文档库 最新最全的文档下载
当前位置:文档库 › 0062.解读电动汽车电池管理系统关键技术 (3)

0062.解读电动汽车电池管理系统关键技术 (3)

0062.解读电动汽车电池管理系统关键技术 (3)
0062.解读电动汽车电池管理系统关键技术 (3)

解读电动汽车电池管理系统关键技术

电动汽车动力电池需要高功率密度、高能量密度、寿命长、环保等要求,而锂电池具有上述优点,因此在电动汽车中得到广泛应用,今天就来说说这锂电池和管理他们的系统。

常用电池类型及其应用要求

车用锂电池主要有以下类型(一部分)。

电池放电温度在-20~55℃。充电温度在0~45℃。如果以为负极材料,充电温度可以达到-30℃,通常锂电池的使用电压范围为1.5V~4.2V(C/NCA、C/NCM,C/LMO 为2.5V~4.2V、LTO/C/LMO为1.5V~2.7V、C/LFP为2.0V~3.7V)。

图1 电池安全工作区域

通常温度为90~120℃,SEI膜开始进入放热分解(图1)。有些电解质甚至会在更低的温度下进行分解;当温度超过120℃,SEI膜无法保护碳负极与有机电解质副反应产生气体;当温度超过130℃,隔膜开始融化并切断电池反应。当温度温度更高,正极材料开始分解。当温度超过200℃,电解质开始分解产生可燃气体。分解的可燃气与氧气会发生剧烈的化学反应并导致热失控。充电温度小于0℃会导致金属锂在碳负极表面沉积,因此降低电池的循环寿命。在低温极端情况下,会导致电池负极刺穿从而引起短路情况的发生。如果电压过低或者电池过放,相变导致电池晶格崩溃从而影响电池的性能。甚至会引起负极集流片溶解在电解质中。极端的过放同样会导致电解质的减少并产生易燃气体并因此造成潜在的安全风险。高电压和过充会破坏正极构成并导致大量的热产生。同样会导致金属锂沉积在负极表面并加速容量衰减和导致电池内部短路并引发安全问题,电池电压在4.5V左右电解质开始分解。

锂电池在电动汽车上的应用情况

目前有多种类型的动力电池用在电动汽车上,广泛应用的动力电池一般以LMO、LFP、NCM、NCA为正极材料,同时采用碳负极材料,同时LTO也被开发用于提高电池的续航里程和快充能力。

表1 电动汽车的锂电池应用情况

BMS功能及其关键技术

目前商用电池必须要有BMS。通过BMS能够控制和管理电池更加有效率,每一个电池工作在可运行的区间范围内,避免电池的过充过放和热失控问题发生。单个电芯的容量比较低,需要很多个电芯集成成模组、一个电池系统包含多个模组。通常一个电池系统中包含上百个,甚至上千个电芯。如何保持电芯工作在合适的区间内,BMS发挥着重要的作用。

BMS功能为监视电池状态,建立电池状态、保护电池、上报数据、均衡等。BMS在整车中主要任务有:

1、保护电芯和电池包不受到损害;

2、使电池工作在合适的电压和温度范围内;

3、在保持电池在合适的条件运行后,满足整车的需求。

当然BMS同时需满足相关标准法规要求。BMS基本的硬件架构如图2。

图2 BMS基本硬件架构

4、电池参数检测:包括总压、总电流、单体电压检测、温度检测、绝缘检测、碰撞检测、阻抗检测、烟雾检测等等。

5、电池状态建立:包括SOC、SOH、SOF。

6、在线诊断:故障包括传感器故障、网络故障、电池故障、电池过充、过放。过流,绝缘故障等等。

7、电池安全保护和告警:包括温控系统控制和高压控制,当诊断出故障、BMS上报故障给整车控制器和充电机,同时切断高压来保护电池不受到损害、包括漏电保护等。

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力电池包和系统测试规程 范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db 交变湿热(12h+12h循环)(IEC 60068-2-30:2005,IDT) GB/T 2423.43-2008 电工电子产品环境试验第2部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006 电工电子产品环境试验第2部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置(ISO/DIS 6469-1:2000,EQV)GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护(ISO/DIS 6469-3:2000,EQV)GB/T 19596-2004 电动汽车术语(ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 1: General,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 3: Mechanical loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条件和试验第4部分:气候负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 4: Climatic loads,MOD) 术语和定义 1.1 蓄电池电子部件 采集或者同时监测蓄电池单体或模块的电和热数据的电子装置,必要时可以包括用于蓄电池单体均衡的电子部件。 注:蓄电池电子部件可以包括单体控制器。单体电池间的均衡可以由蓄电池电子部件控制,或者通过蓄电池控制单元控制。 1.2 蓄电池控制单元 battery control unit (BCU) 控制、管理、检测或计算电池系统的电和热相关的参数,并提供电池系统和其他车辆控制器通讯的电子装置。 1.3 1 / 20

