文档库 最新最全的文档下载
当前位置:文档库 › _混合序列的大数定律

_混合序列的大数定律

_混合序列的大数定律
_混合序列的大数定律

伯努利定律

伯努利定律 在一个流体系统,比如气流、水流中,流速越快,流体产生的压力就越小,这就是被称为“流体力学之父”的丹尼尔·伯努利1738年发现的“伯努利定律”。 这个压力产生的力量是巨大的,空气能够托起沉重的飞机,就是利用了伯努利定律。飞机机翼的上表面是流畅的曲面,下表面则是平面。这样,机翼上表面的气流速度就大于下表面的气流速度,所以机翼下方气流产生的压力就大于上方气流的压力,飞机就被这巨大的压力差“托住”了。当然了,这个压力到底有多大,一个高深的流体力学公式“伯努利方程”会去计算它。 方程式 v=流动速度 伯努利定律 g=地心加速度(地球) h=流体处于的高度(从某参考点计) p=流体所受的压强 ρ=流体的密度 伯努利方程 伯努利理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因著名的瑞士科学家D.伯努利于1738年提出而得名。对于重力场中的不可压缩均质流体,方程为p+ρgz+(1/2)*ρv^2=C式中p、ρ、v分别为流体的压强、密度和速度;z 为铅垂高度;g为重力加速度。 上式各项分别表示单位体积流体的压力能p、重力势能ρg z和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。但各流线之间总能量(即上式中的常量值)可能不同。对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压、动压和总压。显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。飞机机翼产生举力,就在于下翼面速度低而

压强大,上翼面速度高而压强小,因而合力向上。据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项。 伯努利效应 1726年,伯努利通过无数次实验,发现了“边界层表面效应”:流体速度加快时,物体与流体接触的界面上的压力会减小,反之压力会增加。为纪念这位科学家的贡献,这一发现被称为“伯努利效应”。伯努利效应适用于包括气体在内的一切流体,是流体作稳定流动时的基本现象之一,反映出流体的压强与流速的关系,流速与压强的关系:流体的流速越大,压强越小;流体的流速越小,压强越大。 比如,管道内有一稳定流动的流体,在管道不同截面处的竖直开口细管内的液柱的高度不同,表明在稳定流动中,流速大的地方压强小,流速小的地方压强大。这一现象称为“伯努利效应”。伯努利方程:p+1/2pv^2=常量。 在列车站台上都划有安全线。这是由于列车高速驶来时,靠近列车车厢的空气将被带动而运动起来,压强就减小,站台上的旅客若离列车过近,旅客身体前后出现明显压强差,将使旅客被吸向列车而受伤害。 伯努利效应的应用举例:飞机机翼、喷雾器、汽油发动机的汽化器、球类比赛中的旋转球。 5伯努利数 伯努利数是18世纪瑞士数学家雅各布·伯努利引入的一个数。设伯努利数为B(n),它的定义为: t/(e^t-1)=∑[B(n)*(t^n)/(n!)](n:0->∞) 这里|t|<2。由计算知:B(0)=1,B(1)=-1/2, B(2)=1/6,B(3)=0, B(4)=-1/30,B(5)=0, B(6)=1/42,B(7)=0, B(8)=-1/30,B(9)=0), B(10)=5/66,B(11)=0, B(12)=-691/2730,B(13)=0, B(14)=7/6,B(15)=0, B(16)=-3617/510,B(17)=0, B(18)=43867/798,B(18)=0, B(20)=-174611/330 …… 一般地,n>=1时,有B(2n+1)=0;n>=2时,有公式B(n)=∑[C(k,n)*B(k)](k:0->n)可用来逐一计算伯努利数。伯努利数在数论中很有用。例如,对于佩尔方程-=-4(≡1(mod4)是素数),N.C.安克尼和E.阿廷曾猜想它的最小解x0+(y0)*√(p)满足,1960年,L.J.莫德尔证明了在≡ 5(mod8)时,S.乔拉证明了在≡1(mod8)时,上述猜想等价于伯努利数B((p-1)/2)的分子不被整除。伯努利数还可用于费马大定理的论证中。设>3,如果伯努利数B,B,…,B(p-3)的每一个的分子不被整除,这样的素数叫正规素数,否则就叫非正规素数。德国数学家E.E.库默尔证明了:当为正规素数时,费马大定理成立。不难计算当3<<100时,除开=37,59,67以外,其余的素数都是正规素数。因此,在费马大定理的研究中,库默尔的结果是一项突破性的工

