文档库 最新最全的文档下载
当前位置:文档库 › 软开关变换器3

软开关变换器3

—软开关变换器

移相控制零电压开关全桥变换器

超前桥臂与滞后桥臂的差别

ZVS的实现条件

占空比丢失现象

有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

超前桥臂滞后桥臂

超前桥臂

滞后桥臂

p超前管靠滤波电感L f实现ZVS;p滞后管靠谐振电感L r实现ZVS。

22122

x in x in E C V C V >?=2lead in E C V

>2lag in

E C V >221lag 12

r in L I C V >2lag 212in

r C V

L I >开关管实现ZVS 的条件:谐振电感的设计依据:1. 超前桥臂实现ZVS 的条件:2. 滞后桥臂实现ZVS 的条件:22lead 12

f o in L I C V >超前桥臂

滞后桥臂

重载临界负载轻载

有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

模态四:

t2 < t ≤ t3

模态五:

t3 < t ≤ t4

模态六:

t4 < t ≤ t5

两只整流二极管同时导通

253535222loss

s s s t t t D T T T >≈=()1535/2r Lf r o in in L I I t K L I t V V K

???+???=

=?4r o s loss in L I f D V K ??=?注意占空比丢失跟谐振电感、负载电流、输入电压和开关频率等参数有关。

小结与思考 ZVS的实现条件;

分析了超前桥臂与滞后桥臂的区别。

占空比丢失。

自激式软开关变换器(ZVS)教程

自激式软开关变换器(ZVS)教程

前言 第一章关于本电路 第二章ZVS的工作原理 第三章ZVS的元件选择 第四章ZVS的拓展应用之 电磁枪配套升压器 第五章ZVS的拓展应用之 基于ZVS的滞后反馈升压器第六章ZVS的拓展应用之 高效电鱼机

ZVS电路对于各位来说可能并不陌生,可能很多同学都制作过数十个ZVS电路了。ZVS的最经常用途是驱动高压包拉弧,zvs具有简单、功率大、发热小效率高等优点。在此提醒一下各位,不要不加思索地一味重复制作某个电路,DIY<>纯粹的组装。本教程将介绍ZVS 的背景、工作原理、制作经验和高级应用方式(这是亮点!)同时带领各位领悟DIY的真谛!

第一章关于本电路 相信很多人看到了很熟悉的那个电路。这就是自激式软开关变换器,常被大家称为ZVS。值得一提的是,ZVS是一种电路工作模式的名称(Zero voltage switch,零电压开关),用于描述在开关电源中功率管在其两端电压为零时进行开关动作,此时没有开关损耗。本电路的功率管正是由于工作在ZVS模式又加上太著名了所以被称为ZVS……(下文中ZVS代表本电路) ZVS是一种Royer变换器,那么Royer是啥?可能很多同学第一次听说这个名词,下面让我为大家分解。 1955年美国的科学家罗那(G.H.Royer)首先研制成功了利用磁芯的饱和来进行自激振荡的晶体管直流变换器。此后,利用这一技术的各种形式的精益求精直流变换器不断地被研制和涌现出来,从而取代了早期采用的寿命短、可靠性差、转换效率低的旋转和机械振子示换流设备。由于晶体管直流变换器中的功率晶体管工作在开关状态,所以由此而制成的稳压电源输出的组数多、极性可变、效率高、体积小、重量轻,因而当时被广泛地应用于航天及军事电子设备。由于那时的微电子设备及技术十分落后,不能制作出耐压高、开关速度较高、功率较大的晶体管,所以这个时期的直流变换器只能采用低电压输入。 此后Royer类变换器一直没有停止发展,先后出现了: 三极管ZCS(用于LCD背光照明CCFL,本教程不多作介绍)

常用开关电源芯片

--------------------------------------------------------------------------- 常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725

开关电源之软开关技术在开关电源中的应用阐述

开关电源之软开关技术在开关电源中的应用阐述 开关电源中的硬开关和软开关是针对开关晶体管而言的。硬开关是不管 开关管上的电压或电流,强行接通或关断开关管。当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造 成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交 越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。 ?若是感性负载,在开关晶体管关断时会感应出尖峰电压。开关频率越高, 关断越快,该感应电压越高。此电压加在开关器件两端,容易造成器件击穿。 ?若是容性负载,在开关晶体管导通瞬间的尖峰电流大。因此,当开关晶体 管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式 全部耗散在该器件内。频率越高,开通电流尖峰越大,从而会引起开关管的 过热损坏。 ?另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反 向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。显然 频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。 ?最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。 随着频率的提高和电路中的di/dt和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。 ?上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的 提高。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢

开关电容式变换器的工作原理

开关电容式变换器的工作原理 多种倍增输出的开关电容式变换器的工作原理利用更多的受控开关和电容,改变 输出电压与输入电压之比,并在供电电池使用过程中,随着电压的降低,自动地依次 改变电路的倍增因子,伎其由小到大变化,就能保证在电池电压变化时,有足够高的 输出电压来驱动。电压倍增的原理—。最大效率为,平均效率为腮。采用脚薄型则封装,尺寸为,方形。关于输出电压倍增及其模式的自动切换和没有多少区别,这里不 再重复。软启动含有软启动线路,以限制电源接退时和过渡模式下输入端的浪涌电流。在电源接通之初,输出ABC电子电容直接由输入以斜升的电流充电电荷泵还没有工作,经过,如果所有的阴极电位没有到以上,则毗转入倍模式,的输出电流按的阶梯向预 设值步进增大如果再经过,所有的阴极电位仍然没有在以上,则转入倍模式,的输出 电流再一次按的阶梯向预设值步进增大。 不论何时,如果输出电压低于,则软启动程序都将复位到倍输出模式。输出电流 的设置利用串行接口,可以对主屏副屏和闪光灯皿的电流进行设置。此串行接口有两 条线和,用来控制主副屏删亮度闪光灯和的变化以及四最大电流随温度的降额情况, 为串行数据线,为串行时钟线,采用标准的串行接口写字节命令。只是一个从设备受 控设备,依赖于主设备一般为微处艾博希电子理器来产生时钟信号。主设备在总线上 启动数据传送并产生时钟信号,先向传送位的地址字节,接着传送位的控制字节,控 制字节包含位的命令编码和位的数据。每次传送序列以”打头,而以”结束。控制字 节的格式如表。输出电流为的开关电容型变换器是凌特公司产品,和的功能相似,能 驱动个主屏个副屏和个删四,总输出电流为有个电流为的恒流源分别驱动每个最大的 显示电流由内部的精确的基准电流源确定亮度调节有级利用两条串行接口线,位的数 模转换器信号对每个电流源独立地控制其迈断调光和改变亮度水平输出电压按倍倍倍 倍增电路自动切换工作模式,接通电源后开始按倍电压模式工作,只要有一个皿电流 下降,电路自动转入增压模式。 它是一种高效低噪声的电荷泵型器件。电路采用脚塑料封装,尺寸为咖,其实 用电路中一实际为条引出线,分别和的阴极相连,为每个阴极提供恒定的电流,此电流可由。调高到,按级阶梯调节,由内部的位和软件确定,如果内部的数 据寄存器四一设置为,则输出电流为。通过电路采用脚薄型封装,尺寸为删皿皿,厚度仅为咖。是的外形及实用电路。的开关管及二极管均需外接,内部集 成有驱动开关管栅极的输出,它能提供驱动的源电流和的灌电流。由接于脚电 源高端及脚的电阻决定的电流人印。串行口的控制,一还刃以用作漏极开路输出,—。是两条串行输入线,输IC现货商入时钟和数据。每来一个时钟脉冲, 其作用和上面介绍的中的串行口相似,冉重复。引脚是所有数据线的电源,将 置于欠电压封锁阉值以下时,的数据寄存器均被复位为。该脚应当用或的陶瓷 电容旁路接地。脚是的伎能禁止脚,当该脚由低变高时,四按预定的亮度点亮。

几种开关电容网络及其对DC_DC变换器的改善

○ 理论探讨  ○ 几种开关电容网络及其对DC -DC 变换器的改善 国家自然科学基金资助项目。 收到稿件。 刘 健 陈治明 严百平(西安理工大学 710048) 摘 要 提出三种开关电容网络,包括串并电容组合结构、极性反转开关电容网络和推挽开 关电容网络,并讨论了它们的性质。将这三种开关电容网络和传统DC -DC 变换器相结合,提出了一系列新的变换器拓扑结构。理论分析和实验结果表明,上述措施有助于提高具有悬殊电压变比的DC -DC 变换器的性能。 关键词 开关电容网络 DC -DC 变换器 1 引言 传统DC -DC 变换器中(如buck 、boost 和cuk 等),在进行较大电压变比的升压变换或较悬殊电压变比的降压变换时,必须令功率开关工作在很大 或很小的导通比下,这影响了变换器的效率,也使变换器的动态特性降低[1]。本文研究了将几种特殊的开关电容(SC )网络与传统的开关DC -DC 变换器相结合,利用SC 网络对电压进行预变换,借以改善传统的变换器性能的方法,提出一系列新的拓扑结构,如SC buck 变换器,SC boost 变换器以及SC cuk 变换器等。 2 几种开关电容网络 SC 网络是仅含有电容器和功率开关的电路单元,功率开关一般分作交替导通的两组。能够直接用于开关DC -DC 变换器来改善其性能的SC 网络有以下三种,如图1所示。 2.1 串并电容组合结构(Series -parallel capacitor group ,简写为SP ) 图1a 为典型的串并电容组合结构(SP ),一般情况下构成SP 的各个电容器取值均相等。我们定义一个SP 中所含独立电容的个数为该SP 的阶(order ),用n 表示。这样图1a 所示为二阶SP 。 SP 具有这样的特点:当外部给它充电时(即开关S 1导通,S 2断开时),组成SP 的各个电容C 1i 相互串联;而当SP 放电时(即S 2导通,S 1断开 时),组成SP 的各个电容C 1i 相互并联。因此,假如对SP 的充电状态的持续时间和放电状态的持续 时间分别大于其充电状态时间常数和放电状态时间常数的话,则在稳态下n 阶SP 可以看作一个n ∶1的降压器,即 图1 三种开关电容网络 (a )二阶SP (b )R SC 网络(c )二阶Pus h -Pull SC 网络 第5期 电工技术杂志1999年9月