电动汽车电池组热管理系统的关键技术

第22卷 第3期 2005年3月 公 路 交 通 科 技 Journal of Highway and T ransportation Research and Development V ol 122 N o 13 Mar 12005 文章编号:1002Ο0268(2005)03Ο0119Ο05 收稿日期:2004Ο03Ο16 基金项目:国家高技术研究发展计划(863计划)重大专题项目(2003AA501100) 作者简介:付正阳(1978-),男,北京人,清华大学汽车工程系硕士研究生,主要从事电动汽车方面的研究1 电动汽车电池组热管理系统的关键技术 付正阳,林成涛,陈全世 (清华大学 汽车安全与节能国家重点实验室,北京 100084) 摘要:电池组热管理系统的研究与开发对于电动汽车的安全可靠运行有着非常重要的意义。本文分析了温度对电池组性能和寿命的影响,概括了电池组热管理系统的功能,介绍了电池组热管理系统设计的一般流程,并对设计热管理系统提出了建议。文章重点分析了设计电池组热管理系统过程中的关键技术,包括电池最优工作温度范围的确定、电池生热机理研究、热物性参数的获取、电池组热场计算、传热介质的选择、散热结构的设计等。关键词:电动汽车;电池组;热管理系统 中图分类号:T M911141 文献标识码:A K ey Technologie s of Thermal Management System for EV Battery Packs FU Zheng Οyang ,LIN Cheng Οtao ,CHEN Quan Οshi (S tate K ey Laboratory of Autom otive Safety and Energy ,Tsinghua University ,Beijing 100084,China ) Abstract :Research and development of battery thermal management system (BT MS )is very im portant for the operation safety and relia 2bility of electric vehicle (E V )1In this paper ,by analyzing the in fluence of tem perature on the per formance and service life of batteries ,the desired function of a BT MS was outlined ,a procedure for designing BT MS was introduced 1Several key technologies during designing a BT MS were introduced and analyzed ,including optimum operating tem perature range of a battery ,heat generation mechanism ,ac 2quisition of the therm odynamic parameters ,calculation of tem perature distribution ,selection of heat trans fer medium ,design of cooling structure and s o on 1 K ey words :E lectric vehicle ;Battery pack ;Thermal management system 0 引言 能源与环境的压力使传统内燃机汽车的发展面临前所未有的挑战,各国政府、汽车公司、科研机构纷纷投入人力物力开发内燃机汽车的替代能源和动力,这大大促进了电动汽车的发展。 电池作为电动汽车中的主要储能元件,是电动汽车的关键部件[1,2],直接影响到电动汽车的性能。电池组热管理系统的研究与开发对于现代电动汽车是必需的,原因在于:(1)电动汽车电池组会长时间工作 在比较恶劣的热环境中,这将缩短电池使用寿命、降 低电池性能;(2)电池箱内温度场的长久不均匀分布将造成各电池模块、单体性能的不均衡;(3)电池组的热监控和热管理对整车运行安全意义重大。 清华大学从承担国家“八五”电动汽车攻关项目以来,在电动汽车、混合动力汽车和燃料电池汽车关键技术的研究中,积极开展了电池组热管理系统的研究,并在样车上进行了道路试验,目前电池组热管理系统的优化设计与改进工作正在进行中。本文是对前阶段研究工作的总结和今后工作的展望。