强混合序列的强逼近定理及其应用

411Vol.41,No.1 19981ACTA MATHEMATICA SINICA Jan.,1998 (315211) “” Sakhanenko(1984) Berry-Essen MR(1991)60F17,60F15 O211.4 Strong Approximation Theorems with Applications for Strongly Mixing Random Variables Sequence Xu Bing (Normal College,University of Ningbo,Ningbo315211,China) Abstract This paper provides a“independent identically copy”way to establish the strong approximation theorems for strongly mixing random variables by using a spe- cial result of Sakhanenko(1984)for independent random variables.Application to increments of partial sums is discussed. Keywords Strong approximation,Strongly mixing,Increments of partial sums,Berry- Essen inequality 1991MR Subject Classi?cation60F17,60F15 Chinese Library Classi?cation O211.4 1 Strassen[1] {X n,n≥1}Wiener Philipp Stont S n= n i=1 X i [2].Wiener [3],[2]?- “” Sakhanenko[4] 1997-01-20,1997-06-24,1997-09-30

概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用 作者 摘要:历史上第一个定理属于,后人称之为“”。概率论中讨论的向的定律。概率论与数理的基本定律之一,又称弱大数理论。 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:弱大数定理伯努利大数定理随机变量数学期望概率 引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。偶然之中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。 概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。这种稳定性与它在在实验进行中的个别特征无关,且不再是随机的。大数定律给出了稳定性的确切含义,并且给出了什么条件下才具有稳定性。那么,这对于我们解决理论与实际问题有哪些实际意义呢?这就是我们在下面将要了解到的,大数定律的某些应用。即,大数定律及其在理论与实际生活中的一些应用。 一方面,在理论上,大数定律可以看作是求解极限、重积分以及级数的一种新思路,另一方面,在实际生活中,保险动机的产生、保险公司财政稳定和保费的确定,我们都将看到大数定律的重要作用。

伯努利原理

伯努利原理 伯努利的流体动力学原理,伯努利的原则,无粘流,在流体速度增加,同时发生在压力或流体中的潜在能量的减小而减小。[ 1 ] [ 2 ] 有不同类型的流伯努利方程的不同形式。伯努利原理的简单形式是有效的可压缩流(例如大多数液体流动)和可压缩流动(如气体)在低马赫数流动。更先进的形式,在某些情况下可能是在较高的马赫数可压缩流动(见伯努利方程的推导)。 伯努利的原则,可根据能量守恒原理。这表明,在一个稳定的流动,各种形式的机械能等于流体沿流线的流线各点在相同的总和。这就要求的动能和势能的总和保持不变。因此,流体的速度成比例的增加发生在它的动态压力和动能的增加,和在它的静态压力和潜在的能量降低。 空气流进入文丘里管。在流体动能随着压力增加而增加,如图所示,两个水柱高度差。流体粒子只承受压力和自己的体重。如果一个流体水平流动或沿着一条流线流动,如果速度增加,这可能仅仅是因为这部分流体已经从较高的压力区域流到压力较低的区域;如果它的速度下降,它只能是因为它已经从对低压力区域流动到压力较高的区域。因此,水平的流体流动的时候,最高的流速发生在压力最低的区域,与最低的流速发生在压力是最高的区域。 可压缩流方程 在大多数流动液体,和gasesat低马赫数,可以认为是恒定的流体的包裹的密度,无论压力流量的变化。因此在这样的流动的流体可以被认为是这些流可以被描述为可压缩流动。 一个常见的伯努利方程的形式,有效的在任意点沿流线在重力常数,是: (A) 其中:V,是在一个精简一点的流体流动速度, Z,是一个参考平面上点的高程,用积分的Z方向朝上–所以在相反方向的重力加速度, P,是在选定的点的压力 ρ,在流体中的所有点的流体密度

概率论与数理统计第五章 大数定律及中心极限定理

概率论与数理统计作业 班级 姓名 学号 任课教师 第五章 大数定律及中心极限定理 教学要求: 一、了解大数定律的直观意义; 二、掌握Chebyshev 不等式; 三、了解Chebyshev 大数定理和贝努里大数定理; 四、会用中心极限定理估算有关事件的概率. 重点:中心极限定理. 难点:切比雪夫不等式、大数定律、中心极限定理. 综合练习题 一、选择题 1.设12,,,n X X X 是独立同分布的随机变量序列,且 1,2,,i n = .令∑==n i i n X Y 1 ,1,2,,i n = ,()x Φ为标准正态分布函数,则 ()=?? ????????≤--∞ →11lim p np np Y P n n (B ). (A )0 ; (B )()1Φ; (C )()11Φ-; (D )1.6 . 2.设()x Φ为标准正态分布函数,0,1,i A X A ?=? ?事件不发生, 事件发生, ()100,,2,1 =i ,且 ()8.0=A P ,10021,,,X X X 相互独立.令∑==100 1 i i X Y ,则由中心极限定理知Y 的分布函 数()y F 近似于(B ). (A )()y Φ; (B )?? ? ??-Φ480y ; (C )()8016+Φy ; (D )()804+Φy . 3.设随机变量 ,,,,21n X X X 相互独立,且i X () ,,,2,1n i =都服从参数为 2 1

