恒定律,是不可能制成的

C.能量耗散的说法与能量守恒定律是互相矛盾的

D.热量不可能从低温物体传到高温物体而不引起其他变化

E.热量可能自发地从低温物体传到高温物体而不引起其他变化

(1)热力学第二定律揭示了自然界中的什么规律?

提示:一切涉及热现象的自然过程都具有方向性。

(2)第二类永动机违反能量守恒定律吗?第一类永动机呢?

提示:第二类永动机违反了热力学第二定律,但不违反能量守恒定律,第一类永动机违反了能量守恒定律。

尝试解答选AD。

第一类永动机是不可能制成的,因为它违反了能量守恒定律,A正确;第二类永动机不违反能量守恒定律,但违反了热力学第二定律,B错误;能量耗散指的是机械能、电能、化学能等高度可用的高品质形式的能量转化为不大可用的低品质形式的内能,但是总的能量是守恒的,能量耗散与能量守恒不矛盾,C错误;根据热力学第二定律,热量不可能从低温物体传到高温物体而不引起其他变化,D正确,E错误。

总结升华

对热力学第二定律的理解

(1)在热力学第二定律的表述中,“自发地”“不产生其他影响”的涵义:

①“自发地”指不需要借助外界提供能量的帮助,指明了热传递等热力学宏观现象的方向性;

②“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响,如吸热、放热、做功等。

(2)热力学第二定律的实质:

热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。

[跟踪训练]根据你学过的热学中的有关知识,判断下列说法中正确的是()

A.机械能可以全部转化为内能,内能也可以全部用来做功转化成机械能

B.凡与热现象有关的宏观过程都具有方向性,在热传递中,热量只能从高温物体传递给低温物体,而不能从低温物体传递给高温物体

C.尽管技术不断进步,热机的效率仍不能达到100%,制冷机却可以使温度降到-293 ℃D.第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,随着科技的进步和发展,第二类永动机可以制造出来

答案 A

解析机械能可以全部转化为内能,而内能在引起其他变化时也可以全部用来做功转化为机械能,A正确;凡与热现象有关的宏观过程都具有方向性,在热传递中,热量可以自发地从高温物体传递给低温物体,也能从低温物体传递给高温物体,但必须借助外界的帮助,即须产生其他影响,B错误;尽管科技不断进步,热机的效率仍不能达到100%,制冷机也不能使温度降到-293 ℃,只能无限接近-273.15 ℃,却永远不能达到,C错误;第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,但违背了热力学第二定律,第二类永动机不可能制造出来,D错误。

考点3 气体实验定律与热力学第一定律的综合[解题技巧]

例3一定质量理想气体的p-V图象如图所示,其中a→b为等容过程,b→c为等压过程,c→a为等温过程,已知气体在状态a时的温度T a=300 K,在状态b时的体积V b=22.4 L。求:

(1)气体在状态c时的体积V c;

(2)试比较气体由状态b到状态c过程从外界吸收的热量Q与对外做功W的大小关系,并简要说明理由。

(1)在p-V图象中,如何判断理想气体状态变化过程中温度升高还是降低?

提示:根据热力学第一定律ΔU=W+Q,如果ΔU>0,则温度升高,ΔU<0,则温度降低。

(2)整个循环过程,气体内能变化吗?

提示:整个循环过程中,气体又回到了原来的状态,故气体内能不变。

尝试解答(1)67.2_L__(2)气体吸收的热量Q大于气体对外做的功W__理由见解析。

(1)气体c→a等温变化,

根据玻意耳定律得p a V a=p c V c

又a→b为等容过程,所以V a=V b=22.4 L

解得V c=p a V a

p c=

p a V b

p c=67.2 L。

(2)气体由状态b到状态c为等压过程,由盖—吕萨克定律可知体积增大时温度升高,所以气体内能增加,ΔU>0,气体对外做功,W<0,由热力学第一定律ΔU=Q+W可知,气体吸收热量Q大于气体对外做的功W。

总结升华

气体实验定律与热力学定律的综合问题的处理方法

(1)气体实验定律研究对象是一定质量的理想气体。

(2)解决具体问题时,分清气体的变化过程是求解问题的关键,根据不同的变化,找出相关的气体状态参量,利用相关规律解决。

(3)对理想气体,只要体积变化,外界对气体(或气体对外界)做功W=pΔV;只要温度发生变化,其内能就发生变化。

(4)结合热力学第一定律ΔU=W+Q求解问题。

[跟踪训练][2017·甘肃兰州一模]一定质量的理想气体经历了如图所示的状态变化。问:

(1)已知从A 到B 的过程中,气体的内能减少了300 J ,则从A 到B 气体吸收或放出的热量是多少;

(2)试判断气体在状态B 、C 的温度是否相同。如果知道气体在状态C 时的温度T C =300 K ,则气体在状态A 时的温度为多少。

答案 (1)放热1200 J (2)温度相同 1200 K

解析 (1)从A 到B ,外界对气体做功,

有W =p ΔV =900 J ,

根据热力学第一定律ΔU =W +Q ,

得Q =ΔU -W =-1200 J ,气体放热1200 J 。

(2)由题图可知p B V B =p C V C ,故T B =T C , 根据理想气体状态方程有p A V A T A =p C V C T C

, 代入数据可得T A =1200 K 。

物理化学热力学第一定律总结

热一定律总结 一、 通用公式 ΔU = Q + W 绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V 恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) → ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0 焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV ) 典型例题:3.11思考题第3题,第4题。 二、 理想气体的单纯pVT 变化 恒温:ΔU = ΔH = 0 变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R 双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2 典型例题:3.18思考题第2,3,4题 书2.18、2.19 三、 凝聚态物质的ΔU 和ΔH 只和温度有关 或 典型例题:书2.15 ΔU = n C V , m d T T 2 T 1 ∫ ΔH = n C p, m d T T 2 T 1 ∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1) ΔU ≈ ΔH = n C p, m d T T 2 T 1 ∫ ΔU ≈ ΔH = nC p, m (T 2-T 1)