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

电池管理系统在电动汽车中的应用

第23卷第3期 2010年6月 山东科学SHANDONG SCIENCE Vol.23No.3Jun.2010 收稿日期:2010- 04-15作者简介:于良杰(1977-),男,工程师,从事实时系统,汽车电子的研究。E- mail :embedlinux@126.com 文章编号:1002-4026(2010)03-0087-05电池管理系统在电动汽车中的应用 于良杰1,乔昕2,张许峰2,邓楠 2(1.山东省科学院自动化研究所,山东省汽车电子技术重点实验室,山东济南250014; 2.北京尚能联创科技有限公司北京10029) 摘要:本文介绍了电池管理系统(Battery Management System )的发展以及应用在电动汽车中所面临的前端数 据采集、电池均衡管理、SOC 电量计量、实时通信以及电池绝缘监测等关键问题。 关键词:电动汽车;电池管理系统 中图分类号:U468.3文献标识码:B 随着人们环保意识的增强以及能源的日趋紧张,电动汽车受到国家和民众的广泛关注。电动汽车是全部或者部分由电能驱动电机作为动力系统的汽车,因此,电池系统作为电动汽车的动力系统在整个电动汽车 的研究和发展中具有举足轻重的作用。电池系统一般分为电池和电池管理系统两个部分。就电池而言, 铅酸、镍氢、锂离子或锂聚合物电池在电动汽车的研究中都有应用。锂离子电池由于其比能量大、放电电压高、循环寿命长、无记忆效应、具有快速充电能力、自放电速率小、具有多种安全保护措施、密封良好,无泄漏现 象、 环保等众多优点,使得其在未来电动汽车中的应用前景非常广阔。就电池管理系统而言,在锂离子电池被广泛关注之前,已经有学者针对铅酸和镍氢电池开展了电池管理系统的研究,这些研究包括数据采集、SOC 估算、实时通信、均衡、绝缘监测等。由于锂离子物理特性相当活跃,过充、过放更容易对锂离子电池带来损坏,这就对电池保护系统的性能提出了更高的要求。一个好的电池管理系统可以确保车辆的行驶安全、增加电池使用寿命、提供给驾驶员有用的信息、减少能源消耗等,是电动汽车的一个重要组成部分。 国外对电池管理系统的研究已经有几十年了,并取得了一定的成果。我国对电动汽车电池管理系统的研究还处于起步阶段,目前清华大学、北京理工大学、同济大学、北京航天航空大学在电动汽车的电池管理系统上取得了一定的研究成果,并应用于奥运大巴的项目中。 总的来说,电池管理系统按照实现方式可以分为两大类:一类是基于芯片的电池管理系统;另一类是基 于分立式器件的电池管理系统。基于芯片的电池管理系统一般将前端采集电路、 均衡电路以及电量计量算法、通讯功能等集成在芯片中,辅以外围电路完成对电池的管理功能,如德州仪器在电池管理IC 领域的bq 系列芯片[1-2],凹凸科技的OZ890电池管理芯片[3]等,具有更小的体积、更高的集成度等优势;基于分立器件的电池管理系统,有基于纯硬件和基于软硬件协调工作的解决方案,而软硬件协调工作方案由于实现更灵活、功能更完善,被广泛采用,如各院校和科研单位开发的电池管理系统、北京市中天荣泰科技有限公司的智能电池管理系统等,分立器件方案在产品设计的灵活性上占有一定优势。 无论是采用芯片还是采用分立器件搭建系统,都要面临一些电池管理系统需要解决的关键问题,而这些问题也被国内外学者广泛的研究,他们包括前端数据采集、数据存储、保护功能、均衡管理、电池健康状态、电量计量和实时通信,针对不同的应用需求可能还需要内置充电管理、后备态管理、绝缘监测等功能,其结构见

电动汽车动力蓄电池尺寸相关标准

一、电动汽车用动力蓄电池标准尺寸 1.圆柱形电池单体 序号N1N2 118±2.0mm65±2.0mm 221±2.0mm70±2.0mm 326±2.0mm65±2.0mm/70±2.0mm 432±2.0mm70±2.0mm/134±5.0mm 2.方形电池单体

序号N1N2N3 120±2.0mm65±2.0mm138±5.0mm 2(20/27)±2.0mm70±2.0mm(107/120/130)±5.0mm 3(12/20)±2.0mm100±5.0mm(140/310)±5.0mm 4(12/20)±2.0mm120±5.0mm(80/85)±2.0mm 527±2.0mm135±5.0mm(192/214)±5.0mm 6(20/27/40/53/57/7 9/86)±2.0mm 148±5.0mm(91/95/98)±2.0mm/ (129/200/396)±5.0mm 7(12/20/32/40/45/4 8/53/71)±2.0mm 173±5.0mm85±2.0mm/ (110/125/137/149/166/184/ 200)±5.0mm 8(32/53)±2.0mm217±5.0mm98±2.0mm 注:考虑整车布置的需要,推荐方形电池极柱高度不超过10mm 3.电池模组 序号N1N2N3 1211~515mm141mm211/235mm 2252~590mm151mm108/119/130/141mm 3157mm159mm269mm 4285~793mm178mm130/163/177/200/216/240/255/265mm 5270~793mm190mm47/90/110/140/197/225/250mm 6191/590mm220mm108/294mm 7547mm226mm144mm 8269~319mm234mm85/297mm 9280mm325mm207mm