DCDC功率变换器软开关技术及Pspice仿真.

DC/DC功率变换器软开关技术及Pspice仿真 引言随着生产技术的发展,电力电子技术的应用已深入到工业生产和社会生活的各方面,目前功率变换器的开关变换技术主要采用两种方式:脉宽调制(PWM技术 和谐振变换技术。传统的PWM控制方式由于开关元件的非理想性,其状态变化需要一个过程,即开关元件上的电压和电流不能突变,开关器件是在承受电压或流过电流的情况下接通或断开电路的,因此在开通或关断过程中伴随着较大的损耗。变频器工作频率一定时,开关管开通或关断一次的损耗也是一定的,所以开关频率越高,开关损耗就越大,因而硬开关变换器的开关频率不能太高。相比之下软开关变换器的作用是,当电压加在器件两端或者电流流经器件时,抑制功率器件转换时间间隔, 即软开关的开关管在开通或关断过程中,或是加于其上的电压为零,或是通过器件的电流为零。这种开关方式明显减小了开关损耗,不仅可以允许更高的开关频率以及更宽的控制带宽,同时又可以降低dv/dt 和电磁干扰。本文为了更好地说明不同软开关技术的区别,采用Pspice 软件对其中两种有代表性的变换电路进行了仿真和分析。 图 1 升压半波模式的零电压开关准谐振变换器原理图图 2 开关管通断及其所受电压应力仿真波形图3 升压零电压PW变换器原理图图 4 主副开关管的驱动仿真波形软开关的原理谐振开关技术的核心问题是为器件提供良好的开关工作条件,使得器件在零电压或零电流条件下进行状态转变,从而把器件的开关损耗降到最低水平。软开关下的器件通断可以明显减少功率的开关损耗。减小开关损耗通常有以下两种方法:在开关管开通时,使其电流保持在零或抑制电流上升的变化率,减少电流与电压的重叠区,从而减少开通的功率损耗,即零电流导通;在开关管开通前,减小或消除加在其上的电压,即零电压导通。 减小关断损耗有以下两种方法:开关管关断前,减小或消除加在其上的电流,即零电流关断;开关管关断前,减小或消除加在其上的电压,即零电压关断。 DC/DC变换器 软开关的分类及特点 DC/DC功率变换器目前所采用的几种方法如下:谐振变换器、准谐振变换器和多谐振变换器、零电压开关PWM^换器、零电流开关PWMS换器、零电压转换pwr变换器和零电流转换PW M换器。 谐振变换器 该类变换器实际上是负载谐振型变换器,按照谐振电路的谐振方式,分为串联谐振变换器和并联谐振变换器两类。按负载与谐振电路的连接关系,也可分为两类:一类是负载与谐振回路相串联,称为串联负载谐振变换器;另一类是负载与谐振回路相并联,称为并联负载谐振变换器。在谐振变换器中,谐振元件一直谐振工作,参与能量变换的全过程。其缺点是:该变换器输出性能与负载关系很大,对负载的变化很敏感,电压调节一般采用频率调制方法,滤波电路参数难于选择,并且电路稍显复杂。

开关电源核心技术

开关电源关键核心技术 开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。因为开关三极管总是工作在“开” 和“关” 的状态,所以叫开关电源。开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,变压器反馈式振荡电路,能产生有规律的脉冲电流或电压的电路叫振荡电路,变压器反馈式振荡电路就是能满足这种条件的电路。 Buck变换器 Buck变换器也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation 脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。 Boost变换器 也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式 Buck/Boost变换器