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程) ΔU ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。 101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数 不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。 或 典型例题:3.18作业题第3题 五、化学反应焓的计算 其他温度:状态函数法 Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3 α β β α Δ H m (T ) α β ΔH 1 ΔH 3 Δ H m (T 0) α β 可逆相变 298.15 K: ΔH = Q p = n Δ H m α β Δr H m ? =Δf H ?(生) – Δf H ?(反) = y Δf H m ?(Y) + z Δf H m ?(Z) – a Δf H m ?(A) – b Δf H m ?(B) Δr H m ? =Δc H ?(反) – Δc H ?(生) = a Δc H m ?(A) + b Δc H m ?(B) –y Δc H m ?(Y) – z Δc H m ?(Z) ΔH = nC p, m (T 2-T 1) ΔH = n C p, m d T T 2 T 1 ∫

热力学第一定律

热力学第一定律 一.选择题 1. 将CuSO4水溶液置于绝热箱中,插入两个铜电极,以蓄电池为电源进行电解,可以看作封闭体系的是 (a) 绝热箱中所有物质 (b) 两个铜电极; (c) 蓄电池和铜电极(d) CuSO4水溶液。 2.选择系统的原则是 (a)符合能量转换和守恒的规律 (b)使研究的问题得到合理的、简明的解答 (c)便于计算过程中的功和热及热力学函数的变化值 (d)便于考察环境对系统的影响 3. x为状态函数,下列表述中不正确的是 (a) d x为全微分 (b) 当状态确定,x的值确定 (c) ?x= ∫d x的积分与路经无关,只与始终态有关 (d) 当体系状态变化,x值一定变化 4. 状态函数的性质 (a)绝对值不知(b)相互独立 (c)都有偏摩尔量(d)变化值仅取决于始末态 5. 体系的状态改变了,其内能值 (a)必定改变(b)必定不变 (c)不一定改变(d)状态与内能无关 6. 封闭体系从A态膨胀为B态,可以沿两条等温途径:甲)可逆途径;乙)不可逆途径,则下列关系式 ⑴ΔU可逆> ΔU不可逆⑵∣W可逆∣> ∣W不可逆∣ ⑶Q可逆> Q不可逆⑷( Q可逆- W可逆) > ( Q不可逆- W不可逆) 正确的是 (a) (1),(2) (b) (2),(3) (c) (3),(4) (d) (1),(4) 7. 当理想气体冲入一真空绝热容器后,其温度将 (a) 升高(b) 降低 (c) 不变(d) 难以确定 8. 当热力学第一定律写成d U = δQ–p d V时,它适用于 (a).理想气体的可逆过程(b). 封闭体系的任一过程 (c). 封闭体系只做体积功过程(d). 封闭体系的定压过程 9. 对于孤立体系中发生的实际过程,下列关系中不正确的是 (a) W = 0 (b) Q = 0 (c) ΔU= 0 (d) ΔH = 0 10. 关于热平衡, 下列说法中正确的是 (a)系统处于热平衡时, 系统的温度一定等于环境的温度 (b)并不是所有热力学平衡系统都必须满足热平衡的条件 (c)若系统A与B成热平衡, B与C成热平衡, 则A与C直接接触时也一定成热平衡 (d)在等温过程中系统始终处于热平衡 11. 理想气体自由膨胀过程中 (a). W = 0,Q>0,?U>0,?H=0 (b). W>0,Q=0,?U>0,?H>0

2.2热力学第一定律对理想气体的应用

§2.2 热力学第一定律对理想气体的应用 2.2.1、等容过程 气体等容变化时,有=T P 恒量,而且外界对气体做功0=?-=V p W 。根据 热力学第一定律有△E=Q 。在等容过程中,气体吸收的热量全部用于增加内能,温度升高;反之,气体放出的热量是以减小内能为代价的,温度降低。 p V i T C n E Q V ???= ??=?=2 式中 R i T E v T Q C V ?=??=?=2)(。 2.2.1、等压过程 气体在等压过程中,有=T V 恒量,如容器中的活塞在大气环境中无摩擦地自 由移动。 根据热力学第一定律可知:气体等压膨胀时,从外界吸收的热量Q ,一部分用来增加内能,温度升高,另一部分用于对外作功;气体等压压缩时,外界对气体做的功和气体温度降低所减少的内能,都转化为向外放出的热量。且有 T nR V p W ?-=?-= T nC Q p ?= V p i T nC E v ??=?=?2 定压摩尔热容量p C 与定容摩尔热容量V C 的关系有R C C v p +=。该式表明:1mol 理想气体等压升高1K 比等容升高1k 要多吸热8.31J ,这是因为1mol 理想气体等压膨胀温度升高1K 时要对外做功8.31J 的缘故。 2.2.3、等温过程 气体在等温过程中,有pV =恒量。例如,气体在恒温装置内或者与大热源想