的指数分布,则当n 充分大时,随机变量∑==n i i n X n Z 1 1的概率分布近似服从(B ). (A )()4,2N ; (B )??? ??n N 4,2; (C )?? ? ??n N 41,21; (D )()n n N 4,2. 二、填空题 1.设随机变量 ,,,,21n X X X 相互独立且同分布,它们的期望为μ,方差为2 σ, 令∑==n i i n X n Z 1 1,则对任意正数ε,有{}=≤-∞→εμn n Z P lim 1 . 2.设 ,,,,21n X X X 是独立同分布的随机变量序列,且具有相同数学期望和方差 ()μ=i X E ,()02>=σi X D ,() ,2,1=i , 则对任意实数x , =??? ? ??? ???????≤-∑=∞ →x n n X P n i i n σμ1lim ()x Φ. 3.设()1-=X E ,()4=X D ,则由切比雪夫不等式估计概率{}42P X -<<≥ 9 5 . 4.设随机变量[]1,0~U X ,由切比雪夫不等式可得≤??????≥- 3121X P 4 1. 5.设随机变量() 2.0,100~B X ,应用中心极限定理可得{}≈≥30X P 0062.0.(其中 ()()9938.05.2=Φ) 三、应用题 1. 100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%, 求任一时刻有70至86台车床在工作的概率. 解:设?? ?=台车床没有工作 第台车床正在工作 第i i X i .0.1(100,,2,1 =i ),且()8.0,1~B X i , 则100台车床中在任一时刻正在工作的机床台数为10021X X X X +++= ,且()80=X E ,()16=X D ,(其中10021,,,X X X 独立同分布),于是由德莫弗-拉普拉斯中心极限定理近似可得 ()???? ??-≤-≤-=≤≤168086168016 80708670X P X P

大数定律在保险中的应用

论大数法则在保险业中的重要应用前言 研究背景及意义在现代生活中,风险无处不在,无时不有。因而只有加强对风险的管理,才能使人们的生活更为安定,使得社会更加和谐。而保险业就是经营风险的特殊的金融机构,它将风险从被保险人向保险人转移,从而为被保险人提供了风险保障。 当前,全球各国都非常重视保险业的发展,都在争取不断完善保险业市场体系,不断普及全民的保险观念,稳定人民的生活。在国,当前经济的高速发展,人民生活水平的提高,社会保障体制改革的深化,为中国保险业的发展提供了难得的机遇和广阔的空间。我国保险业增长迅速,保险观念日益深入人心,保险业在国民经济中的重要性日益增强。 而今,中国已经是世界上最大的潜在保险市场。但国保险公司目前在管理、经营理念、产品创新等方面与国际先进企业相比还有一定差距。要想持续健康的发展,要把巨大的潜在市场转变为现实的市场,将取决于保险公司能否提高自身的经营管理水平。所以只有具备了科学的精算理念,中国保险市场才能真正走向成熟。而“大数法则”就是精算的基础理论之一,它对保险经营理念的科学性起到了至关重要的作用。所以每个保险业界人士对于大数法则都应该有个准确认识,只有深刻了解大数法则,最佳应用,才能保证保险业的稳健经营管理。 文献综述国外关于保险业的研究,集中从保险经营各个方面做研究。其中包括对承保风险,偿付风险以及投资风险等全方面的研究。关于保险资金投资方面,从当代国际保险市场发展看,保险资金运用和保险业的发展己经融为一体。很多人认为承保业务和投资业务的并驾齐驱已成为保险业发展的一种潮流。事实上,自20世纪70年代以来,金融创新使得资本市场不断推出新的投资工具,保险业本身的竞争日趋激烈,承保利润不断下降甚至亏损,迫使保险监管机构与保险公司不断适应新的市场环境,全方位地加强保险资金运用业务,来提高利润率。摩根斯坦利所说:“投资是保险行业的核心任务,没有投资就等于没有保险行业。没有保险投资,整个保险行业的经营是不能维持下去的”。所以,对于保险业中承保环节以及保险资金投资环节、偿付环节中的风险管理已经不容忽视了! 艳辉、林江、胡炳志、王兵等在相关文献中提出了大数法则对同质风险在大量保险单之间的分摊类似于厂商理论中的规模经济性的观点。规模经济是对生产

伯努利方程的原理及其应用

伯努利方程的原理及其应用 摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。 关键词:伯努利方程发展和原理应用 1.伯努利方程的发展及其原理: 伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。伯努利方程的原理,要用到无黏性流体的运动微分方程。 无黏性流体的运动微分方程: 无黏性元流的伯努利方程: 实际恒定总流的伯努利方程: z1++=z2+++h w