纯电动汽车电池管理系统的设计说明书模板

纯电动汽车电池管理系统的设计说明 书

毕业设计说明书 纯电动汽车电池管理系统的设计 院、部: 学生姓名: 指导教师: 职称 专业: 班级: 完成时间: 摘要

随着经济的发展, 电力电子设备的更新速度更是突飞猛进, 然而传统的能源煤, 石油, 天然气的储量却在日渐减少, 这样带来的能源问题就引起了广大用户的关注, 作为生活中的重要组成部分, 汽车越来越被称为了生活得必须品,能源的减少引发了汽车动力的改革, 而以电能代替传统的汽油的汽车便走进了人们的视野中, 它污染小, 对周围的影响也小。电动汽车的主要特色就是它的电池工程, 而对电池的管理系统也就成了试下研究的热点。电池管理系统作为电动汽车上不可缺少的一部分, 在对电动车的电池管理, 充放电控制, 电池监控等方面有着很重要的作用。 本课题拟以中国长安纯电动汽车的设计要求和主体设计规划为蓝本, 设计一款以单片机作为主要控制器的电池管理系统, 实现对电池的综合检测管理的设计。主要包括电压检测、电流检测、充电检测、放点检测, 并针对性的设计外围CAN总线接口电路, 以方便上级控制系统和我们设计的电池管理系统有机结合。 关键字: 电动汽车, 充电管理, 锂电池

ABSTRACT With the development of economy, the updating speed of power electronic equipment is advancing by leaps and bounds. However, the traditional energy of coal, oil, natural gas reserves but in dwindling, energy problem has caused attention of the majority of users, as an important part of life, more and more vehicles is known to life necessities, energy reduction caused by the reform of the electric vehicle, and the electrical energy takes the place of the traditional gasoline car went into people's field of vision, it little pollution, influence on the surrounding is small. The main feature of electric car is its battery engineering, and the battery management system has become a hot spot for the study. As an indispensable part of electric vehicle, battery management system plays an important role in battery management, charge discharge control, battery monitoring and so on.. This paper intends to China Changan pure electric vehicle design

电动汽车用动力蓄电池技术要求及试验方法

《电动客车安全要求》 征求意见稿编制说明 一、工作简况 1、任务来源 为引导和规范我国电动客车产业健康可持续发展,提高电动客车安全技术水平,落实工业和信息化部建设符合电动客车特点的整车、电池、电机、高压线束等系统的安全条件及测试评价标准体系的要求,全国汽车标准化技术委员会于2016年8月启动了本强标的立项和编制工作。 2、主要工作过程 根据有关部门对电动客车安全标准制定工作的要求,全国汽车标准化技术委员会电动车辆分技术委员会组织成立“电动客车安全要求工作组”(以下简称工作组),系统开展电动客车安全要求标准的制定工作。 (1)GB《电动客车安全要求》于2016年底完成立项(计划号20160968-Q-339),2016年12月29日在南充电动汽车整车标准工作组会议上组建了标准制定的核心工作组,启动了强标制定工作,并由起草组代表介绍了标准的背景、编制思路、以及与相关标准的协调性关系。 (2) 2017年2月-3月,基于已开始执行的《电动客车安全技术条件》(工信部装[2016]377号,以下简称《条件》)的工作基础,工作组向电动客车行业主要企业、检测机构等16家单位征求《条件》的实施情况反馈与强制性国标制定建议。 (3) 2017年4月18日,工作组在重庆组织召开标准制定讨论会,会议对《条件》制定情况进行了回顾,对收集到的《条件》执行情况进行了分析讨论。根据讨论结果,针对共性问题形成了专项征求意见表。 (4) 2017年5月-6月,工作组根据重庆会议讨论结果向行业进行强标制定专项意见征求意见。 (5) 2017年6月6日,在株洲召开工作组会议,会议对专项征求意见期间收集的反馈意见进行研究讨论。 (6)2017年6月-10月,工作组依据意见反馈情况和会议讨论结果进行标

电池管理系统 (BMS)

如何重新定义电动汽车电池管理系统 (BMS )? 来源:英飞凌公司 作者:Klaus & Bj?rn2013年12月13日 12:01 0 分享 订阅 [导读] 无论是简单的充电控制器还是复杂的控制单元,对于电池管理系统 (BMS ) 的需求都在迅速增长,尤其是电动汽车领域。除了传统的充电状态监控外,BMS 系统还必须遵守日益严格的安全法规,注重控制和待机功能、热管理和用于保护 OEM 车厂电池的加密算法。 关键词:电池管理处理器英飞凌电动汽车 随着电气化动力系统变得日益复杂,BMS 需要执行的功能增多,承受的负担之重前所未有。 无论是简单的充电控制器还是复杂的控制单元,对于电池管理系统 (BMS ) 的需求都在迅速增长,尤其是电动汽车领域。除了传统的充电状态监控外,BMS 系统还必须遵守日益严格的安全法规,注重控制和待机功能、热管理和用于保护 OEM 车厂电池的加密算法。未 来,甚至车辆控制单元 (VCU ) 的部件和功能也会与 BMS 相关联。 图1 配备所有相关部件的电动汽车电池管理系统 (BMS )