接触时所发生的变化。 理想气体的内能只与温度有关,所以理想气体在等温过程中内能不变,即△E =0,因此有Q=-W 。即气体作等温膨胀,压强减小,吸收的热量完全用来对外界做功;气体作等温压缩,压强增大,外界的对气体所做的功全部转化为对外放出的热量。 2.2.4、绝热过程 气体始终不与外界交换热量的过程称之为绝热过程,即Q=0。例如用隔热良好的材料把容器包起来,或者由于过程进行得很快来不及和外界发生热交换,这些都可视作绝热过程。 理想气体发生绝热变化时,p 、V 、T 三量会同时发生变化,仍遵循=T pV 恒 量。根据热力学第一定律,因Q=0,有 )(21122V p V p i T nC E W v -=?=?= 这表明气体被绝热压缩时,外界所作的功全部用来增加气体内能,体积变小、温度升高、压强增大;气体绝热膨胀时,气体对外做功是以减小内能为代价的,此时体积变大、温度降低、压强减小。气体绝热膨胀降温是液化气体获得低温的重要方法。 例:0.020kg 的氦气温度由17℃升高到27℃。若在升温过程中,①体积保持不变,②压强保持不变;③不与外界交换热量。试分别求出气体内能的增量,吸收的热量,外界对气体做的功。 气体的内能是个状态量,且仅是温度的函数。在上述三个过程中气体内能的增量是相同的且均为: J T nC E v 6231031.85.15=???=?=?

选修33热力学第一定律教案

第3节热力学第一定律 目标导航 1?知道热力学第一定律的内容及其表达式 2?理解能量守恒定律的内容 3?了解第一类永动机不可能制成的原因 诱思导学 1.热力学第一定律 (1).一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。这个关系叫做 热力学第一定律。 其数学表达式为:AUnW+Q (2).与热力学第一定律相匹配的符号法则 能量的转化或转移,同时也进一步揭示了能量守恒定律。 (4)应用热力学第一定律解题的一般步骤: ①根据符号法则写出各已知量( W、Q、AU)的正、负; ②根据方程AJ=W+Q求出未知量; ③再根据未知量结果的正、负来确定吸热、放热情况或做功情况。 2.能量守恒定律 ⑴.自然界存在着多种不同形式的运动,每种运动对应着一种形式的能量。如机械运动对应机械能; 分子热运动对应内能;电磁运动对应电磁能。 ⑵.不同形式的能量之间可以相互转化。摩擦可以将机械能转化为内能;炽热电灯发光可以将电能转化为光能。 ⑶.能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。这就是能量守恒定律。 (4).热力学第一定律、机械能守恒定律都是能量守恒定律的具体体现。 (5).能量守恒定律适用于任何物理现象和物理过程。 (6).能量守恒定律的重要意义 第一,能量守恒定律是支配整个自然界运动、发展、变化的普遍规律,学习这个定律,不能满足一 般理解其内容,更重要的是,从能量形式的多样化及其相互联系,互相转化的事实岀发去认识物质世界的多样性及其普遍联系,并切实树立能量既不会凭空产生,也不会凭空消失的观点,作为以后学习和生产实践中处理一切实际问题的基本指导思想之一。第二,宣告了第一类永动机的失败。 3.第一类永动机不可能制成 任何机器运动时只能将能量从一种形式转化为另一种形式,而不可能无中生有地创造能量,即第一类永动机是不可能制造出来的。 典例探究 例1.一定量的气体在某一过程中,外界对气体做了8X104J的功,气体的内能减少了 1.2和5J,则下列 各式中正确的是() 4 5 4 A.W=8X 104J,AJ =1.2 XO5J,Q=4X104J 4 5 5

3.热力学第一定律

能量守恒定律 自然界的能量既不能创生 也不会消灭..自然界的能量既不能创生,,也不会消灭 在热机中,驱动机械运转做功,这一能量来自于从燃料中吸收的热量, 因此永动机是不能制造出来的。 热力学第一定律是能量守恒定律在热力学体系的体现。

热力学系统热力学系统的内能的内能的内能U U (Internal Energy Internal Energy)) 一般包含如下能量: 一般包含如下能量:分子内:平动运动的能量 转动运动的能量 振动运动的能量 电子运动的能量; 核运动的能量; 分子间分子间: : : 分子间作用 分子间作用势能。……

封闭体系与环境之间的能量交换形式只有热与功两种,故有: ?U=Q + + W W dU =δQ + δW 上式即为热力学第一定律的数学表达式。 其物理意义是: 自然界的能量是恒定的,若体系的内能发生了变化(?U),变化量必定等于体系与环境之间能量交换量(Q、W)的总和。

习题 热力学第一定律对于孤立体系的数学形式是怎样的?热力学第一定律的公式对于生命体系成立么?为什么?

dU = δQ + δW = δQ + δW f -p 外dV 恒容、无有用功时 dU = δQ V ?U =Q V dU = δQ + δW f -p 外dV = δQ -pdV d(U+pV)=δQ 恒压、无有用功时 定义: 焓(enthalpy )函数 H H =U +pV dH = δQ p ?H =Q p 热力学第一定律热力学第一定律------焓 焓

习题 某一化学反应若在恒温恒压下(298.15K)进行,放热40000J,若使该反应恒温恒压通过可逆电池来完成,则吸热4000J。计算该反应的焓变;