总流伯努利方程的物理意义和几何意义: Z----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头; ----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头; ----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头; hw----总流两端面间单位重量流体平均的机械能损失。 总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。(5)总流的流量沿程不变。(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。(7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。 2.伯努利方程的应用: 伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子:

(完整版)大数定律及中心极限定理

第五章大数定律及中心极限定理 【基本要求】1、了解切比雪夫不等式; 2、了解切比雪夫大数定律,Bernoulli大数定律和辛钦大数定律成立的条件及结论; 3、了解独立同分布的中心极限定理(列维—林德伯格定理)和德莫佛—拉普拉斯 中心极限定理(二项分布以正态分布为极限分布)的应用条件和结论,并会用 相关定理近似计算有关随机事件的概率。 【本章重点】切比雪夫不等式,切比雪夫大数定理及Bernoulli大数定理。 【本章难点】对切比雪夫大数定理及独立同分布的中心极限定理的理解。 【学时分配】2学时 【授课内容】 §5.1 大数定律 0.前言 在第一章我们提到过事件发生的频率具有稳定性,即随着试验次数的增加,事件发生的频率逐渐稳定于某个常数,这一事实显示了可以用一个数来表征事件发生的可能性大小,这使人们认识到概率是客观存在的,进而由频率的三条性质的启发和抽象给出了概率的定义,而频率的稳定性是概率定义的客观基础。在实践中人们还认识到大量测量值的算术平均值也具有稳定性,而这种稳定性就是本节所要讨论的大数定律的客观背景,而这些理论正是概率论的理论基础。 下面介绍三个定理,它们分别反映了算术平均值及频率的稳定性。 一、切比雪夫大数定律 1

2 事件的频率稳定于概率,能否有p n lim n n =μ∞→,答案是否定的。而是用)(0}{ ∞→→ε≥-μn p n P n [依概率收敛]来刻划 (弱)。或者用{}1n n P p n →∞ μ???→=[a.e.收敛] 来刻划(强)。 1.定义:设ΛΛ,,,,21n X X X 是一个随机变量序列,a 是一个常数,若对于任意正数ε,有 ()1lim =<-∞ →εa X P n n , 则称序列ΛΛ,,,,21n X X X 依概率收敛于a .记为a X P n ?→? . 2.切比雪夫不等式 设随机变量ξ具有有限的期望与方差,则对0>?ε,有 2 ) ())((ε ξεξξD E P ≤ ≥-或2 ) (1))((ε ξεξξD E P - ≥<- 证明:我们就连续性随机变量的情况来证明。设~()p x ξ,则有 2 2 ()()(())(())()()x E x E x E P E p x dx p x dx ξ ε ξ ε ξξξεε -≥-≥--≥= ≤ ?? 22 2 1 () (())()D x E p x dx ξξεε+∞ -∞ ≤ -= ? 该不等式表明:当)(ξD 很小时,))((εξξ≥-E P 也很小,即ξ的取值偏离)(ξE 的可能性很小。这再次说明方差是描述ξ取值分散程度的一个量。 切比雪夫不等式常用来求在随机变量分布未知,只知其期望和方差的情况下,事件 {}E ξξε-≥概率的下限估计;同时,在理论上切比雪夫不等式常作为其它定理证明的工具。 3.定理1(切比雪夫大数定律) 设}{n ξ是相互独立的随机变量序列,每一随机变量都有有限的方差,且一致有界,即存在 常数C ,使Λ,2,1)(=≤i C D i ξ,则对任意的0>ε,有01111 =ε≥ξ-ξ∑∑==∞→})(E n n {P lim n i n i i i n [即

概率论中的大数定律及中心极限定理

概率论中的大数定律及中心极限定理 唐南南 摘要 概率论是从数量上研究随机现象的规律的学科,概率论的特点是先提出数学模型,然后去研究它的性质,特点和规律。它在自然科学,技术科学和社会科学等科学中有广泛的应用。而大数定律和中心极限定理的内容是概率论中极限理论极为重要的一部分内容。在这篇文章中,我们从贝努力试验中的频率出发,讨论了独立随机变量和分布的极限问题。在一定条件下,这些分布弱收敛于退化分布,这就是大数定律。在另一些条件下,这些分布弱收敛于N(0,1)分布,这一类收敛于N(0,1)分布的定理统称为中心极限定理.大数定律说明了随机现象都具有稳定性而中心极限定理是研究相互独立随机变量序列{}i x 的部分和∑== n i i n x S 1 的分布,在适当条件下向正态分布收放的问题。在这篇文章 里,我们只介绍了一些定理的提出,内容以证明以及在其他学科上的应用,而大数定律和中心极限定理还有许多更深入,更广泛的内容,限于篇幅这里就不再介绍了。掌握定理的结论是重要的,这些结论一方面使频率稳定于概率,n 次观察的算术平均值稳定于数学期望都有了明确的含义和理论依据;另一方面,又将给数理统计中大样本的统计推断等提供理论依据。 关键词 大数定律 中心极限定理 随机现象 随机变量 引言 大数定律和中心极限定理是概率论中重要的一部分内容,但对读者来说,多数人对于这部分内容感到很难掌握,这篇文章就是对这部分内容进行浅入的分析,但对其内容进行详细的说明,而且进行了归纳性的总结,指出了各定律之间的联系及其差别,希望通过本篇文章内容的介绍,能使读者对于这部分知识有一个清晰的印象,能整体地把握这部分内容。 一 、大数定律 (一)、问题的提法(大数定律的提法) 重复实验中事件的频率的稳定性,是大量随机现象的统计规律性的典型表现。人们在实践中认识到频率具有稳定性,进而由频率的稳定性预见概率的存在;由频率的性质推断概率的性质,并在实际应用中(当n