未来,BMS 将在电动汽车领域发挥重要作用。然而 BMS 的各个子功能往往由 OEM车厂定制,会因系统配置不同而存在很大差异。因此,不可能制定出适用于每一个电动汽车制造商的完整的 BMS 要求列表。然而,电池管理系统处理的任务范围不断扩大,这一事实毋庸置疑。BMS 最常见的要求包括安全要求、控制和监控功能、待机功能、热管理、加密算法和预留可扩展接口增加新功能。 安全要求 在 ISO 26262 安全标准范围内,如 BMS 等特定的电气和电子系统将被归类为从 ASIL C 至 ASIL D 的高安全类别。与之对应的故障检测率至少为 97% 至 99%。电池系统中最危险的故障来源有:因电缆磨损或事故而导致车辆底盘出现高电压漏电而未被发现;各种引起高电压电池起火或爆炸的原因:例如对电池过度充电(例如在公用电网上或因停电恢复引起)、电池过早老化(例如爆炸性气体泄漏)、液体进入和短路(例如因雨水引起)、滥用(例如维修不当)和热管理错误(例如冷却失效)等。 在安全方面,主开关(主继电器)在避免与高电压相关的事故中起到了重要的作用,它可确保 BMS 电子系统能够作出充分的故障反应。发生故障时,BMS 模块会在适当的故障反应时间内断开开关(例如 10ms 以内)。非关键故障安全条件的特征通常是:如果 BMS 微控制器(MCU)失效,甚至在控制器逻辑完全失效的情况下,独立的外部安全元件(例如窗口看门狗)仍可确保主开关继电器可靠地打开逆变器(正/负)的两个高电压触点。BMS 系统中还集成了其他安全功能,包括漏电电流监控和主开关继电器监控。 控制和监控功能: 其他 BMS 功能包括对电动汽车中昂贵的高电压电池的监控、保养和维护。BMS 控制和监控功能来源于安装于电池包中的电子平衡单元。管理各个电池组内(battery slave pack)的平衡,同时精确地感测各个单电池的电压。平衡芯片通常可管理多达 12 个单电池组成的群组。相关数量的电池群组串联后可产生高达数百伏的高中间电路电压以供逆变器控制之用,这是电动汽车的逆变器电驱动所必需的。 位于主开关对所有高电压电池的总电流的测量,以及从芯片对各个单电池电压的单电池精确同步监控,BMS 可使用特定算法(例如,基于电池化学 Matlab Simulink 模型)评估充电状态及健康状态等电池参数。BMS 通常不会安装在非常靠近高电压电池的位置,但是通常会通过冗余的流电去耦总线系统(比如 CAN 或其他适合的差分总线)与电子平衡从动元件相连接。它由汽车电压(12 伏电池)供电,因此可通过现有的网络架构与现有的控制单元群组结合使用,无需进一步的流电去耦措施。最后,它还改善了安全性,因为它让 BMS 能够在高电压电池发生机构或化学缺陷时确保功能正常并且安全地断开主开关。 随着电池专用的化学/电气算法日益复杂,预计 BMS 将需要使用拥有 2.5MB 至 4MB 闪存和强大的多核处理器架构的 AURIX 等微控制器(MCU)。这种组合可以保证有足够的内存用于全面校准参数并提供足够的计算能力(图 2)。

特斯拉电动汽车电池管理系统解析

1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C 之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。 图 1.(a)是一层(sheet)内部的热管理系统。冷却管道曲折布置在电池间,冷却液在管道内部流动,带走电池产生的热量。图 1.(b)是冷却管道的结构示意图。冷却管道内部被分成四个孔道,如图 1.(c)所示。为了防止冷却液流动过程中温度逐渐升高,使末端散热能力不佳,热管理系统采用了双向流动的流场设计,冷却管道的两个端部既是进液口,也是出液口,如图 1(d)所示。电池之间及电池和管道间填充电绝缘但导热性能良好的材料(如Stycast 2850/ct),作用是:1)将电池与散热管道间的接触形式从线接触转变为面接触;2)有利于提高单体电池间的温度均一度;3)有利于提高电池包的整体热容,从而降低整体平均温度。

