文档库 最新最全的文档下载
当前位置:文档库 › 热力学发展史阅读感想.

热力学发展史阅读感想.

热力学发展史阅读感想.
热力学发展史阅读感想.

热力学发展史阅读感想

廖瑞杰

(北京航空航天大学能源与动力工程学院,北京100191)

“热”这一个字伴随着人类的发展,人们对热的本质及热现象的认识经历了一个漫长的、曲折的探索过程。在古代,人们就知道冷与热的差别,能够利用摩擦生热、燃烧、传热、爆炸等热现象,来达到一定的目的。温度对于热力学研究起着至关重要的作用。温度的定义以及测量是热力学的开端,三个热力学基本定律的发现是贯穿热力学发展史的线索。

在17世纪中,虽然有些科学家对温度的测定及温标的建立,作出不同程度的贡献,提供了有益的经验和教训。但是,由于没有共同的测温基准,没有一致的分度规则,缺乏测温物质的测温特性的资料,以及没有正确的理论指导,因此,在整个17世纪中,并没有制作出复现性好的、可供正确测量的温度计及温标。在18世纪中,“测温学”有较大的突破。其中最有价值的是,1714年法伦海脱所建立的华氏温标,以及1742年摄尔修斯所建立的摄氏温标(即百分温标)。华氏温标是以盐水和冰的混合物作为基准点(0°F),而以水的冰点(32°F)及水的沸点(212°F)作为固定参考点。摄氏温标是以

水的冰点(100℃)及水的沸点(0℃)作为固定参考点及基准点,并把他们分作100等分,每个间隔定义为一度,故称之为百分温标。1749年,该温标的基准点及固定参考点,被摄尔修斯的助手斯托墨颠倒过来,这就是后来常用的摄氏温标。

18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。于是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,尤其是到了19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。一:热力学第一定律

1.热力学第一定律的文字表述

自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递中能量的数量保持不变。该定律就称为热力学第一定律,也称为能量转换与守恒定律,这一定律也被表示为:第一类永动机(不消耗任何形式的能量而能对外做功的机械)是不能制作出来的。

2.热力学第一定律建立的成因

1)理论——迈尔

迈尔是明确提出“无不能生有”,“有不能变无”的能量守恒与转化思想的第一人。而这理论正是建立热力学第一定律的基础。

2)实验——焦耳

由于焦耳精心严谨地进行了热功当量测定等一系列实验,奠定了热力学第一定律的实验基础,得到了人们的认同。

3)一批科学家的不懈努力

亥姆霍兹将能量守恒定律第一次以数学形式提出来,而卡诺、赛贝等人也都有过这方面的见解。正是因为众多科学家的不断努力,才使得热力学第一定律的建立的更加迅速。二、热力学第二定律的建立

在实际情况中,并不是所有满足热力学第一定律的过程都能实现,比如热不会自动地由低温传向高温,过程具有方向性。这就导致了热力学第二定律的出台。卡洛、克劳修斯、开尔文、玻尔兹曼等科学家为此做了重要贡献。

卡诺定理是尼古拉·卡诺于1824年在《谈谈火的动力和能发动这种动力的机器》中发表的有关热机效率的定理。值得注意的是定理是在热力学第二定律提出20余年前已然提出,从历史角度来说其为热力学第二定律的理论来源。但是卡诺本人给出的证明是在热质说的错误前提下进行的证明,而对于其相对严密的证明需要热力学第二定律。这也就使得克劳修斯和开尔闻等科学家有了“用武之地”,为热力学做出了突出的贡献。

热力学第二定律有几种表述方式:

克劳修斯表述:热量可以自发地从温度高的物体传递到较冷的物体,但不可能自发地从温度低的物体传递到温度高的物体;

开尔文-普朗克表述:不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。或者是第二类永动机无法被制造。

熵表述:随时间进行,一个孤立体系中的熵总是不会减少。

热力学第一、二定律的提出,基本确立了热力学的框架。但是有关物质在低温下的热力学性质和预测化学反应常数方面,还需要差不多半个世纪后斯特提出的热力学第三定律。这也就使得热力学第三定律在热力学中也占据重要的位置。

三、热力学第三定律的建立

1906年,德国物理学家能斯特在研究低温条件下物质的变化时,把热力学的原理应用到低温现象和化学反应过程中,发现了一个新的规律,这个规律被表述为:“当绝对温度趋于零时,凝聚系(固体和液体)的熵(即热量除以温度的商)在等温过程中的改变趋于零。”德国著名物理学家普朗克把这一定律改述为:“当绝对温度趋于零时,固体和液体的熵也趋于零。”这就消除了熵常数取值的任意性。1912年,能斯特又将这一规律表述为绝对零度不可能达到原理:“不可能使一个物体冷却到绝对温度的零度。”这就是热力学第三定律。

1940年R.H.否勒和 E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0K,称为0K不能达到原理。