大数定律

第五章 大数定律与中心极限定理 在数学中大家都注意到过这样的现象:有时候一个有限项的和很难求,而一经取极限让有限过渡到无限,则问题反而好办。例如计算和 ! 1!31!212n s n ++++= 对于固定的但很大的n ,这个和很难求,但考虑∞→n 取极限时,则 有十分简单的结果:e s n n =∞ →lim 。利用此结果,当n 很大时就可以把e 作为n s 的近似值。 在概率论中,也经常会出现求与很多个随机变量和有关的事件的概率。比如)(21b X X X a P n <+++< ,除少数情况外,这样的概率计算都会十分复杂。因而自然会提出问题:可否利用极限来近似计算呢?即考虑∞→n 时,n 个随机变量之和是否有某种极限分布。概率论中不仅证明了这是可能的,而且还证明了在很一般的情况下,和的标准化随机变量的极限分布就是标准正态分布。这一事实既可以解决近似计算概率的问题,同时也强化了正态分布的重要性,以及也解释了现实世界中许多随机现象中的变量的分布密度曲线会呈现钟形曲线的原因。在概率论中把这类结果的有关定理叫做“中心极限定理”. 中心极限定理就是研究在什么条件下,大量随机变量之和的分布会接近于正态分布。 概率论中,另一类极限定理是所谓的“大数定理”.它是由“频率的稳定性”引申和发展而来的。考虑n 次独立重复试验,每次试验观察事件A 是否发生,令

???=否则 0,发生A 次试试 i 若第,1i X ,n i ,,2,1 = 那么事件A 发生的频数为n n X X X S +++= 21,频率为n S X n n /=。若p A P =)(,则“频率的稳定性”就是说,在n 很大时,频率n X 会接近于概率p 。而p X E i =)(,p X E n =)(。故也可说成是:在n 很大时,n 个随机变量的算术平均n X 会接近于其期望)(n X E 。按后一种说法,就可不必局限于i X 只取0,1两个值的情况。概率论中讨论的大数定理就是研究在何种条件下,n 个随机变量的算术平均n X ,当∞→n 时会在某种意义下收敛于其期望)(n X E 。 上面提到的问题都属随机变量序列的收敛性问题,随机变量序列的收敛性有多种,其中常用的是两种:依概率收敛和按分布收敛。 §5.1 大数定律 一. 依概率收敛的定义 定义 设}{n X 为一随机变量序列,X 为一随机变量,若对任意的0>ε,有 0)|(|lim =ε≥-∞ →X X P n n 或 1)|(|lim =ε<-∞ →X X P n n 则称随机变量序列}{n X 依概率收敛于X ,记作X X P n →。 依概率收敛的含义是:n X 与X 的绝对偏差不小于任意给定的正数的可能性会随n 的无限增大而无限变小。或者说,绝对偏差||X X n - 小于任意给定的正数的可能性的会随n 的无限增大而无限地接近于1。