维修 有些开关电源很复杂,元器件密密麻麻,很多保护和控制电路,在没有技术支持的情况下,维修起来是一件很头疼的事。在我面对这种情况时,首先我会找到开关管及其参与振荡的外围电路,把它从电路中分离出来,看它是否满足振荡的条件,如检测偏置是否正常,正反馈有无故障,还有开关管本身,开关电源有极强大的保护功能,排除后检察控制和保护及负载电路。 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET 构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间 用途与简介 用途 开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防,电脑机箱,数码产品和仪器类等领域。 简介 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这

开关电容滤波器的设计

开关电容低通滤波器的设计原理分析 为了滤除信号中掺杂的高频噪声,设计一种六阶级联式开关电容低通滤波器,以数据采样技术代替传统有源RC滤波器中的大电阻,有利于电路的大规模集成。滤波器由双二阶子电路级联而成,电路中的电容值利用动态定标技术计算确定。用Hspice进行仿真验证,结果表明:开关电容低通滤波器能较好地时信号进行整形,其频率特性符合设计指标。 滤波技术是信号分析和处理中的重要分支,它的作用是从接收到的信号中提取有用的信息,抑制或消除无用的或有害的干扰信号,有助于提高信号完整度和系统稳定性。滤波器正是采用滤波技术的具有一定传输选择性的信号处理装置。随着现代集成电路技术和MOS工艺的飞速发展,模拟集成滤波器的实现已经成为现代工业的一个重大课题,也是当今国际上的前沿课题。 传统的连续时间模拟滤波器采用有源RC结构,能够应用到较高的频率,但是电路中多采用大电容和大电阻,在集成电路制造时会占用大量的芯片面积。在现代集成电路工艺中,很难得到精确的电阻值和电容值,而且电阻值随温度变化很大,精度只能达到30%。 1972年,美国科学家Fried发表了用开关和电容模拟电阻R的论文,由此开关电容技术成为模拟集成滤波器设计中常用的方法。开关电容滤波器是由运算放大器、电容器和MOS 开关组成的有源开关电容网络,以数据采样技术代替大电阻,减小了芯片的面积和功耗,且电路的极点和时间常数由电容的比值确定,可实现高精度的模拟集成滤波器。本文设计一种开关电容低通滤波器,用于滤除有用信号中掺杂的高频噪声。 1 开关电容技术的原理 图1中的开关电容等效电阻电路由两个独立的电压源V1、V2,两个受控开关S1、S2和电容C组成。开关S1和S2受两相不交叠的时钟φ1和φ2控制,时钟频率均为fs。

软开关技术在开关电源中的应用

软开关技术在开关电源中的应用 开关电源中的硬开关和软开关是针对开关晶体管而言的。 硬开关是不管开关管上的电压或电流,强行接通或关断开关管。当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。 开关管的切换损耗与开关管的负载特性有关: 若是感性负载,在开关晶体管关断时会感应出尖峰电压。开关频率越高,关断越快,该感应电压越高。此电压加在开关器件两端,容易造成器件击穿。 若是容性负载,在开关晶体管导通瞬间的尖峰电流大。因此,当开关晶体管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式全部耗散在该器件内。频率越高,开通电流尖峰越大,从而会引起开关管的过热损坏。 另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。显然频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。 最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。随着频率的提高和电路中的di/dt 和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。 上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的提高。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢上升到断态值,所以关断损耗近似为零。由于器件关断前电流已经下降到零,便解决了感性关断问题。理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压也为零,解决了容性开通问题。同时,开通时,二极管反向恢复过程已经结束,因此二极管反向恢复问题不存在。 软开关技术还有助于电磁骚扰水平的降低,其原因是开关晶体管在零电压的情况下导通和在零电流的情况下关断,同时快恢复二极管也是软关断的,这可以明显减小功率器件的di/dt和du/dt,从而可以减小电磁干扰的电平。 一般来说软开关的效率较高(因为没有切换损);操作频率较高,PFC或变压器体积可以减少,所以开关电源的体积可以做到更小。但成本也相对较高,设计较复杂