四、热力学第零定律

继热力学第一、二、三三大定律后,英国物理学家福勒又提出了第零定律。第零定律和

文章开头提到的温度有着密切的关系。他的重要性在于它给出了温度的定义和温度的测量方法。定律中所说的热力学系统是指由大量分子、原子组成的物体或物体系。它为建立温度概念提供了实验基础。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。而温度相等是热平衡之必要的条件。虽然他是最后提出来的,足足比第一、二定律迟了80年,但是他是三大定律的基础,这也就顺理成章的成为了“第零”这个伟大的定律。

与此同时,在应用热力学理论研究物质性质的过程中,还发展了热力学的数学理论,找到了反映物质各种性质的相应的热力学函数,研究了物质在相变、化学反应和溶液特性方面所遵循的各种规律。1906年,德国的能斯脱在观察低温现象和化学反应中发现热定理;1912年,这个定理被修改成热力学第三定律的表述形式。

现如今,随着热力学的快速发展,人们对超高压、超高温水蒸汽等物性,和极低温度的研究不断获得新成果。随着对能源问题的重视,人们对与节能有关的复合循环、新型的复合工质的研究发生了很大兴趣。单一学科已不能满足热力学发展的需求,这就需要多学科相互渗透,综合研究,理论与实验同时开展,基础研究与技术开发相结合,以促进这一领域更好的发展。

热力学发展史

要求: 1、30个PPT左右 2、画面清晰明了 3、相关图片不少于是10张 4、每个画面文字总数不超过80个,配备解说稿 5、3人组成一小组 资料如下: 热力学第一定律(能量守恒定律):英国杰出的物理学家焦耳、德国物理学家亥姆霍兹等 1、我们既不能创造,也不能消灭能量。宇宙中的能量总和一开始便是固定的,而且永远不会改变,但它可以从一种形式转化为另一种形式。一个人、一幢摩天大楼、一辆汽车或一棵青草,都体现了从一种形式转化成为另一种形式的能量。高楼拔地而起,青草的生成,都耗费了在其他地方聚集起来的能量。高楼夷为平地,青草也不复生长,但它们原来所包含的能量并没有消失,而只是被转移到同一环境的其他所在去了。我们都听说过这么一句话:太阳底下没有新鲜东西。要证实这一点你只需呼吸一下,你刚才吸进了曾经让柏拉图吸进过的5000万个分子。 2、宇宙的能量总和是个常数,总的熵是不断增加的。熵是不能再被转化做功的能量的总和的测定单位。这个名称是由德国物理学家鲁道尔夫·克劳修斯于1868年第一次造出来的。蒸汽机之所以能做功,是因为蒸汽机系统里的一部分很冷,而另一部分却很热。换一句话说,要把能量转化为功,一个系统的不同部分之间就必须有能量集中程度的差异(即温差)。当能量从一个较高的集中程度转化到一个较低的集中程度(或由较高温度变为较低温度)时,它就做了功。更重要的是每一次能量从一个水平转化到另一个水平,都意味着下一次能再做功的能量就减少了。比如河水越过水坝流入湖泊。当河水下落时,它可被用来发电,驱动水轮,或做其他形式的功。然而水一旦落到坝底,就处于不能再做功的状态了。在水平面上没有任何势能的水是连最小的轮子也带不动的。这两种不同的能量状态分别被称为“有效的”或“自由的”能量,和“无效的”或“封闭的”能量。熵的增加就意味着有效能量的减少。每当自然界发生任何事情,一定的能量就被转化成了不能再做功的无效能量。被转化成了无效状态的能量构成了我们所说的污染。许多人以为污染是生产的副产品,但实际上它只是世界上转化成无效能量的全部有效能量的总和。耗散了的能量就是污染。既然根据热力学第一定律,能量既不能被产生又不能被消灭,而根据热力学第二定律,能量只能沿着一个方向

关于化学的学习心得体会5篇(通用)

关于化学的学习心得体会5篇 心得体会是指一种读书、实践后所写的感受性文字。一般分为学习体会,工作体会,教学体会,读后感,观后感。以下是关于化学的学习心得体会5篇,欢迎阅读参考! 关于化学的学习心得体会(一) 科学的目的除了应用以外,还有发现世界的美,满足人类的好奇心。物理化学自然也是科学,所以同样适用。 化学热力学,化学动力学,电化学,表面化学……物理化学研究的主要内容大致如此。然而,在刚刚开始学物化的时候,我几乎被一大堆偏微分关系式所吓晕。尤其是看那一大堆偏微分的公式,更是让我觉得头痛。然而通过阅读以及对以前高数的复习,我慢慢地能理解偏微分的含义了。由于物化是一门交叉性的学科,因此我们除了上课要认真听讲更重要的是联系以前学习过的知识,将它们融会贯通,这才能学习好物化。 物化是有用的,也是好玩的,这些是学习物化的动力,那么,怎样才可以学好物化呢? 对我来说,主要就是理解-记忆-应用,而串起这一切的线索则为做题。理解是基础,理解各个知识点,理解每一条重要公式的推导过程,使用范围等等。我的记性不太好,所以很多知识都要理解了之后才能记得住,但是也正因如此,我对某些部分的知识点或公式等的理解可能比别人要好一点,不过也要具体情况具体分析,就好像有一些公式的推导过程比较复杂,那或许可以放弃对推导过程的理解,毕竟最重要的是记住这条公式的写法及在何种情况下如何使用该公式,这样也就可以了,说到底,对知识的记忆及其应用才是理解的基础物理化学不在于繁杂的计算,而是思路。 我觉得学习物化时应该逐渐的建立起属于自己的物理化学的理论框架,要培养出物理化学的思维方式,而且应该有自己的看法,要创新。物化离不开做题。 认真地去做题,认真地归纳总结,这样才可以更好地理解知识,这样才能逐渐建立起自己的框架,而且做题也是一个把别人的框架纳入自己的框架的过程。从另