伯努利原理

“伯努利原理”的误解 伯努利是一位数学家和物理学家,他在1738年发现,当流体的流速提高,表面的静压力会降低。这个现象称为“伯努利原理”,而几乎所有的物理学教材和科普文章,都使用这个原理,讨论机翼升力的产生。为了解释这个原理,通常,他们首先会让你拿出两片纸,并用力在纸的中间吹气,瞧,两张纸像粘在一起了! 记忆的上表面是拱起的,而下表面是平坦甚至凹进去。当气流通过机翼表面,机翼上方空气流速较快,而下面空气流速较慢。根据“伯努利原理”,下面气流造成的静压力大于上方气流的压力,于是,机翼受到一个向上的作用力,飞机就飞了起来。 遗憾的是,这是完全错误的。而使用“伯努利原理”解释飞机的升空也是“白努力”。 伯努利效应可以解释一部分升力的来源,但这是非常小的一部分。如果飞机仅仅根据“伯努利原理”飞行,机翼形状必须非常“拱起”,或者,必须要飞得非常快才行。 飞机的升力主要由另外两个效应提供。一个是康达效应;另一个是气流冲击效应。 康达效应指的是,气流流经机翼曲面时,气流会紧贴机翼表面(这当然也有一点伯努利效应的含义)。这样,机翼的形状有效地改变了气流的方向,使离开机翼的气流相对飞机作向下的高速运动。机翼推开气流,但这个运动受力的反作用力作用于机翼上,相当于气流也在推开机翼,这个力使得机翼向上举起。 另一个重要的效应是气流冲击效应。当一块平板的方向不是与气流运动方向严格垂直,那么,平板会受到气流的冲击。飞机的机翼与其自身有一定倾角4°左右,特别是,当飞机起飞时,要把机头高高抬起,形成更大的倾角,这样在低速时,也可以获得较大的气流冲击效应,以便使几十吨的飞机起飞。但是,机翼的倾角并不是完全用于提供升力,更多的是为了维持飞机本身的气动布局,以保证飞机在飞行时候的气动平衡。 飞机是一个非常复杂的气动力学系统,设计师必须保证飞机载x,y,z几个方向上受力平衡。这就是飞机为什么需要机翼、尾翼、垂直尾翼的原因(那种像飞碟一样的无尾翼飞机设计起来是非常麻烦的);此外,为了操控飞机,机翼上都开有活动襟翼,因此要仔细分析飞机的受力很不容易。这也是飞机设计原型为什么要进行风洞试验的原因。 1、根据谐音的方法,写出几组谐音而意思不同的词语 例如:伯努利——白努力 ()——()()——()()——()()——()2、根据上文所讲述的内容看,“伯努利原理”会造成()。

概率论大数定律及其应用

概率论大数定律及其应 用 Revised as of 23 November 2020

概率论基础结课论文 题目:独立随机序列的大数事件的定理与应用 作者 摘要:历史上第一个定理属于,后人称之为“”。概率论中讨论的向的定律。概率论与数理的基本定律之一,又称弱大数理论。 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:弱大数定理伯努利大数定理随机变量数学期望概率 引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。偶然之中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么在什么条件下具有稳定性这就是我们大数要研究的问题。

(完整版)大数定律和中心极限定理

第五章 大数定律和中心极限定理 一、内容提要 (一)切贝谢夫不等式 1. 切贝谢夫不等式的内容 设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。 (){}() (){}() . 1, 2 2 εεεεX D X E X P X D X E X P - ≤-≤ ≥-π 2. 切贝谢夫不等式的意义 (1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){} ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。 (2)不足之处为要计算(){} ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。另外,利用本不等式估值时精确性也不够。 (3)当X 的方差D (X )越小时,(){} ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。 (二)依概率收敛 如果对于任何ε>0,事件{} επa X n -的概率当n →∞时,趋于1,即 {}1lim =-∞ →επa X P n n , 则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。 (三)大数定律 1. 大数定律的内容 (1)大数定律的一般提法 若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有 11lim 1=? ?? ???-∑=∞ →επn i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。 (2)切贝谢夫大数定律 设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即 ()().,,,2,1,ΛΛn i C X D i =≤

伯努利原理讲解

伯努利原理讲解 对我们搞流体机械的很重要,此文好懂又有趣!
光德流控
伯努利(Daniel Bernouli,1700~1782) 伯努利,瑞士物理学家、数学家、医学家。 他是伯努利这个数学家族(4 代 10 人)中最杰出的代表, 16 岁时就在巴塞尔大学攻读哲学与逻辑,后获得哲学硕士学位, 17~20 岁又学习医学,于 1721 年获医学硕士学位,成为外科名 医并担任过解剖学教授。但在父兄熏陶下最后仍转到数理科学。
1 / 17

伯努利成功的领域很广,除流体动力学这一主要领域外,还 有天文测量、引力、行星的不规则轨道、磁学、海洋、潮汐等。
实例篇——伯努利原理 丹尼尔·伯努利在 1726 年首先提出:“在水流或气流里, 如 果 速 度 小 ,压 强 就 大 ;如 果 速 度 大 ,压 强 就 小 ” 。我 们 称 之 为 “伯努利原理”。 我们拿着两张纸,往两张纸中间吹气,会发现纸不但不会向 外飘去,反而会被一种力挤压在了一起。因为两张纸中间的空气 被我们吹得流动的速度快,压力就小,而两张纸外面的空气没有 流动,压力就大,所以外面力量大的空气就把两张纸“压”在了 一起。 这就是“伯努利原理”原理的简单示范。
1 列车(地铁)站台的安全线 在列车(地铁)站台上都划有黄色安全线。
2 / 17