第3讲热力学定律与能量守恒

第3讲热力学定律与能量守恒 考点一热力学第一定律的理解及应用 1.热力学第一定律的理解 不仅反映了做功和热传递这两种方式改变内能的过程是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系。 2.对公式ΔU=Q+W符号的规定 符号W Q ΔU +外界对物体做功物体吸收热量内能增加 -物体对外界做功物体放出热量内能减少 三种特殊的状态变化过程 (1)如图所示的绝热过程:有Q=0,则W=ΔU,外界对系统做的功等于系统内能的增加。 (2)不做功过程:即W=0,则Q=ΔU,系统吸收的热量等于系统内能的增加。 (3)内能不变过程:即ΔU=0,则W+Q=0或W=-Q,外界对系统做的功等于系统放出的热量。 [思维诊断] (1)物体吸收热量,同时对外做功,内能可能不变。() (2)绝热过程中,外界压缩气体,对气体做功,气体的内能可能减少。() (3)自由摆动的秋千摆动幅度越来越小,能量并没有消失。() (4)热传递和做功的实质不相同。() 答案:(1)√(2)×(3)√(4)√ [题组训练] 1.[热力学第一定律与热学知识的组合](多选)下列说法中正确的是() A.尽管技术不断进步,但热机的效率仍不能达到100%,而制冷机却可以使温度降到

热力学零度 B.雨水没有透过布雨伞是液体表面张力的作用导致的 C.气体温度每升高1 K所吸收的热量与气体经历的过程有关 D.空气的相对湿度定义为水的饱和蒸汽压与相同温度时空气中所含水蒸气压强的比值E.悬浮在液体中的微粒越大,在某一瞬间撞击它的液体分子数越多,布朗运动越不明显 解析:热力学零度只能接近而不能达到,A错误;雨水没有透过布雨伞是液体表面张力的作用导致的,B正确;由热力学第一定律ΔU=Q+W知,温度每升高1 K,内能增加,但既可能是吸收热量,也可能是对气体做功使气体的内能增加,C正确;空气的相对湿度是指空气中所含水蒸气的压强与同温度下的饱和蒸汽压的比值,故D错误;微粒越大,某一瞬间撞击它的分子数越多,受力越容易平衡,布朗运动越不显著,E正确。 答案:BCE 2.[应用热力学第一定律定量计算] 如图所示,一定质量的理想气体由状态a沿a→b→c变化到状态c时,吸收了340 J的热量,并对外做功120 J。若该气体由状态a沿a→d→c变化到状态c时,对外做功40 J,则这一过程中气体________(填“吸收”或“放出”)________J热量。 解析:一定质量的理想气体由状态a沿a→b→c变化到状态c,吸收了340 J的热量,并对外做功120 J,由热力学第一定律有ΔU=Q1+W1=340 J-120 J=220 J,即从状态a到状态c,理想气体的内能增加了220 J;若该气体由状态a沿a→d→c变化到状态c时,对外做功40 J,此过程理想气体的内能增加还是220 J,所以可以判定此过程是吸收热量,由热力学第一定律有ΔU=Q2+W2,得Q2=ΔU-W2=220 J+40 J =260 J 答案:吸热260 J 3.[热力学第一定律与气体实验定律的综合应用]一定质量的理想气体经历如图A→B→C→D→A所示循环过程,该过程每个状态视为平衡态。已知A态的温度为27 ℃。求:

热力学第一定律——计算题

第一章 热力学第一定律 四、简答 1. 一隔板将一刚性绝热容器分为左右两侧,左室气体的压力大于右室气体的压力。现将隔板抽去,左右气体的压力达到平衡。若以全部气体作为体系,则ΔU 、Q 、W 为正?为负?或为零? 答:以全部气体为系统,经过指定的过程,系统既没有对外做功,也无热量传递。所以ΔU 、Q 、W 均为零。 2. 若一封闭体系从某一始态变化到某一终态。 (1)Q 、W 、Q -W 、ΔU 是否已完全确定; 答:ΔU =Q -W 能够完全确定,因内能为状态函数,只与系统的始态和终态有关。Q 、W 不能完全确定,因它们是与过程有关的函数。 (2)若在绝热条件下,使系统从某一始态变化到某一终态,则(1)中的各量是否已完全确定,为什么! 答:Q 、W 、Q -W 、ΔU 均完全确定,因绝热条件下Q =0,ΔU =Q +W =W . 五、计算题 1.计算下述两个过程的相关热力学函数。 (1)若某系统从环境接受了160kJ 的功,热力学能增加了200kJ ,则系统将吸收或是放出了多少热量? (2)如果某系统在膨胀过程中对环境作了100kJ 的功,同时系统吸收了260kJ 的热,则系统热力学能变化为多少? 解析:(1)W =-160kJ, ΔU = 200kJ ,根据热力学第一定律: Q =ΔU +W 得:Q =200-160=40 kJ (2)W =100kJ ,Q =260 kJ ΔU =Q -W =260-100=160 kJ 2.试证明1mol 理想气体在等压下升温1K 时,气体与环境交换的功等于摩尔气体常数R. 解: 2111W p p p p n mol T T K W R ===-==21 21外外外nRT nRT (V -V )=(-) p p 3. 已知冰和水的密度分别为0.92×103 kg/m 3和1.0×103 kg/m 3,现有1mol 的水发生如下变化:(1)在100℃、101.325kPa 下蒸发为水蒸气,且水蒸气可视为理想气体; (2)在0℃、101.325kPa 下变为冰。 试求上述过程系统所作的体积功。