热力学发展简史

热力学发展简史 “温度”贯穿我们的一生,人人都知冷暖,古代人便会钻木取火,不可否认的一个方面是为了取暖,而现在,点暖炉,空调等设备的使用也都是人们为了得到一个合适的温度以更好的生活。学了一个学期的工程热力学后发现温度对于热热力学研究起着至关重要的作用。而温度的定义以及测量可以说是热力学的开端。 在17 世纪中,虽然有些科学家对温度的测定及温标的建立,作出不同程度的贡献,提供了有益的经验和教训。但是,由于没有共同的测温基准,没有一致的分度规则,缺乏测温物质的测温特性的资料,以及没有正确的理论指导,因此,在整个17 世纪中,并没有制作出复现性好的、可供正确测量的温度计及温标。在18 世纪中,“测温学”有较大的突破。其中最有价值的是,1714 年法伦海脱所建立的华氏温标,以及1742 年摄尔修斯所建立的摄氏温标(即百分温标)。华氏温标是以盐水和冰的混合物作为基准点(0°F),而以水的冰点(32°F)及水的沸点(212°F)作为固定参考点。摄氏温标是以 水的冰点(100℃)及水的沸点(0℃)作为固定参考点及基准点,并把他们分作100等分,每个间隔定义为一度,故称之为百分温标。1749 年,该温标的基准点及固定参考点,被摄尔修斯的助手斯托墨颠倒过来,这就是后来常用的摄氏温标。 18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。于是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,尤其是到了19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。 一:热力学第一定律 1.热力学第一定律的文字表述 自然界一切物体都具有能量,能量有各种不同形式,它能从一种

热力学与统计物理第二章知识总结

§2.1内能、焓、自由能和吉布斯函数的全微分 热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。 焓:自由能: 吉布斯函数: 下面我们由热力学的基本方程(1) 即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分 焓、自由能和吉布斯函数的全微分 o焓的全微分 由焓的定义式,求微分,得, 将(1)式代入上式得(2) o自由能的全微分 由得 (3) o吉布斯函数的全微分 (4)

从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P 所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。 二、热力学(Maxwell)关系(麦克斯韦或麦氏) (1)U(S,V) 利用全微分性质(5) 用(1)式相比得(6) 再利用求偏导数的次序可以交换的性质,即 (6)式得(7) (2) H(S,P) 同(2)式相比有 由得(8) (3) F(T,V)

同(3)式相比 (9) (4) G(T,P) 同(4)式相比有 (10) (7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。 §2.2麦氏关系的简单应用 证明 1. 求 选T,V为独立变量,则内能U(T,V)的全微分为 (1) 熵函数S(T,V)的全微分为( 2)

第四章 热力学和统计物理学的发展

第四章热力学和统计物理学的发展 教学目的和要求: 掌握:几种温标的建立;热力学三定律的发现过程及内容;在分子运动论的建立中,克劳修斯作出的贡献;麦克斯韦,玻尔兹曼对统计力学的建立作出的贡献. 熟悉:计温学与量热学的发展;关于热的本质的学说的发展; 了解:气体运动定律;了解克劳修斯是如何得到熵概念和熵增加原理的; 教学重点,难点: 几种温标的建立;热力学三定律的发现过程及内容;在分子运动论的建立中,克劳修斯作出的贡献;麦克斯韦,玻尔兹曼对统计力学的建立作出的贡献 教学内容: §1.热学现象的初期研究 一蒸汽机的发明 1690年巴本(Frnid Papin,1647-1712,法国,惠更斯助手)首先制成带有活塞和汽缸的实验性蒸汽机; 1698年,托马斯萨维里(Thomas Savery,1650-1715,英国军事工程师)制成一具蒸汽水泵; 1705年,托马斯纽可门(Thomas Newcomen,1663-1729,英国铁匠)在萨维里和巴本的基础上,研制了一个带有活塞的封闭的圆筒汽缸,活塞通过一杠杆和一排水泵相连.是一个广义的把热转变为机械力的原动机,是蒸汽机最早的雏形.并真正有效地应用于矿井排水.但活塞的每次下降都必须将整个汽缸和活塞同时冷却,热量的损失太大. 1769年,詹姆斯瓦特(James Watt,1736-1819,法国,格拉斯哥大学仪器维修工)改进了纽可门机,把冷凝过程从汽缸内分离出来,即在汽缸外单独加一个冷凝器而使汽缸始终保持在高温状态. 1782年,又制造出了使高压蒸汽轮流的从两端进入汽缸,推动活塞往返运动的蒸汽机,使机器运作由断续变连续,从而蒸汽机的使用价值大大提高,导致了欧洲的工业革命. 1785年,热机被应用于纺织; 1807年,热机被美国人富尔顿应用于轮船; 1825年被用于火车和铁路. 二计温学的发展 (一)温度计的设计与制造 1603年,伽利略制成最早的验温计:一只颈部极细的玻璃长颈瓶,倒置于盛水容器中,瓶中装有一半带颜色的水.随温度变化,瓶中空气膨胀或收缩.