这是因为列车高速驶来时,靠近列车车厢的空气被带动而快 速运动起来,压强就减小,站台上的旅客若离列车过近,旅客身 体前后会出现明显的压强差,身体后面较大的压力将把旅客推向 列车而受到伤害。
所以,在火车(或者是大货车、大巴士)飞速而来时,你绝 对不可以站在离路轨(道路)很近的地方,因为疾驶而过的火车 (汽车)对站在它旁边的人有一股很大的吸引力。
有人测定过,在火车以每小时 50 公里的速度前进时,竟有 8 公斤左右的力从身后把人推向火车。
看懂“伯努利”原理后,等地铁再也不敢跨过那条黄线了吧 (分享给身边的人哦~~)
2 船吸现象
3 / 17

浅谈大数定律的发展历程与应用

概率论论文 浅谈大数定律的发展历程与实际应用 学院: 专业: 班级: 姓名: 学号:

浅谈大数定律的发展历程与实际应用 摘要:本文主要分为两部分内容,第一部分介绍了大数定律的发展历程,详细介绍了伯努利大数定律等五个大数定律的内容;第二部分则通过介绍大数定律在抛硬币实验与保险行业的应用简单介绍了大数定律在实际生产生活中的应用。 关键词:大数定律、伯努利、切比雪夫、抛硬币、保险业 正文: 一、大数定律的发展历程 大数定律(law of large numbers),是一种描述当试验次数很大时所呈现的概率性质的定律。大数定律并不是经验规律,而是在一些附加条件上经严格证明了的定理。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。 1、伯努利大数定律——大数定律的创立 雅各布·伯努利(1654~1705,瑞士)在其著作《猜度术》第四卷中提出了一个定律,此定律的现代表述为:设在n 重伯努利试验中,成功的次数为Y n ,而在每次试验中成功的概率为p (00,有0lim =??? ? ??≥-=∞→εP n Y P n n 。[1]当时伯努利对大数定理叙述为“所要探讨的是:是否随着观测次数的增大,

记录下来的赞成与不赞成例数的比值接近真实比值的概率也随之不断增加,使得这个概率最终将超过任意确信度!” 2、泊松大数定律 泊松(1781~1840,法)研究了法国1817~1826年新生婴儿性别比,指出稳定性,并首次给出大数定律的描述:观察大量具有相时以另一种方式变化)而发生的事件,将会发现这些时间数目间的比值几乎是恒定值,且随着观察次数的增加,其波动幅度也愈来愈小!泊松认为大数定律适用于解释各种现象,只要有足够的耐心观察就能发现频率的稳定性[2]。 3、切比雪夫大数定律 切比雪夫(1821~1894,俄)是历史上第一个给出了伯努利大数定律和泊松大数定律的数学家,1844年,他在硕士论文《试论概率论的基础分析》中严格证明了伯努利大数定律并将其推广到了泊松大数定律。1866年,切比雪夫在其论文《论均值》中给出了切比雪夫大数定律:设X 1,X 2,…,X n ,…是相互独立的随机变量序列;若存在常数C ,使得D(X i )≦C(i=1,2…),则对任意ε>0,有()011lim =??????≥∑-∑∞→εi i X E n X n P n 或 ()111lim =?? ????<∑-∑∞→εi i X E n X n P n 。[1]