第3讲 热力学定律与能量守恒定律

第3讲热力学定律与能量守恒定律 知识要点 一、热力学第一定律 1.改变物体内能的两种方式 (1)做功;(2)热传递。 2.热力学第一定律 (1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。 (2)表达式:ΔU=Q+W。 (3)ΔU=Q+W中正、负号法则: 物理量 意义 W Q ΔU 符号 +外界对物体做功物体吸收热量内能增加 -物体对外界做功物体放出热量内能减少 1.热力学第二定律的两种表述 (1)克劳修斯表述:热量不能自发地从低温物体传到高温物体。 (2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。 2.用熵的概念表示热力学第二定律 在任何自然过程中,一个孤立系统的总熵不会减小。 3.热力学第二定律的微观意义 一切自发过程总是沿着分子热运动的无序性增大的方向进行。 4.第二类永动机不可能制成的原因是违背了热力学第二定律。 三、能量守恒定律 1.内容

能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者是从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。 2.条件性 能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的。 3.第一类永动机是不可能制成的,它违背了能量守恒定律。 基础诊断 1.(多选)下列说法正确的是() A.外界压缩气体做功20 J,气体的内能可能不变 B.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递 C.科技的进步可以使内燃机成为单一热源的热机 D.对能源的过度消耗将使自然界的能量不断减少,形成能源危机 E.一定量100 ℃的水变成100 ℃的水蒸气,其分子之间的势能增加 答案ABE 2.(多选)下列说法正确的是() A.分子间距离增大时,分子间的引力减小,斥力增大 B.当分子间的作用力表现为斥力时,随分子间距离的减小分子势能增大 C.一定质量的理想气体发生等温膨胀,一定从外界吸收热量 D.一定质量的理想气体发生等压膨胀,一定向外界放出热量 E.熵的大小可以反映物体内分子运动的无序程度 解析分子间距离增大时,分子间的引力、斥力都减小,A错误;当分子间的作用力表现为斥力时,随分子间距离的减小,斥力做负功,分子势能增大,B正确;等温膨胀,温度不变,气体内能不变,体积增大,对外做功,要保持内能不变,所以需要从外界吸收热量,C正确;等压膨胀,压强不变,体积增大,根据公式 pV =C可得温度升高,内能增大,需要吸收热量,故D错误;熵的物理意义反T 映了宏观过程对应的微观状态的多少,标志着宏观状态的无序程度,即熵是物体内分子运动无序程度的量度,E正确。

高考经典课时作业11-3 热力学定律与能量守恒

高考经典课时作业11-3 热力学定律与能量守恒 (含标准答案及解析) 时间:45分钟分值:100分 1.下列叙述和热力学定律相关,其中正确的是() A.第一类永动机不可能制成,是因为违背了能量守恒定律 B.能量耗散过程中能量不守恒 C.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,违背了热力学第二定律D.能量耗散是从能量转化的角度反映出自然界中的宏观过程具有方向性 2.根据热力学第二定律,下列说法中正确的是() A.热量能够从高温物体传到低温物体,但不能从低温物体传到高温物体 B.热量能够从高温物体传到低温物体,也可能从低温物体传到高温物体 C.机械能可以全部转化为内能,但内能不可能全部转化为机械能 D.机械能可以全部转化为内能,内能也可能全部转化为机械能 3.关于一定量的气体,下列叙述正确的是() A.气体吸收的热量可以完全转化为功 B.气体体积增大时,其内能一定减少 C.气体从外界吸收热量,其内能一定增加 D.外界对气体做功,气体内能可能减少 4.(2013·东北三校二模)一个气泡从湖底缓慢上升到湖面,在上升的过程中温度逐渐升高,气泡内气体可视为理想气体,在此过程中,关于气泡内气体下列说法正确的是() A.气体分子平均动能变小 B.气体吸收热量 C.气体对外做功 D.气体内能增加 5.(2012·高考广东卷)景颇族的祖先发明的点火器如图所示,用牛角做套筒,木制推杆前端粘着艾绒,猛推推杆,艾绒即可点燃,对筒内封闭的气体,在此压缩过程中() A.气体温度升高,压强不变 B.气体温度升高,压强变大 C.气体对外界做正功,气体内能增加 D.外界对气体做正功,气体内能减少 6.(2011·高考重庆卷)某汽车后备箱内安装有撑起箱盖的装置,它主要由汽缸和活塞组成.开箱时,密闭于汽缸内的压缩气体膨胀,将箱盖顶起,如图所示.在此过程中,若缸内气体与外界无热交换,忽略气体分子间相互作用,则缸内气体() A.对外做正功,分子的平均动能减小 B.对外做正功,内能增大 C.对外做负功,分子的平均动能增大 D.对外做负功,内能减小