化学研究进展讲座感想

化学研究进展讲座感想 经过本课程的学习,我充分了解了前沿化学的一些发展状况,这在很大程度上激起了我无限的好奇心以及追求科学的兴趣。8次讲座的内容都与人类的发展息息相关,我的感受颇深。 回顾化学的发展史,曲折而充满了奇趣。从远古的工艺化学时期,炼丹术和医药化学时期,燃素化学时期到近代的定量化学时期,再到现代的前沿化学,化学研究在渐渐深入,也渐渐地越来越深入地影响到了人们的日常生活。不仅如此,现代的化学也渗透到了其它领域。多方面的发展,解决了许多悬而未决的问题,但又遇到了许多新的问题。接下来,我想就有关方面谈谈我的感想。 一现代化学促进了人类的发展 化学作为一门自然科学,在发展的过程中不仅加深了人们对自然的认识,还对人们的生活,科技产业的发展造成了深刻的影响。随着社会的发展,化学已成为一门满足社会需要的中心科学,创造着现代物质文明和精神文明,不断地影响着人类社会的发展和进步。 1.提供粮食和控制人口 现代社会人口的增长以及人们生活质量的提高,对粮食生产提出了更高的要求,以满足人类的需求。在发展生物技术的同时,化学杀虫剂和灭鼠剂对粮食增产起了很大的作用。同时,化学家

和生物学家极力配合,利用现代激光光谱等先进技术,有效地揭示了光合作用的复杂的化学反应机制。这不仅有利于农业增产,而且对工业发展也产生了很大的推动作用。除此之外,化学生长调节剂的研究也对农作物的发育改良产生了不可估摸的作用,农业经济意义巨大。 化学也为粮食储藏和食品加工提供丰富多样的保护剂、防腐剂、呈味剂、助味剂、着色剂以及各种补增营养的添加剂。天然有机物化学、味道化学、食品化学等正在发挥着越来越大的作用,极大地改善了人们的生活质量。 2.提供现代化的材料和新能源 化学材料的发展为人类的生活提供了各种可能性,实现了人们很久以来梦寐以求的愿望。其中最引人注目的就是高分子材料的发展。化学纤维工业的发展提高了棉花的产量;塑料在建筑,通讯,包装方面发挥了广泛的用途;交通工具对合成橡胶的需求量日益增加。高分子材料显示出了它无穷的魅力。 无机材料也有很大的发展前景。催化剂的开发、分子剪裁剪技术的采用,有可能制成各种得心应手的材料。集成电路的加工,光导通讯材料等都有赖于化学功能材料的发展。

热力学复习知识点汇总

概 念 部 分 汇 总 复 习 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝热过程中内能U 是一个态函数: A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形 式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=-;微分 形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公式一比较 即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 公式:nR C C V p =- 14、绝热过程的状态方程: const =γpV ;const =γ TV ; const 1 =-γ γT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率2 11T T - =η,逆循环 为卡诺制冷机,效率为2 11T T T -= η (只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 17、无摩擦的准静态过程是可逆过程。 18、卡诺定理:所有工作于两个一定温度T 1与T 2之间的热机,以可逆机的效率为最高。并且所有的可逆机 的效率η都相等21 1T T - =η ,与工作物质无关,只与热源温度有关。 19、热机的效率:1 21Q Q -=η,Q 1为热机从高温热源吸收的热量,Q 2 为热机在低温热源放出的热量。 20、克劳修斯等式与不等式:02 211≤+T Q T Q 。 21、可逆热力学过程0=?T dQ ,不可逆热力学过程0