1.04_曹文静_反激式开关电容PWM直流变换器_6

非隔离反激式开关电容PWM直流变换器 曹文静金科阮新波 (南京航空航天大学,江苏 南京 210016) Non-Isolated Flyback Switching Capacitor PWM DC-DC Converter CAO Wenjing, JIN Ke, RUAN Xinbo (Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China) Abstract: This paper proposes a novel non-isolated flyback switching capacitor PWM DC-DC converter. The converter is a combination of a switching capacitor converter and a traditional PWM DC-DC converter, and it has the following advantages: 1) Zero voltage switching of all the MOSFETs. 2) The transformer leakage inductor and the blocking capacitor resonate to reach the soft-switching of the switches. 3) Its efficiency is not sensitive to leakage inductor, so that the ordinary discrete transformer which is easy to install can be used to save the cost. 4) Single phase option makes it more flexible. A single-phase 700kHz 1.2V/35A output POL prototype was built to verify the analysis. 摘要:本文介绍了一种非隔离反激式开关电容PWM直流变换器,该变换器是开关电容变换器和传统的调压直流变换器的结合,具有如下优点:1)开关管的零电压开关(Zero-voltage-switching, ZVS);2)变压器漏感与隔直电容谐振,实现开关管的软开关;3)变压器漏感对效率的影响小,可以使用常规的分立式变压器,节约成本且易于安装;4)变换器是单相的,结构简单,应用灵活。在理论分析的基础上,搭建了一台单相700kHz 1.2V/35A POL原理样机验证了理论分析的正确性。 关键词:开关电容变换器调压变换器漏感零电压开关1. 引言 新一代的计算机和通讯设备,采用开放式结构,用模块化的方法处理信号、数据和功率。这使得分布式电源系统(Distributed power systems, DPS) 的应用成为必然。互联网的广泛普及需要更先进的、高品质和更可靠的能源网络作为基础设施的支持,自然需要采取分布式发电、配电以及电能调节的方式。未来的电能处理系统在实际操作上应该全部都是通过功率变换装置将电力负载连接到电源。先进的功率处理系统应当具备可控、可重构的特点,可以在通讯、计算机、互联网基础设施、汽车、航空等领域应用。并且 国家自然科学基金(51007038)资助项目;台达环境与教育基金会《电 力电子科教发展计划》资助项目。能够实现从给定的源变换到所需形式的电能,提供给相应的负载。 随着信息产业的快速发展,高效率高动态特性负载点(Point-of-load, POL)变换器得到了越来越多的应用。例如给CPU供电的VRM就是一种特殊的POL 变换器。随着计算机和通讯技术的快速发展,目前CPU的工作电压降低到1V,甚至1V以下,且动态电流上升率达到2A/ns[1]。高功率密度和高效率是当今DC/DC模块的主要目标。 增大开关频率可以增大控制带宽,减少输出滤波电容的数量。然而,目前广泛运用的传统多相Buck 变换器在高频工作时存在开关损耗大、驱动损耗大、SR体二极管损耗大等严重的缺点[2-8]。 文献[9]-[10]提出了自驱动ZVS非隔离全桥DC/DC变换器,如图1所示。与传统两相Buck变换器相比,它具有以下优点:1)功率管的零电压开关; 2)消除了SR驱动器,降低了成本;3)不需要调节死区时间,减小了SR体二极管导通损耗;4) 增大占空比,减小了主开关管关断损耗和SR体二极管的反向恢复损耗。与Buck相比,自驱动ZVS非隔离全桥DC/DC变换器可以实现更高效率的电能转换。然而,该变换器具有以下缺点:1) 必须两相工作,环流损 图1 自驱动ZVS非隔离全桥DC/DC变换器

开关电容滤波器的设计与应用

开关电容滤波器的设计与应用 吴 猛 (中国兵器工业第214研究所 蚌埠 233042) 摘 要 本文介绍了开关电容滤波器的结构与工作原理,并对美国L I N E AR 公司开关电容滤波器器件LTC1068系列具体应用做了介绍。 关键词 开关电容 滤波器 1 引 言 开关电容滤波器是利用开关电容网络构成的滤波器,它的出现促进了有源滤波器的集成化,随着集成电路制造工艺水平的提高,集成开关电容 滤波器的尺寸变得越来越小,设计也越来越简单,已大量运用到通讯及其他数字化系统。目前,国际市场上开关电容滤波器件主要是美国MAX I M 和L I N E AR 公司生产的MAX29X 和LT C1068系列。本文将介绍L I N EAR 公司LT C1068 的原 图1 LTC1068结构图 第23卷第4期2005年12月 集成电路通讯 J ICH EN GD I ANLU TON GXUN Vol .23 No .4 Dec .2005

理及应用。 2 LTC1068电路结构 美国L I N E AR公司的LTC1068系列是低噪 声、高精度的通用滤波器组合模块,由4个相同的2阶开关电容滤波器单元组成。内部结构如图1所示: LT C1068系列芯片之间差别仅仅是时钟频率与中心频率之比(f CLK /f O)不同,单块芯片可以被设计成2阶、4阶或8阶滤波器。L I N ERA公司 的开关电容滤波器按固定标称比f CLK /f O而设计。 多数应用场合设计滤波器要求不同的f CLK /f O,可通过用外部电阻和不同的连接方式加以解决。 3 引脚功能及技术特点 3.1 引脚排列 引脚排列如图2所示 : 图2 LTC1068引脚图3.2 引脚功能 LTC1068引脚功能如表1所示: 表1 LTC1068引脚功能 引脚序号符 号功 能引脚序号符 号功 能1I N VB信号反相输入端28I N VC信号反相输入端 2HP B/NB信号高通输入端27HPC/NC信号高通输入端 3BP B信号带通输入端26BPC信号带通输入端 4LP B信号低通输入端25LPC信号低通输入端 5S B求和端24SC求和端 6NC空脚23V-负电源 7AG ND数字地22NC空脚 8V+正电源21CLK时钟信号输入端 9NC空脚20NC空脚 10S A求和端19S D求和端 11LP A信号低通输入端18LP D信号低通输入端 12BP A信号带通输入端17BP D信号带通输入端 13HP A/NA信号高通输入端16HP D/ND信号高通输入端 14I N VA信号反相输入端15I N VD信号反相输入端 3.3 技术特点 a.工作电压可选择双电源±5V,单电源5V 或3.3V; b.2阶滤波器中心频率误差±0.3%(典型 13  第23卷第4期 集成电路通讯