热力学第一定律_习题十 答案

姓名 班级 序号 热力学第一定律 1. 定量理想气体,从同一初态出发,体积V 1膨胀到V 2,分别经历三种过程,(1)等压;(2)等温;(3)绝热。其中吸收热量最多的是 [ ] (A )等压;(B )等温;(C )绝热;(D )无法判断。 解:在p-V 图上绝热线比等温线要陡,所以图中中间的曲线表示的应该是等温过程。 图中三种过程的起始态和终止态的体积分别相同,因为在p-V 图上,曲线所围成的面积等于该过程对外所做的功,所以等压过程中对外所做的功最大,等温过程次之,绝热过程最小。 根据理想气体内能2 i U RT ν =, 三种过程的起始温度一样,但图中所示的等压过程的末态温度最高,等温过程次之,绝热过程最小。所以等压过程的内能增加最多。 根据热力学第一定律Q U A =?+,既然等压过程的内能增加最多,对外所做的功也最大,等压过程从外界吸收的热量也最多,故本题答案为A 。 2.一圆柱形汽缸的截面积为22 2.510m -?,内盛有0.01kg 的氮气,活塞重10kg ,外部大气压为5110Pa ?,当把气体从300K 加热到800K 时,设过程进行无热量损失,也不考虑摩擦,问(1)气体做功多少?(2)气体容积增大多少?(3)内能增加多少? 解:(1)系统可以看成等压准静态过程,2 1 V V A pdv p V ==?? 由理想气体状态方程 m pV RT M = ,得 3 03 0.018.31(800300) 1.4810J 2810m A p V R T M -=?= ?=??-=?? (2) 50/ 1.0410Pa p M g S p =+=?活塞 由状态方程0 m pV RT RT M ν==(2N m M ν=),得231.4210m R T V P ν-??==?; (3)氮气的自由度为5,由理想气体内能公式2 i U RT ν =得,内能增加 33.710J 2 i U R T ν?=?=? 3、 一定量的某种理想气体,开始时处于压强、体积、温度分别为60102.1?=p P a , 3301031.8m V -?=,K T 3000=的初态,后经过一等容过程,温度升高到K T 4501=,再 经过一等温过程,压强降低到0p p =的末态,已知该理想气体的定压摩尔热容量和定容摩 尔热容量之比3 5 =V P C C ,求:(1)该理想气体的定压摩尔热容量P C 和定容摩尔热容量V C ; (2)气体从始态变到末态的全过程中从外界吸收的热量。

高中物理考试热力学定律与能量守恒定律

选修3-3 第3讲 一、选择题 1.有关“温度”的概念,下列说法中正确的是( ) A.温度反映了每个分子热运动的剧烈程度 B.温度是分子平均动能的标志 C.一定质量的某种物质,内能增加,温度一定升高 D.温度较高的物体,每个分子的动能一定比温度较低的物体分子的动能大 [答案] B [解析] 温度是分子平均动能的标志,但不能反映每个分子的运动情况,所以A、D错误,由ΔU=Q+W可知C错,故选项B正确. 2.第二类永动机不可能制成,这是因为( ) A.违背了能量守恒定律 B.热量总是从高温物体传递到低温物体 C.机械能不能全部转变为内能 D.内能不能全部转化为机械能,同时不引起其他变化 [答案] D [解析] 第二类永动机的设想虽然符合能量守恒定律,但是违背了能量转化中有些过程是不可逆的规律,所以不可能制成,选项D正确. 3.(2010·重庆)给旱区送水的消防车停于水平地面.在缓慢放水过程中,若车胎不漏气,胎内气体温度不变,不计分子间势能,则胎内气体( ) A.从外界吸热B.对外界做负功 C.分子平均动能减小D.内能增加 [答案] A [解析] 该题考查了热力学定律,由于车胎内温度保持不变,故分子的平均动能不变,内能不变,放水过程中体积增大对外做功,由热力学第一定律可知,胎内气体吸热.A选项正确. 4.如图所示,两相同的容器装同体积的水和水银,A、B两球完全 相同,分别浸没在水和水银的同一深度,A、B两球用同一种特殊的材料 制成,当温度稍升高时,球的体积会明显变大.如果开始时水和水银的 温度相同,且两液体同时缓慢地升高同一值,两球膨胀后,体积相等, 则( ) A.A球吸收的热量较多 B.B球吸收的热量较多

热力学第二定律 概念及公式总结

热力学第二定律 一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程) 一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。 二、 热力学第二定律 1. 热力学的两种说法: Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化 Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化 2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功) 功 热 【功完全转化为热,热不完全转化为功】 (无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原 3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程) 特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功 三、 卡诺定理(在相同高温热源和低温热源之间工作的热机) ηη≤ηη (不可逆热机的效率小于可逆热机) 所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关 四、 熵的概念 1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关 热温商具有状态函数的性质 :周而复始 数值还原 从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数 2. 热温商:热量与温度的商 3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η (数值上相等) 4. 熵的性质: (1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质 (2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和 (3)只有可逆过程的热温商之和等于熵变 (4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量 (5)可用克劳修斯不等式来判别过程的可逆性 (6)在绝热过程中,若过程是可逆的,则系统的熵不变 (7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。若系统已处于平衡状态,则其中的任何过程一定是可逆的。 五、克劳修斯不等式与熵增加原理 不可逆过程中,熵的变化量大于热温商 ηηη→η?(∑ηηηηηηη)η>0 1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程 2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程

选修3-3热力学第一定律教案

热力学第一定律学习目标 1.知道热力学第一定律的内容及其表达式 2.理解能量守恒定律的内容 3.了解第一类永动机不可能制成的原因 自主学习 一、功和内能 1.什么样的过程叫绝热过程? 2.焦耳的实验说明了什么问题? 3.写出内能的定义。 4.内能的增加量与外界对系统所做的功有何关系? 二、热和内能 1.内能的增加量与外界向系统传递的热量有何关系? 2.做功和热传递在改变系统的内能上有何区别? 三、热力学第一定律 1.写出热力学第一定律的内容及其表达式。 2.写出能量守恒定律的内容。 3.第一类永动机不可能制成的原因是什么?