化学教学心得体会范文3篇

化学教学心得体会范文3篇 化学是一门以实验为基础的学科,实验教学可以激发学生学习化学的兴趣,帮助学生形成化学概念,获得知识和实验技能,加强实验教学是提高化学质量的一个重要组成部分。下面是带来的化学教学心得体会范文,欢迎大家阅读。 化学教学心得体会范文一: 经过多年的一对一教学经验,我认为一个优秀的化学教师应该具备以下几个方面的基本功。 首先,具备广博的基础知识和过硬的学科专业知识。过硬的学科专业知识是保障每一位化学教师能正确理解和解释化学教材中的每 一个知识点的关键。随着社会的发展和进步,一个学科不再是单一的,各个学科相互交叉,相互渗透,趋于综合化,单有过硬的学科专业知识难以适应化学学科发展的需要。 其次,具有娴熟的教学设计能力。教学过程的设计,包括课导入(知识点的导入)、新授、过渡、提问、讨论、思考、练习、总结、作业布置等等。一个章节、一个课题、一个知识点的设计不可能千篇一律。例如化学课(含知识点)的导入,形式多样:(1)以故事的形式导入新课,化学史和生活中的许多小故事生动有趣,扣人心弦,通过讲故事导入新课,不仅可以营造愉悦轻松的课堂氛围,而且还能快速调动学生积极思维,提高学习效率。(2)以身边熟悉的自然现象导入新课。如初中化学学习“分子和原子”知识的时候,正逢“八月桂花香”

这一自然现象,因一般学校绿化时均栽种有桂花树,借助这一自然现象很容易调动学生学习的兴趣和学习的主动性。(3)以实验方式导入新课。(4)借助多媒体技术导入新课。(5)以回顾旧知,引入新知的形式导入新课,等等。新课导入的方式方法很多,只要符合教学的目的和要求,服务教学的都可以用于我们的教学实际中。 再次,具有极强的教学组织能力。 最后,具备扎实的化学实验操作技能功底。化学是一门以实验为基础的学科,化学教学离不开实验。俗话说“实践出真知”,实验是科学探究的重要手段,开展以实验为基础的探究活动,不仅能够为学生充分发挥实验能动性提供重要途径,而且有助于学生理解和巩固知识,更重要的是通过实验还能够激发学生的学习激情,逐步培养学生的思维,激发学生的创新意识。 化学教学心得体会范文二: 通过网上观看课改地区优秀教学视频和有关“教学理论—课堂结构”的多篇论文阅读,对“先学后讲,分层训练,跟踪指导”的课堂模式有感如下: 1、先学后教,分层训练,跟踪指导的课堂模式大大提高了课堂教学效率和效益。但也有专家和很多老师提出学案在给学生学习带来辅助的同时,也限制了学生的思维,甚至限制了老师的思维,束缚了师生的手脚,使我们的课堂教学由教教材变成了教学案,忽视课堂教学过程中生成性资源的开发与应用。 2、多媒体辅助的同时很多老师削弱了黑板的作用,忽视了教师

工程热力学-热力学发展简史

科学思维的发展 自然科学溯源于古希腊,十五世纪时勃兴于欧洲,当时欧洲刚经历千年「黑暗时代」,文艺复兴开始,而地中海沿岸贸易兴旺,为开拓市场需要,遂推动天文、地理、数学和力学的发展。而波兰人哥白尼(Nicolas Copernicus),在一五四三年提出「日心说」,其理论经伽利略(Galileo Galilei)、开普勒(Johann Kepler)的论证与发展,使西方的自然观,由笼统、模糊的认识,进入到深入、细致的研究。十六、十七世纪,英国人培根(Roger Bacon)大力提倡「科学方法」,即通过实验、列表、比较、排除、归纳而逐步上升到公理,奠定了西方科学严谨的研究方法和传统。 与培根同时代的法国人笛卡儿(Rene Descartes),把整个自然界看作一架大机器,试图以机械运动说明自然界的一切,并且主张要从错综复杂的事物中区别出最简单事物,然后予以有秩序的研究。他的《方法谈》标示了西方知识传统的「分析还原原理」,认为总体可以分解为部分;复杂、非线性系统,也可以分解为简单线性系统来理解。故奠定了追求简单性和线性解的西方科学及人文思维基础。 英国人牛顿(Sir Issac Newton)在一六八六年提出《自然哲学的数学原理》巨著,创立了以「万有引力」及「运动三定律」为基础的古典力学。他把整个自然界描述成一个秩序井然的大机械钟,只要这个钟上紧发条,便能自动运转,但这机械论仍要请上帝做「第一推动」,为这大钟上紧发条。到十八世纪下半叶,由国家支持的科学机构已在欧美各国普遍建立,故自然科学分门别类而迅速发展,十九世纪自然科学由分门别类的材料收集,进到对经验材料的综合整理和理论概括。 在牛顿的古典力学基础上,热力学大师克劳修斯(Rudolf Julius Emmanuel Clausius)在一八六七年提出热力学第二定律,说明一个孤立系统,总由有序而朝向均匀、简单、消灭差别的无序方向发展,即「熵」(entropy)增加,从而得出「宇宙总体走向退化、死亡」的结论。 热力学的基本定律 热力学是专门探讨能量内涵、能量转换以及能量与物质间交互作用的科学,尤其专注在系统与外在环境间能量的交互作用,是结合工程、物理与化学的一门学问。早期物理中,把研究热现象的部分称为热物理,后来称为热学,近代则称之为热力学,被许多理工相关科系列为必修的基础课程。许多工程科学都是由热力学所衍生的或与其有密切关联,例如热传学、流体力学、材料科学等。 顾名思义,热力学和「热」有关,和「力」也有关。广义而言,热力学主要是研究有关能量的科学,因此物质的特性也是其必须探讨的范围。热力学的应用范围很广,主要包括:引擎、涡轮机、压缩机、帮浦、发电机、推进器、燃烧系统、冷冻空调系统、能源替代系统、生命支持系统及人工器官等。 热是一种传送中的能量。物体的原子或分子透过随机运动,把能量由较热的物体传往较冷的物体。