纯电动汽车及动力电池技术发展现状

纯电动汽车及动力电池发展现状调研 一、纯电动汽车发展现状 所谓纯电动汽车,是指完全由可充电电池作为动力源、以驱动电机及其控制系统驱动行驶的汽车。纯电动汽车(BatteryElectric Vehicle,BEV)与混合动力汽车(HybridElectric Vehicle,HEV)和燃料电池汽车(Fuel CellElectric Vehicle,FEV)是目前主要的新能源汽车类型。 1.1 发展纯电动汽车的必要性 (1)促进节能减排。与传统汽车相比,纯电动汽车具有更高的能源利用效率,同时也具有二氧化碳减排的潜力。机动车污染排放是城市空气污染的主要来源之一,2013年春季北京出现多次大面积雾霾天气,机动车尾气是主要原因之一。在上海,中心城区的主要大气污染物可吸入颗粒物、氮氧化物、挥发性有机物分别有66%、90%和26%来自机动车尾气。大力推广纯电动汽车是交通领域实现低碳的最佳方案,纯电动汽车行驶过程中不产生二氧化碳,即使考虑到中国目前电力生产过程中的二氧化碳排放,纯电动汽车仍然具有13%~68%的减排能力。随着我国能源结构和电力生产方式的转变,纯电动汽车必将在未来发挥更大的减排作用。 图1.1传统汽车与纯电动汽车综合能量效率比较(单位:%) (2)降低石油对外依存度。汽车保有量的迅速增加为我国能源安全带来严峻挑战。我国汽车保有量与原油对外依存度变化趋势见图1.2。最新数据显示,截止到2012年底,中国汽车保有量已达2.4亿辆,与此相对应的是2012年中国原油对外依存度达到56.4%,创下历史新高。如果不采取措施,“十二五”中将原油依存度控制在61%的计划将很难实现。在此背景下,如何满足未来汽车的能源需求,是关系到我国能源安全的关键问题。电动汽车由于其电力来源多样化,不仅更加适合中国以煤炭为主的资源禀赋,而且能够与中国大力发展可再生能源

电动汽车的电池管理系统

电动汽车中的电池能量管理系统 一、前言 电动汽车的应用有效地解决了能源和环境可持续发展的问题。电动汽车的应用前景广阔。但电动汽车尤其纯电动汽车的应用遇到了动力电池的难题,电池的问题体现在两个方面。其一是动力电池比能量不高,影响电动汽车续驶里程的要求,价格太高直接影响电动汽车的初始成本; 其二是电池的性能差,使用寿命低影响电动汽车的使用成本。电动汽车用的电池使用中其性能发挥得如何,除与电池模块自身性能有关外,与其应用的电池能量管理系统的功能有着密切的关系,尤其是电池模块质量不太理想的条件下,应用功能完备的电池能量管理系统其作用就更加突出。借助电池能量管理系统的正常工作会使电池模块的性能得以充分发挥,减少电池模块故障,延长电池模块的使用寿命,增加电动汽车的使用安全感。因此,电动汽车电池能量管理系统的应用备受电动汽车设计者和使用者的重视。 二、电动汽车电池能量管理系统的功能电动汽车,尤其是纯电动汽车中的电池能量管理系统是该车的一种相当重要的技术措施,可以称为电动汽车电池的“保护神”,它起到了对电池性能的保护、防止个别电池的早期损坏、有利于电动汽车的运行,并具有各种警告功能等[1]。由于它参加电池箱内电池模块的监控工作使电动汽车的运行、充电等功能与电池的有关参数(电流、电压、内阻、容量)紧密相连和协调工作。它有计算,发出指令、执行指令和提出警告的功能。各种电池模块虽然有结构和性能上的差异,但它们都具备一些相同或相似的功能。典型的电池能量管理系统应具备如下功能: 2.1 对能量的检测功能

电动汽车在行车过程中,该系统能随时对车辆的能耗进行计算,最终给出该电池箱内电池模块剩余的电池能量值,并通过剩余能量计将数据显示出来,使驾驶人员知道车辆的续驶里程,以便决定如何行驶.在能量允许的条件下使车辆行 驶到具有充电功能的地方,补充电量防止半路抛锚。 2.2 对电池工作状态的监测与控制功能 电池能量管理系统按电池箱内安装的传感器提供的信号对电池进行管理。一般情况下,电池箱内有温度传感器及电压、电流和内阻的测量值。由于温度的变化对其他参数都有影响,所以一般都以电池模块的温度来做为控制的指令信号,将测得的温度值与事先设定的温度值进行比较,决定对电池冷却与否。电动汽车能源是很宝贵的,应尽量采用节能元件,所以电池箱内的冷却风扇一般都是采用分级参与工作。这样能做到在保证电池性能的条件下尽量使用小排量的风扇。当第一级风扇工作后尚不能达到要求的温度时,第二级冷却风扇才参与工作,加强冷却。此时电池箱内的温度如果还不能达到要求的工作条件,温度继续升高已达到影响电池模块的正常工作条件,为保护电池模块不受损坏,能量管理系统会发出停止电池模块供电的指令,强行车辆停驶。当电池在充电状态下,能量管理系统会强令充电机停止充电而不损坏电池,由维修人员进行检测排除故障。 2.3 保证充电功能 电池能量管理系统随时参与整车检测工作,检测电池的工作状态,尤其对每只电池的技术状态进行检测分析,将检测的数据在车辆停驶,充电之前“通知”充电机,即“车与机”的对话。告诉充电机,电池组的工作状态及每只电池的技术状态,“落后”电池和“先进”电池性能差异。此时充电机应当采用什么样的充电模式给电