预习自检: 1、在下述各种现象中,不是由做功引起系统温度变化的是() A、在阳光照射下,水的温度升高 B、用铁锤不断捶打铅块,铅块的温度会升高 C、在炉火上烧水,水的温度升高 D、电视机工作一段时间,其内部元件温度升高 2、如图所示,活塞将汽缸分为甲、乙两室,汽缸、活塞(连同拉杆)是绝热的,且不漏气,以U甲、U乙分别表示甲、乙两气室中气体的内能,则在拉杆缓缓向外拉的过程中() A、U甲不变,U乙减小 B、U甲增大,U乙不变 C、U甲增大,U乙减小 D、U甲不变,U乙不变 3、如图所示,把浸有乙醚的一小块棉花放在厚玻璃筒内底部,当很快向下压活塞时,由于被压缩气体遽然变热,温度升高达到乙醚的燃点,使浸有乙醚的棉花燃烧起来,此实验的目的是要说明() A、对物体做功可以增加物体的热量 B、对物体做功可以改变物体的内能 C、对物体做功一定会升高物体的温度 D、做功一定会增加物体的 4、关于物体的内能和热量,下列说法中正确的有() A、热水的内能比冷水的内能大 B、温度高的物体其热量必定多,内能必定大 C、在热传递过程中,内能大的物体其内能将减少,内能小的物体其内能将增加,直到两物体的内能相等 D、热量是热传递过程中内能转移量的量度 5、下列关于物体的温度、内能和热量的说法中正确的是() A、物体的温度越高,所含热量越多 B、物体的内能越大,热量越多 C、物体的温度越高,它的分子热运动的平均动能越大 D、物体的温度不变,其内能就不变化 6、假设在一个完全密封绝热的室内,放一台打开门的电冰箱,然后遥控接通电源,令电冰箱工作一段较长的时间后再遥控断开电源,等室内各处温度达到平衡时,室内气温比接通电源前是( ) A、一定升高了 B、一定降低了 C、一定不变 D、可能升高,可能降低,也可能不变 课内探究 一、热力学第一定律 一定质量的气体,膨胀过程中是外界对气体做功还是气体对外界做功?如果膨胀时做的功是135J,同时向外放热85J,气体内能的变化量是多少?内能是增加了还是减少了? 请你通过这个例子总结ΔU、W、Q几个量取正、负值的意义。 例1.一定量的气体在某一过程中,外界对气体做了8×104J的功,气体的内能减少了1.2×105J,则下列各式中正确的是()

11、第3讲 热力学定律与能量守恒定律 (3).pdf

[随堂巩固提升] 1.关于一定量的气体,下列叙述正确的是( ) A .气体吸收的热量可以完全转化为功 B .气体体积增大时,其内能一定减少 C .气体从外界吸收热量,其内能一定增加 D .外界对气体做功,气体内能可能减少 解析:选AD 由热力学第二定律知吸收的热不能自发地全部转化为功,但通过其他方法可以全部转化为功,故A 正确;气体体积增大,对外做功,若同时伴随有吸热,其内能不一定减少,B 错误;气体从外界吸热,若同时伴随有做功,其内能不一定增加,C 错误;外界对气体做功,同时气体放热,其内能可能减少,D 正确。 2.一定量的理想气体在某一过程中,从外界吸收热量 2.5×104J ,气体对外界做功1.0×104 J ,则该理想气体的( ) A .温度降低,密度增大 B .温度降低,密度减小 C .温度升高,密度增大 D .温度升高,密度减小 解析:选D 由ΔU =W +Q 可得理想气体内能变化ΔU =-1.0×104 J +2.5×104 J = 1.5×104 J >0,故温度升高,A 、B 两项均错;因为气体对外做功,所以气体一定膨胀,体 积变大,由ρ=m V 可知密度变小,故C 项错误,D 项正确。 3.(2011·新课标全国卷)对于一定量的理想气体,下列说法正确的是( ) A .若气体的压强和体积都不变,其内能也一定不变 B .若气体的内能不变,其状态也一定不变 C .若气体的温度随时间不断升高,其压强也一定不断增大 D .气体温度每升高1 K 所吸收的热量与气体经历的过程有关 E .当气体温度升高时,气体的内能一定增大 解析:选ADE 一定质量的理想气体,pV T =常量,p 、V 不变,则T 不变,分子平均动能不变,又理想气体分子势能为零,故气体内能不变,A 项正确;理想气体内能不变,则温 度T 不变,由pV T =常量知,p 及V 可以变化,故状态可以变化,B 错误;等压变化过程,温度升高、体积增大,故C 错误;由热力学第一定律ΔU =Q +W 知,温度每升高1 K ,内能增量ΔU 一定,而外界对气体做的功W 与经历的过程可能有关(如体积变化时),因此吸收的热量与气体经历的过程也有关,D 项正确;温度升高,平均动能增大,分子势能不变,内能

02章 热力学第一定律及其应用

第二章热力学第一定律及其应用 1. 如果一个体重为70kg的人能将40g巧克力的燃烧热(628 kJ) 完全转变为垂直位移所要作的功 ,那么这点热量可支持他爬多少高度? 2. 在291K和下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H2并放热152 kJ。若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。 3.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85 kJ的功,体系的起始压力为202.65 kPa。 (1)求V1。 (2)若气体的量为2 mol ,试求体系的温度。 4.在101.325 kPa及423K时,将1 mol NH3等温压缩到体积等于10 dm3, 求最少需作多少功? (1)假定是理想气体。 (2)假定服从于范德华方程式。 已知范氏常数a=0.417 Pa·m6·mol-2, b=3.71× m3/mol. 5.已知在373K和101.325 kPa时,1 kg H2O(l)的体积为1.043 dm3,1 kg水气的体积为1677 dm3,水的 =40.63 kJ/mol 。当1 mol H2O(l),在373 K 和外压为时完全蒸发成水蒸气时,求 (1)蒸发过程中体系对环境所作的功。 (2)假定液态水的体积忽略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。 (3)假定把蒸汽看作理想气体,且略去液态水的体积,求体系所作的功。(4)求(1)中变化的和。 (5)解释何故蒸发热大于体系所作的功? 6.在273.16K 和101.325 kPa时,1 mol的冰熔化为水,计算过程中的功。