第五章 热力学基础 总结

§5-1 准静态过程 功 热量 内能 一、准静态过程 非静态过程:中间状态不是平衡态准静态过程:(平衡过程) 过程进行得足够缓慢中间状态 ~ 平衡态 p -V 图上,一点 代表一个平衡态,一条连续曲线代表一个准静态过程。这条曲线的方程称为过程方程 准静态过程是一种理想模型。 对于实际过程则要求的外界条件发生一微小变化的时间远远大于弛豫时间(从平衡态破坏到新平衡态建立所需的时间) 二、内能 热力学主要研究系统能量转换规律 例:实际气体 ) ,(V T E E =理想气体()2m ol M i E R T E T M = = 三、功和热量 1. 准静态过程的体积功 V p l pS l F A d d d d ==?= =μp F s V d l d ?= 2 1 d V V V p A 注意:非静态过程不适用 ?= 21 d V V V p A A d 0 d 0d >>A V 若0d 0d <

2 热 量(过程量) 摩尔热容: m mol m mol M C cM Q C T M == ??物理意义:1mol 物质温度升高或降低1K 时所吸收或放出的热量。 § 5-2 热力学第一定律及其在等值过程中的应用 一. 热力学第一定律1. 数学形式: A E E Q +-=)(12系统从外界吸热 = 内能增量+系统对外界做功 A Q E 1 E 2 准静态:d Q =d E +p d V 理想气体: d d d 2m ol M i Q R T p V M = +d Q =d E +d A 微小过程: 2. 物理意义:涉及热运动和机械运动的能量转换及守恒定律。 适用范围:静态过程和非准静态过程均适用。但为便于实际计算,要求初终态为平衡态。 第一类永动机是不可能制成的 第一类永动机不需要外界提供能量,也不需要消耗系统的内能,但可以对外界作功。 二 . 对理想气体的应用 等值过程 等体过程 等压过程 等温过程 d =V 0d =p 0 d =T 绝热过程 d =Q 1) 过程方程 2 1 21T T p p =查理定律 1. 等体过程 (d V = 0 V = C ) V V p 1 p 2p ) ,,(222T V p ) ,,(111T V p O 2) 热力学第一定律的具体形式 ?==0 d V p A V mol M Q C T M = ?2 mol M i E R T M ?= ?V m o l M E Q C T M ?==?吸热全部用于增加内能: 适用于一切过程。 V m o l M E C T M ?= ?注意:

初三化学史入门教学

初三化学史入门教学 教学目标 1.知识与技能初步了解化学发展史,了解炼丹术和炼金术,了解我国近代化学的启蒙者徐寿对化学发展的影响。 2.过程与方法通过故事、史料认识化学的重要性,了解化学的发展过程。 3.情感态度与价值观激发学生了解化学、关注化学、学好化学、热爱化学、报效祖国。教学方法提供史料→教师引导→讨论归纳→激发兴趣→培养学科素养教具准备投影仪、史料胶片、物质样品课时安排 1课时教学过程引入新课:同学们,从今天开始我们又要学习一门新的课程,那就是化学。化学是研究什么的呢?怎样才能学好化学?这门学科有趣 味吗?这门学科是怎么发展的呢?下面我们就学习化学发 展史。板书:初三化学史入门教学引言:在学习化学发展史以前,首先请同学们听三个有趣的故事。第一个故事是发生在1994年的美国某地。那天,大学里面一座大楼失火了。“呜,呜,……”消防车问讯赶来。这时一件奇怪的事情发生了,大楼门口警卫森严,不许消防队员进去。“火烧眉毛了,还不许我们进去?”消防队员着急的问。“不行,没有国防部的证明,谁都不许进!”原来,大楼里面的科学家们正在极端秘密地研究一种化学元素──铀。为什么研究铀要那么保密呢?第二个故事发生在1781年,英国有位著名的化学家叫普利斯特里,他很喜欢给朋友表演化学魔术。