矩阵变换器研究综述

矩阵变换器研究综述 1 引言 随着电力电子技术的迅速发展,交-交变频器在传动系统中已经得到了广泛的应用,但也存在一些固有的缺陷,因此研究新型的既有优良控制性能和输入电流品质而又成本低、结构紧凑、性能可靠的交-交变频器已成为当前的发展趋势。 矩阵式变换器是一种直接交-交变频器,与传统的自然换流变频器相比,具有以下优点: l 无中间直流环节,结构紧凑,体积小,效率高,便于实现模块化; l 无需较大的滤波电容,动态响应快; l 能够实现能量双向流动, 便于电动机实现四象限运行; l 控制自由度大,输出电压幅值和频率范围连续可调; l 输入功率因数可控,带任何负载时都能使功率因数为1.0; l 输出电压和输入电流的低次谐波含量较小; l 实现功率集成后能够改善变换器内部的电磁兼容性,其输出的pwm电压和输入功率因数可调的特点能够改善电动机、变换器与电源之间的电磁兼容性[1]。 矩阵变换器的原理在80年代被提出,由于具有性能优良的潜在优势,越来越引起人们的重视,有逐步取代交-直-交变频器、周波变流器的趋势[2]。特别是它具有本身不产生谐波污染的同时,能够对电网进行无功补偿的能力,其总体性能高于其它变换器。在日益关注可持续发展问题,大力推行电力环保、绿色电源的今天,研究与开发矩阵式变换器特别具有现实意义。 矩阵变换器的关键技术主要包括:主回路的拓扑结构和工作原理、安全换流技术、调制策略和保护电路设计等,下面就这些关键技术的研究进行一一介绍。

2 主回路拓扑结构和工作原理 矩阵变换器的名称来源于它的矩阵状拓扑结构。一个m相输入、n相输出的矩阵变换器,由m×n个双向开关组成,它们排列成矩阵形状,分单级和双级两种。 图1 单级矩阵变换器拓朴结构 2.1 单级矩阵变换器 常规的矩阵变换器是一种单级交-交变换器(见图1),其结构简单,可控性强,但存在以下缺陷: l 最大电压增益为0.866,并且与控制算法无关; l 主电路的9个双向开关存在控制和保护问题,应采用安全换流技术; l 必须采用复杂的pwm控制和保护策略,同时要求复杂的箝位保护电路。 单级矩阵变换器的理论和控制技术得到了飞速的发展,但仍然停留在实验阶段,而不能在工业中推广应用,原因在于: l 其控制策略复杂,计算量大; l 四步换流法增加了控制的难度, 降低了系统的可靠性; l 开关数量多,系统成本过高[3,4]。

开关电容的PWM DC - DC转换及其变化状况(译文)