伯努利方程(伯努利原理)小谈

伯努利方程(伯努利原理)小谈 材料科学与工程学院 材型1602 李傲奇 学号:201614020207 摘要:参考课本及网络资料,加上一些自己的理解,进行伯努利方程(伯努利原理)的介绍和推导,并运用其解释一些实际问题。 关键词:伯努利伯努利方程(伯努利原理)理想流体流体运动实际应用 正文: 一、简介:丹尼尔·伯努利,(Daniel Bernoulli 1700~1782)瑞士物理学家、数学家、医学家。1700年2月8日生于荷兰格罗宁根。著名的伯努利家族中最杰出的一位。他曾在海得尔贝格、斯脱思堡和巴塞尔等大学学习哲学、伦理学、医学。1721年取得医学硕士学位。伯努利在25岁时(1725)就应聘为圣彼得堡科学院的数学院士。8年后回到瑞士的巴塞尔,先任解剖学教授,后任动力学教授,1750年成为物理学教授,1747年当选为柏林科学院院士,1748年当选巴黎科学院院士,1750年当选英国皇家学会会员。他一生获得过多项荣誉称号,最著名的成就为提出了伯努利方程(伯努利原理)。 二、原理内容:丹尼尔·伯努利在1726年提出了“伯努利原理”:在稳定流体中,沿同一流线单位体积流体的动能,重力势能,与该处的压强之和为常量。这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。即:动能+重力势能+压力势能=常数。其最为著名的推论为:等高流动时,流速大,压力就小。伯努利原理往往被表述为p +12 ρv 2+ρgh =C (C 为常数),这个式子被称为伯努利方程。式中p 为流体中某点的压强,v 为流体该点的流速,ρ为流体密度,g 为重力加速度,h 为该点所在高度,C 是一个常量。它也可以被表述为p 1+12ρv 12+ρgh 1=p 2+12ρv 22+ρgh 2。(Ps :需要注意的是,由于伯努利方程是由机械能守恒推导出的,所以它仅适用于粘度可以忽略、不可被压缩的理想流体。) 三、推导证明:使用伯努利定律必须符合以下假设,即理想流体必须满足的条件,方可使用: ? 定常流:在流动系统中,流体在任何一点之性质不随时间改变。 ? 不可压缩流:密度为常数,在流体为气体适用于马赫数(M)<0.3。 ? 无摩擦流:摩擦效应可忽略,忽略黏滞性效应。 ? 流体沿着流线流动:流体元素沿着流线而流动,流线间彼此是不相交的。 现有一符合上述假设的流体,如图所示: 可得如下公式---流体因受力所得的能量:12mv 22?12mv 12=12ρA 2v 2?tv 22?12 ρA 1v 1?tv 12 流体因引力做功所损失的能量:p 1A 1v 1?t ?p 2A 2v 2?t +ρgA 1v 1?t?1?ρgA 2v 2?t?2=12ρA 2v 2?tv 22?12ρA 1v 1?tv 12 流体所得的动能可以改写为:ρA 1v 1?tv 1 22+ρgA 1v 1?t?1+p 1A 1v 1?t =ρA 2v 2?tv 2 22+ρgA 2v 2?t?2+p 2A 2v 2?t 根据能量守恒定律:流体因受力所得的能量+流体因引力做功所损失的能量=流体最终所得的动能。 A 2v 2=A 1v 1=C (C 为常数) 合各式最终得到:12ρv 2+ρgh +p =C (C 为常数)即为伯努利方程。

伯努利定律

伯努利定律 简介: 在一个流体系统,比如气流、水流中,流速越快,流体产生的压力就越小,这就是被称为“流体力学之父”的丹尼尔·伯努利1738年发现的“伯努利定律”。 这个压力产生的力量是巨大的,空气能够托起沉重的飞机,就是利用了伯努利定律。飞机机翼的上表面是流畅的曲面,下表面则是平面。这样,机翼上表面的气流速度就大于下表面的气流速度,所以机翼下方气流产生的压力就大于上方气流的压力,飞机就被这巨大的压力差“托住”了。当然了,这个压力到底有多大,一个高深的流体力学公式“伯努利方程”会去计算它。 定律假设 1.非粘滞——流体无需抵抗与容器壁之间的粘滞力 2.不可压缩——气体因其可压缩性多不依循此定律;不可压缩性可维持密度不变 3.稳定——高速流动会导致紊流的出现 历史 伯努利开辟并命名了流体动力学这一学科,区分了流体静力学与动力学的不同概念。1738年,他发表了十年寒窗写成的《流体动力学》一书。他用流体的压强、密度和流速等作为描写流体运动的基本概念,引入了“势函数”“势能”(“位势提高”)来代替单纯用“活力’讨论,从而表述了关于理想流体稳定流动的伯努利方程,这实质上是机械能守恒定律的另一形式。他还用分子与器壁的碰撞来解释气体压强,并指出,只要温度不变,气体的压强总与密度成正,与体积成反比,用此解释了玻意耳定律。 伯努利方程 设在右图的细管中有理想流体在做定常流动,且流动方向从左向右,我们在管的a1处和a2处用横截面截出一段流体,即a1处和a2处之间的流体,作为研究对象.设a1处的横截面积为S1,流速为V1,高度为h1;a2处的横截面积为S2,流速为V2,高度为h2. 思考下列问题: ①a1处左边的流体对研究对象的压力F1的大小及方向如何 ②a2处右边的液体对研究对象的压力F2的大小及方向如何 ③设经过一段时间Δt后(Δt很小),这段流体的左端S1由a1移到b1,右端S2由a2移到b2,两端移动的距离分别为ΔL1和ΔL2,则左端流入的流体体积和右端流出的液体体积各为多大它们之间有什么关系为什么 ④求左右两端的力对所选研究对象做的功 ⑤研究对象机械能是否发生变化为什么 ⑥液体在流动过程中,外力要对它做功,结合功能关系,外力所做的功与流体的机械能变化间有什么关系 推导过程: 如图所示,经过很短的时间Δt,这段流体的左端S1由a1移到b1,右端S2由a2移到b2,两端移动的距离为ΔL1和ΔL2,左端流入的流体体积为ΔV1=S1ΔL1,右端流出的体积为ΔV2=S2ΔL2. 因为理想流体是不可压缩的,所以有

相关文档