每当有朋友来到他的实验室参观时,他便拿出一个空瓶子,给大家表演。可是,当他把瓶口移近蜡烛的火焰时,忽然发出“啪”的一声巨响。朋友们吓了一跳,有的甚至钻到桌子底下去。原来,瓶子里事先装进氢气和氧气,点火会发出爆炸声。一次,他表演完“拿手好戏”后,在收拾瓶子时,注意到瓶子上有水。经过反复实验,他终于发现,氢气燃烧后变成了水。第三个故事发生在1890年。在庆祝德国化学会成立25周年的大会上,著名化学家凯库勒,讲述了自己怎样解决了有机化学史上一大难题。“那时侯,我住在伦敦,日夜思索着苯分子的结构是什么样的。我徒劳地工作了几个月,毫无收获。一天,我坐马车回家,由于过度劳累,在摇摇晃晃的马车上睡着了。我作了一个梦,一条蛇首尾相连,变成一个环。我从梦中惊醒,当天晚上,在梦的启发下,我终于画出了苯分子的环式结构,解决了有机化学史上的一大难题。” 提问:同学们听完了这三个故事,有什么感想呢?板书:一、从三个故事看化学发言:对同学们的发言有针对性的点评。讲述:故事一从一个很小的侧面说明化学是何等的重要。美国在1945年研制出第一颗原子弹,当年的8月6日和9日分别在日本的广岛和长崎投下了两颗原子弹,引起世人瞩目。我国在1964年10月16日在西北上空爆炸了第一颗原子弹,1967年6月17日第一颗氢弹研制成功,从而结束了我国没有核弹的历史。故事二说明研究化学一定

热力学基础总结(物化)

第二章 热力学基础小结 这一章主要讲了热力学第一定律和热力学第二定律。 一、热力学第一定律 U=Q+W ? (封闭系统,任何过程) dU=Q W δ+δ (封闭系统微变过程) 二、热力学第二定律 1、 热力学第二定律的数学表达式,Clausius 不等式: Q dS T δ≥ B A Q S T δ?≥? > 为不可逆 =为可逆 2、熵的定义式 r Q dS T δ= B A S B r B A S A dQ dS S S S T =-=?=? ? 三、状态函数及其关系式 1、状态函数关系式:(定义式) H = U + pV || || G = A + pV + + TS TS 2、 热力学的四个基本方程:(适用条件:恒定组成,只作体积功的封闭系统) dU TdS pdV =- dH TdS Vdp =+ dA SdT pdV =-- dG SdT Vdp =-+ 3、对应系数关系式: V p U ( )()T S S ??H ==?? S T U A ()()p V V ??==-?? S T H G ( )()V p p ??==?? V p A G ()()S T T ??==-?? 4、Maxwell 关系式: S V T p )()V S ??=-??; S p T V )()P S ??=??; T V S p )()V T ??=??; T p S V )()P T ??=-??; 四、各种判据的比较:

五、各种热力学函数的计算公式: 1、体积功的计算 (1)、定义式:2 1 V B B e V W W p dV δ= =-∑ ? (2)、反抗恒定外压过程:2 1 V e e 21V W p dV p (V V )=-=--? (3)、可逆过程:2 1 V III V W = pdV - ? (4)、理想气体恒温过程:1221 V p W= nRTln nRTln V p = (5)、有气体参加的相变过程:体系在恒温恒压下由凝聚相α转变为气相(g)β . W p(V V )pV nRT βαβ=--=-=- (6)、绝热过程: 0a Q = ,21,()a V m V m W U nC T T nC T =?=-=? 2、热效应的计算 (1)、恒容热: V Q U =?(封闭系统,恒定W ′= 0) 2 2 1 1 T T V V V.m T T Q U C dT n C dT =?==?? (2)、恒压热:21p Q H H H =-=? (封闭系统,恒压,'0W =) 2 2 1 1 T T p p p.m T T Q H C dT n C dT =?==?? (3)、理想气体恒温可逆过程:12T T 21 V p Q W nRTln nRTln V p =-== (4)、绝热过程: 0a Q = 3、热力学能的计算 (1)、封闭系统,任何过程: U=Q+W ? (2)、理想气体恒温过程:U ?=0 (3)、均相物质变温过程:2 2 1 1 T T V V.m T T U C dT n C dT ?==? ?