特斯拉电动汽车动力电池管理系统解析

特斯拉电动汽车动力电池管理系统 解析 1.Tesla目前推出了两款电动汽车,Roadster 和Model S,目前我收集到的 Roadster的资料较多,因此本回答重点分析的是 Roadster的电池管理系统。 2.电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。 BMS勺主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管

理系统(Battery Thermal Man ageme nt System, BTMS). 1.热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子

电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0° C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30° C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池

电动汽车整车电池热管理研究

电动汽车整车电池热管理研究 发表时间:2018-11-17T18:52:14.633Z 来源:《建筑模拟》2018年第24期作者:汪勇[导读] 笔者先分析电动汽车整车电池热管理的意义,再进一步提出电动汽车整车电池热管理的措施。汪勇 身份证号码:3408811992****0113 安徽江淮汽车集团股份有限公司安徽合肥 230000摘要:笔者先分析电动汽车整车电池热管理的意义,再进一步提出电动汽车整车电池热管理的措施。关键词:电动汽车;整车电池;热管理前言: 确保电池组工作在安全区间内,提供车辆控制所需的必需信息,发生意外的情况的时候要及时响应处理,并按照环境温度、电池状态和车辆需求等决定电池的充放电功率等这就是电池管理系统的主要任务。监测电池参数、估计电池状态、在线故障诊断、充电控制、自动均衡、热管理等。是BMS的主要功能。 1 电动汽车整车电池热管理的意义整个电动汽车的使用性能和寿命和安全性等内容直接受到电动汽车的电池热管理问题的影响,因此需要我们着重注意,在电动汽车中,蓄电池往往是重要的动力供应部分,所以如何提高电动汽车整车的性能以及安全性需要从蓄电池入手,蓄电池的温度特性关系着整个电动车的耐久性和使用寿命,常见的锂电池具有多方面的优点,比如循环寿命较长、允许工作温度范围较大、比能大、自放电率低等。所以目前的电动汽车常选用锂电池作为动力电源,在锂离子电池的热管理工作中需要根据锂离子的具体发热方式进行管理,通过对电池包结构的设计来进行热管理的方式和策略的设定,从而实现整个电池组中单体电池之间的串联和合理温度的保障,整个电池组中任何一个电池出现问题都会造成电池组整体的性能下降,所以要分别注重,例如在相同充电的条件下,不同的温差将会出现不同的电池组荷电状态,而电池热管理正是针对电池的热相关问题来进行的技术内容,通过热管理的方式来保障电池的正常动力供应,通常的热管理系统主要是在电池温度较低的情况下做好预热情况,保障低温充电、放电的高效和安全,其次是电池长时间工作之后温度升高,热管理进行有效的散热,避免因为温度过高造成的事故,另外在电池组之间的温度上也要进行均衡,避免产生过大的温度差异,造成局部过热,影响电池组的寿命和安全[1]。 2 电动汽车整车电池热管理的措施 2.1 以锂电池为例现阶段,锂电池是电动汽车运用的电源供应主要方式,所以以锂电池为例,在电动汽车的整车电池管理工作中,锂电池的电池温度对于整个车辆的使用和功率性能有直接的影响,所以需要进行热管理的控制,当温度较低时将造成电池容量的迅速衰减,在电动汽车的运行中不能提供足够的能源,例如在0度以下电池的可用容量大大减少,温度过低的情况还有可能出现瞬间的电压过充问题,出现电池内部锂的析出,有可能引起短路的问题,另外,在锂电池的热相关问题上,电池安全性的问题也与电池热问题相关,在生产和制造的过程中不当操作容易造成电池的局部过热,出现放热反应,严重的甚至造成爆炸、起火等严重事故,出现人员的安全隐患。除了以上问题,在锂电池的存放和工作过程中的环境温度也将影响到电池的寿命,通常而言,在电池的存放和工作过程中最佳温度为 10-30度之间,温度的过高或过低都会造成电池的寿命和安全问题,电力的需求使得动力电池的大型化成为一种趋势,这就更容易造成内部温度的不均匀和局部温度过高的现象,造成电池寿命的问题,电池加速衰减,从而影响到电动汽车的使用,在具体的运行过程中,动力系统必须要及时降低锂离子电池的问题,保障电池的安全性和足够的动力[2]。 2.2 空气强制对流在电池的热管理工作中,散热是一个重要的内容,空气的强制对流是散热的重要方式,将空气作为主要的传热介质,通过空气在模块的穿过来消散热量,从而达到散热的目的,但是空气本身的冷却效果是很小的,这就需要强制的空气冷却方式,运动产生的流动空气带走电池的热量,从而尽可能的降低电池温度,在强制对流的实现中,需要注意的是电池间的散热槽、距离等方面的设计工作,只有做好了科学的散热面积以及电池封装工作才能有效的进行散热工作,通常常见的电池组采用串联和并联式的通道,在仿真结果下对电池的散热性进行研究可以得出热辐射在整个散热过程中占有非常大的比例,所以强化传热是降低温度的有效措施,通过风冷的方式能够有效的进行电池的散热工作,并且结构简单,成本较低,但是同时冷却和加热的速度较慢[3]。 2.3 液体冷却通常在普通的要求下采用空气的流通方式就可以满足基本的散热要求,但是在较复杂的工况和要求下空气对流的方式就不能满足热管理的要求,所以在这种情况下我们通常采用液体冷却的方式,通过液体的方式进行电池组的热交换,常见的采用模块间布置管线或者模块布置夹套的方式,通过液体的沉浸来进行热交换,常见的传热介质包括油、制冷剂、水、乙二醇等,由于液体的导电问题,所以必须采取有效的绝缘措施,避免出现短路的现象,造成严重事故。传热介质的传热速率主要是根据液体的热导率、流动速率、密度、粘度等确定,在相同的流速和条件下,液体的传热速度大大高于空气的传热速度,这是由于液体本身的特点高于空气的导热率,液冷的方式能够热传递效率高、速度快,但是同时也有重量较大、部件较为复杂、保养过程复杂等缺点。通过试验结果可以证明液体的热传递效果大大高于空气介质的传热效果,但是同时系统较为复杂,并联型的混合动力车中只采用空气的冷却方式即可保证散热要求,纯电动汽车由于要求较高则需要液体冷却的方式,通过流道设计的研究可以得出并联流道整体温度要低于串联流道,在具体的设计和应用角度来看,串联流道结构更适用于产品的使用,综合而言整体散热较好,随着电池模块容量的增大,恶劣环境下运行对电池性能的要求越来越苛刻,高效的电池热管理系统极其重要[4]。结语 在电动汽车管理中,要重视整车电池的热管理,在设计不一样的汽车时,要根据不一样的汽车特点选择合适的热管理方式,从而确保电池的动力供应与热管理效果,使电动汽车的寿命与运行质量能得到保证。参考文献:

电池热管理系统

电池热管理 电池热管理概述 电池热管理系统 (Battery Thermal Management System, BTMS)是电池管理系统(Battery Management System, BMS)的主要功能(电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等)之一,通过导热介质、测控单元以及温控设备构成闭环调节系统,使动力电池工作在合适的温度范围之内,以维持其最佳的使用状态,用以保证电池系统的性能和寿命。 电池热管理重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。 1)电池能量与功率性能:温度较低时,电池的可用容量将迅速发生衰减,在过低温度 下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部短路。 2)电池的安全性:生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部 过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件。 3)电池使用寿命:电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起 电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命。 电池热管理系统是应对电池的热相关问题,主要功能包括: 1)散热:在电池温度较高时进行有效散热,防止产生热失控事故; 2)预热:在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性 能和安全性;

3)温度均衡:减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电 池过快衰减,以提高电池组整体寿命。 电池热管理方案 电池热管理方案主要分为风冷与液冷两大类,主要侧重于防止电池过热方面: 1.风冷 该技术利用自然风或风机,在电池包一端加装散热风扇,另一端留出通风孔,使空气在电芯的缝隙间加速流动,带走电芯工作时产生的高热量。风冷方案设计主要考虑电池系统结构的设计,风道,风扇的位置及功率的选择,风扇的控制策略等。风冷是以低温空气为介质,利用热的对流,降低电池温度的一种散热方式,分为自然冷却和强制冷却(利用风机等)。 整车中的电池风冷流道

相关文档
相关文档 最新文档