开关电容的PWM DC - DC转换及其变化状况摘要:本文提出了一种新型开关电容脉宽调制(PWM)转换器。该转换器是一个开关电容和PWM转换器组合。它具有以下优点: 1)所有的MOSFET都是零电压开关; 2)自耦变压器自驱动的方法,不必调整同步整流器控制时序,因此大量减少了二 极管传导损耗; 3)对漏电感不敏感,因此可以使用独立的变压器,它同时适用于电压调节模块 (VRM)和虚拟咨询台(VRD); 4)单相选择会更加灵活。在相位控制策略的整个负载范围内,它可以达到更高的 效率。构建一个700千赫l.2-V/35-A油料原型和一个四相700千赫l.2-V/130-A VRM原型是来验证分析。 索引词:负载点(POL)转换器,自驱动脉冲宽度调制解调器(PWM),开关电容转换器,零电压开关电容(ZVS)。 I.引言 计算机和电子通讯的新一代设备,它采用了开放式结构,模块化信号和数据的处理方法,因此有必要使用分布式电源系统。对互联网广告的使用需要配有先进的,高质量的基础设施和可靠的“电网”,从而自然而然采用分布式发电,配电,和调控。电力处理系统的未来发展,把几乎所有的电力负荷接到有能源来源的电力电子设备。先进的功率处理系统预计将达到完全可控,完全可重构,自治和可定制的平台,可应用在,诸如电信,计算机,互联网基础设施,汽车应用,航空航天的电力能源供应。这些先进的系统将被要求提供按需提供能源,并按任何速率和任何需要的形式下载。 为了支持技术的发展趋势,行业在每个电路板的定制,小型化功率负载点(POL)转换器上尝试收集功能更多和更先进的耗电的处理器。随着迅速增长计算机和电信应用,POL的DC - DC模块是变得越来越小。对于一些规模DC - DC模块,输出电压低于1V,输出电流要高得多。高功率密度和高效率是DC - DC模块制造商的主要目标。高开关频率也增加控制带宽,因为同一瞬态要求,以至于需要更少的输出电容器。然而,在同步整流(SR)下,传统的多相降压控制器在高频率下有几个严重的问题:高开关损耗,高驱动损耗,高体二极管损耗。一个自我驱动的零电压开关(ZVS)非隔离式全桥的DC - DC转换器,如图1所示。它的运作正如两相转换器,并使用交错控制。与传统的两相降压转换器对比,自驱动非隔离(ZVS)全桥直流直流转换器具有以下优点: 1)所有MOSFET的ZVS; 2)消除SR驱动器节省成本; 3)无需调整SR控制时间,因此,减少体二极管传导损耗; 4)显着减少关断损耗和反向恢复体二极管造成的损失延长工作周期;

开关电源变换器

开关电源变换器 毕业设计 摘要 本论文设计部分分为四部分: 首先对开关变换器进行了概述,叙述了电力电子技术领域中功率变换器的发展,对开关电源和直流变换器进行了分类,概述了功率变换器的基本知识。 其次论述了单端反激变换器的工作原理,分析了其三种工作状态 最后总结了单端反激变换器的优缺点。 接下来介绍了按照一定要求设计制作一台200W、有三路不同电压及功率输出的开关电源的设计过程,以及如何具体计算各个元计得参数。 最后简述了所设计电源的一些技术性能指标。 关键词: 开关变换器, 开关电源, 输出性能,脉宽调制器,UC3842,反激式

Abstract This paper is divided into four parts of the design First of a switching converter overview describes the power of electronic power converter technology development, and direct current power converter to switch the classification of power converter outlined the basic knowledge. Then ends with a single anti-violent converter work theory, the analysis of its three working condition Finally summed up the advantages and disadvantages of single-anti-violent converter. Next introduced in the production of a certain design requirements Taiwan 200W, three different routes V oltage and power output switching power supply design process, and how a specific calculation of the various parameters of dollars. Best designed power outlined some of the technical performance indicators. KEY WORDS:Switching Power Supply,Pulse,Width Modulation,Flyback, Switching converter,Export performance,UC3842

软开关技术综述

软开关技术综述 1 引言 开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开元件的占空比来调整输出电压。开关电源的构成框图如图1所示,它由输入电路、变换电路、输出电路和控制电路等组成。功率变换是其核心部分,主要由开关电路和变压器组成。为了满足高功率密度的要求,变换器需要工作在高频状态,开关晶体管要采用开关速度高、导通和关断时间短的晶体臂,最典型的功率开关晶体管有功率晶体管(CTR)、功率场效应管(MOSFET)和绝缘型双极型晶体管(IGBT)等3种。控制方式分为脉宽调制、脉频调制、脉宽和频率混合调制等3种,其中最常用的是脉宽调制(PWM)方式。 图1 开关电源构成框图 从60年代开始得到发展和应用的DC-DC PWM功率变换技术是一种硬开关技术。为了使开关电源在高频状态下也能高效率地运行,国内外电力电子界和电源技术界自70年代以来,不断研究开发高频软开关技术。软开关和硬开关波形比较如图2所示。 图2 软开关和硬开关波形