已知在该情况下冰和水的密度分别为917 kg·m-3和1000 kg·m-3。 7.10mol的气体(设为理想气体),压力为1013.25 kPa,温度为300 K,分别求出等温时下列过程的功: (1)在空气中(压力为101.325 kPa)体积胀大1 dm3。 (2)在空气中膨胀到气体压力也是101.325 kPa。 (3)等温可逆膨胀至气体的压力为101.325 kPa。 8.273.2K,压力为5×101.325 kPa的N2气2 dm3,在外压为101.325 kPa下等温膨胀,直到N2气的压力也等于101.325 kPa为止。 求过程中的W,ΔU ,ΔH 和Q。假定气体是理想气体。 9.0.02kg乙醇在其沸点时蒸发为气体。已知蒸发热为858kJ/kg.蒸汽的比容为0.607 m3/kg。 试求过程的ΔU ,ΔH,Q,W(计算时略去液体的体积)。 10. 1× kg水在373K,101.325 kPa压力时,经下列不同的过程变为373 K, 压力的汽,请分别求出各个过程的W,ΔU ,ΔH 和Q 值。 (1)在373K,101.325 kPa压力下变成同温,同压的汽。 (2)先在373K,外压为0.5×101.325 kPa下变为汽,然后加压成373K,101.325 kPa压力的汽。 (3)把这个水突然放进恒温373K的真空箱中,控制容积使终态为101.325 kPa 压力的汽。 已知水的汽化热为2259 kJ/kg。 11. 一摩尔单原子理想气体,始态为2×101.325 kPa,11.2 dm3,经pT=常数的可逆过程压缩到终态为4×101.325 kPa,已知C(V,m)=3/2 R。求: (1)终态的体积和温度。 (2)ΔU 和ΔH 。 (3)所作的功。

热力学第一定律主要公式

热力学第一定律主要公式 1.?U 与?H 的计算 对封闭系统的任何过程 ?U=Q+W 2111()H U p V pV ?=?-- (1) 简单状态变化过程 1) 理想气体 等温过程 0T U ?= 0T H ?= 任意变温过程 ,21()V m U nC T T ?=- ,21()p m H nC T T ?=- 等容变温过程 H U V p ?=?+? (V U Q ?=) 等压变温过程 p U Q p V ?=-? ()p H Q ?= 绝热过程 ,21()V m U W nC T T ?==- ,21()p m H nC T T ?=- 2)实际气体van derWaals 气体等温过程 2 1 211U n a V V ?? ? ??? ?=- 2 22111 211()H U pV n a p V pV V V ?? ? ??? ?=?+?=-+- (2) 相变过程 等温等压相变过程 p tra H Q ?= (p Q 为相变潜热) p tra tra U Q p V ?=-? (3)无其她功的化学变化过程

绝热等容反应 0r U ?= 绝热等压反应 0r H ?= 等温等压反应 r p H Q ?= r r U H p V ?=?-? 等温等压凝聚相反应 r r U H ?≈? 等温等压理想气体相反应 ()r r U H n RT ?=?-? 或 r r B B H U RT ν?=?-∑ 由生成焓计算反应热效应 f ()(,)r m m B B H T H T B θθν?=?∑ 由燃烧焓计算反应热效应 c ()(,)r m m B B H T H T B θν?=-?∑ 由键焓估算反应热效应 ,,()(,(i m i i m i i i H T n H T n H ?=??∑∑反应物)-生成物) 式中:i n 为i 种键的个数;n i 为i 种键的键焓。 不同温度下反应热效应计算 2 1 21()()d T r m r m r p T H T H T C T ?=?+?? 2、体积功W 的计算 任意变化过程 W= d e p V -∑ 任意可逆过程 2 1 W= d V V p V -? 自由膨胀与恒容过程 W=0 恒外压过程 21()e W p V V =-- 等温等压→l g 相变过程(设蒸气为理想气体) 1()g g g W p V V pV n RT =--≈-=- 等温等压化学变化 ()W p V n RT =-?=? (理想气体反应) 0W ≈ (凝聚相反应) 理想气体等温可逆过程

热力学第一定律的内容及应用

目录 摘要 (1) 关键字 (1) Abstract: ...................................................................................... 错误!未定义书签。Key words .................................................................................... 错误!未定义书签。引言 (1) 1.热力学第一定律的产生 (1) 1.1历史渊源与科学背景 (1) 1.2热力学第一定律的建立过程 (2) 2.热力学第一定律的表述 (3) 2.1热力学第一定律的文字表述 (3) 2.2数学表达式 (3) 3.热力学第一定律的应用 (4) 3.1焦耳实验 (4) 3.2热机及其效率 (5) 总结 (7) 参考文献 (7)

热力学第一定律的内容及应用 摘要:热力学第一定律亦即能量转换与守恒定律,广泛地应用于各个学科领域。本文回顾了其建立的背景及经过,它的准确的文字表述和数学表达式,及它在理想气体、热机的应用。 关键字:热力学第一定律;内能定理;焦耳定律;热机;热机效率 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 1.热力学第一定律的产生 1.1历史渊源与科学背景 人类使用热能为自己服务有着悠久的历史,火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。中国古代就对火热的本性进行了探讨,殷商时期形成的“五行说”——金、木、水、火、土,就把火热看成是构成宇宙万物的五种元素之一。 北宋时刘昼更明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的

相关文档
相关文档 最新文档