从图可以看出,软开关的特点是功率器件在零电压条件下导通(或关 断),在零电流条件下关断(或导通)。与硬开关相比,软开关的功率器件在零电压、零电流条件下工作,功率器件开关损耗小。与此同时,du/dt和di/dt大为下降,所以它能消除相应的电磁干扰(EMI)和射频干扰(RFI),提高了变换器的可靠性。同时,为了减小变换器的体积和重量,必须实现高频化。要提高开关频率,同时提高变换器的变换效率,就必须减小开关损耗。减小开关损耗的途径就是实现开关管的软开关,因此软开关技术软开关技术已经成为是开关变换技术的一个重要的研究方向。本文对软开关和硬开关的工作特性进行比较,并对软开关技术进行了详细阐述。 2 硬开关的工作特性 图3是开关管开关时的电压和电流波形。开关管不是理想器件,因此在开关管开关工作时,要产生开通损耗和关断损耗,统称为开关损耗(Switching Loss)。开关频率越高,总的开关损耗越大,变换器的效率就越低。开关损耗的存在限制了变换器开关频率的提高,从而限制了变换器的小型化和轻量化。 图3 开关管开关时的电压和电流波形 传统PWM变换器中的开关器件工作在硬开关状态,硬开关工作的四大缺陷妨碍了开关器件工作频率的提高, 它存在如下问题: (a)开通和关断损耗大:在开通时,开关器件的电流上升和电压下降同时进行;关断时,电压上升和电流下降同时进行。电压、电流波形的交叠致使器件的开通损耗和关断损耗随开关频率的提高而增加。 (b)感性关断问题:电路中难免存在感性元件(引线电感、变压器漏感等寄生电感或实体电感)、当开关器件关断时,由于通过该感性元件的di/dt很大,和dv/dt,

开关变换器的状态空间平均建模

第3章 开关变换器的状态空间平均建模 开关变换器是通过调整开关元件的工作状态实现开关变换器输出电压的调整,在一个开关周期内,开关变换器是一个周期性时变电路,但在每一个开关工作状态,开关变换器又可以看作是一个线性电路。因此,不能用常规的线性电路理论对开关变换器进行分析,而必须研究适用于开关变换器的建模分析方法。 3.1 CCM 开关变换器的状态空间平均模型 3.1.1 CCM 开关变换器的状态空间方程及其近似解 对于在开关周期T 内有两个开关工作状态的开关变换器,即开关变换器工作在CCM 模式,可以分别写出它在每一个开关工作状态的状态方程,并进行求解。 工作状态1:在一个开关周期的[0,DT ]时间段,开关变换器的状态方程为: d ()()()d t t t t =+11x A x B u (3.1a) 工作状态2:在一个开关周期的[DT ,T ]时间段,开关变换器的状态方程为: d ()()()d t t t t =+22x A x B u (3.1b) 其中:x (t )是状态向量;u (t )是输入向量;A 1、A 2、B 1、B 2分别是工作状态1和工作状态2对应的状态矩阵和输入矩阵。 (I )开关工作状态1对应的状态方程的解为 ()()0d t t e t t e ττ?111A A u x =x()+B (3.2) 当开关变换器的开关频率(f s =1/T )远大于状态方程的特征频率f 0,即f s >> f 0时,存在下述线性近似关系 DT DT e +≈11A I A (3.3) 将式(3.3)代入式(3.2),可得 00 ()()0()d 0d DT DT DT DT e t DT e t e τ ττ τ +=+ ??111A A A 111I A B u x()=x()+B u x() (3.4a) 当开关变换器的输入向量u (t )在一个开关周期内是常数,或相对于开关频率是慢变化量时,可以

软开关技术讲解

软开关技术综述 摘要 软开关技术是利用在零电压、零电流条件下控制开关器件的导通和关断,有效地降低了电路的开关损耗和开关噪声因而在电力电子装置中得到广泛应用。本文在讲述软开关技术的原理及分类的基础上,主要回顾了软开关技术的由来和发展历程,以及发展现状和未来的发展趋势。 关键词:软开关技术原理发展历程发展趋势 一.引言: 根据开关元件的工作状态,可以把开关分成硬开关和软开关两类。硬开关是指开关元件在导通和关断过程中,流过器件的电流和元件两端的电压在同时变化;软开关是指开关元件在导通和关断过程中,电压或电流之一先保持为零,一个量变化到正常值后,另一个量才开始变化直至导通或关断过程结束。由于硬开关过程中会产生较大的开关损耗和开关噪声。开关损耗随着开关频率的提高而增加,使电路效率下降,阻碍了开关频率的提高;开关噪声给电路带来了严重的电磁干扰问题,影响周边电子设备的正常工作。为了降低开关的损耗和提高开关频率,软开关的应用越来越多。 电力电子装置中磁性元件的体积和重量占很大比例,从电机学相关知识知道,使变压器、电力电子装置小型化、轻量化的途径是电路的高频化。但是, 传统的开关器件工作在硬开关状态,在提高开关频率的同时,开关损耗和电磁干扰也随之增加。所以,简单地提高开关频率显然是不行的。软开关技术是使功率变换器得以高频化的重要技术之一, 它应用谐振的原理, 使开关器件中的电流(或电压) 按正弦或准正弦规律变化。当电流自然过零时, 使器件关断(或电压为零时, 使器件开通) , 从而减少开关损耗。它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断问题及二极管反向恢复问题, 而且还能解决由硬开关引起的EMI 等问题。 当开关频率增大到兆赫兹级范围, 被抑制的或低频时可忽视的开关应

相关文档