化学选修课的感想与体会

化学选修课的感想与体会 接近六周的化学史选修课结束了,体会很多,感触也很深刻。化学史看似平淡无奇,在为期六周的学习中,我们系统性的了解了关于化学的起源,发展以及无数科学巨人在化学史上留下的光辉,我们了解古代应用化学的领域,从人类生存过程中对火的使用,在绚丽的陶瓷中窥视古代化学工艺,从对金属的冶炼中,在战场上领略古代化学冶炼的古老与精湛的技艺。 我们也能深深地体会出中国古代化学的光辉,中国,一个古老的国度,拥有五千年的历史与文化,陶瓷,一个中国的象征,古代的陶瓷精美仍然是现代人陶醉其中,有著名的唐三彩,有享誉全球的宋代五窑,明青花瓷依旧吸引世人的目光。 同样,在这个古老崇尚武力的国度,武器拥有不可替代的地位,有著名的铸剑师欧冶子,干将莫邪,有著名的吴王剑与越王剑,有著名的鱼肠剑与湛卢剑。剑,在战场发出耀眼的光芒,那光芒之中,是古代中国人智慧的结晶,也是华夏儿女共同的骄傲。 在化学史中,我们领略了伟人的身影。 有推动化学成为一门独立学科的波耳义,有发表原子论的道尔顿和分子学说的阿伏伽德罗,有发现电子的汤姆森,有推动元素周期论发展的纽兰兹,迈尔,尚古多,有建立较为完善的元素周期律的科学巨人门捷列夫,有辛苦劳作,把一生都献给了科学的居里夫人,富兰克林·····

化学的发展日趋于完善,近代化学的成就更是不胜枚举。 有那些把终身都奉献给科学而未成家的绅士化学家,有卡文迪许,有那些在研究的同时,不忘培养后人的大师,有舍勒发现法拉第之美誉,有法拉第培养麦克斯韦的史话,有李比希投身化学教育的先驱,正是这些伟人,在追求真理的同时,传承了教育的先驱,他们既是开拓先河,同时肩负传承的重责。 现代化学依旧繁荣。 现代的化学发展趋于实用性,从导电树脂的发明,到荧光蛋白的发现与改造,从钯联交偶反应的使用,到单层石墨烯的剥离。化学更加趋于实际,但是,在理论化学依旧有巨大的成就,譬如两次获得诺贝尔奖的鲍林创立电负性学说,现代的量子化学更是从微观的角度去揭示化学世界的真相,化学不仅有实践的经验,更有了系统的理论支持,使之更加完善的称之为科学。 通过学习,明白中西方之间的差距,有许多值得思考的问题。中国是化学最早起源地之一,然而却没有形成一门独立的学科,本人发表自己的见解,通过中西方对比,不难发现原因。首先在大的社会背景,中国是典型的小农经济,自然经济为主体,作为主体的国民难有可支配的资金去从事研究。第二点,出现在人文方面,中国的封建思想禁锢了人民的思想,而西方的科学崇尚自由,西方的文艺复兴极大地促进了思想的解放。第三点,精神上出了问题,对比西方,中国古代缺乏专业从事化学事业的先驱,人们研究化学往往追求长生不老。第四点,教育问题。这一点很有戏剧性,古代因缺乏理论而阻碍

热力学发展简史

热力学发展简史 “温度”贯穿我们的一生,人人都知冷暖,古代人便会钻木取火,不可否认的一个方面就是为了取暖,而现在,点暖炉,空调等设备的使用也都就是人们为了得到一个合适的温度以更好的生活。学了一个学期的工程热力学后发现温度对于热热力学研究起着至关重要的作用。而温度的定义以及测量可以说就是热力学的开端。 在17 世纪中, 虽然有些科学家对温度的测定及温标的建立,作出不同程度的贡献,提供了有益的经验与教训。但就是, 由于没有共同的测温基准,没有一致的分度规则,缺乏测温物质的测温特性的资料, 以及没有正确的理论指导,因此,在整个17 世纪中,并没有制作出复现性好的、可供正确测量的温度计及温标。在18 世纪中,“测温学”有较大的突破。其中最有价值的就是,1714 年法伦海脱所建立的华氏温标,以及1742 年摄尔修斯所建立的摄氏温标(即百分温标)。华氏温标就是以盐水与冰的混合物作为基准点(0°F),而以水的冰点(32°F)及水的沸点(212°F)作为固定参考点。摄氏温标就是以 水的冰点(100℃)及水的沸点(0℃)作为固定参考点及基准点,并把她们分作100等分,每个间隔定义为一度,故称之为百分温标。1749 年,该温标的基准点及固定参考点,被摄尔修斯的助手斯托墨颠倒过来,这就就是后来常用的摄氏温标。 18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热与功的转化问题。于就是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这就是热力学第一定律的第一次提出。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,尤其就是到了19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力与燃料,却能自动不断地做功。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。 一:热力学第一定律 1.热力学第一定律的文字表述 自然界一切物体都具有能量,能量有各种不同形式,它能从一种

工程热力学知识点总结

工程热力学大总结 '

… 第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 ) 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 } 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

热力学发展史

热力学发展史 201313020406 孙厚齐 化学是论述原子及其组合方式的科学。人们最初考察化学反应时,是把反应物放在一起,经加热等手段,然后分析得到些什么产物,后来根据原子分子假说,有了“当量”的概念,建立了反应物与产物之间的一定联系。人们根据化学组分随条件的变化,发现了质量作用定律,引伸出化学平衡常数。运用热力学定律,人们开始掌握从热力学函数去计算化学平衡常数的方法,并且可以对化学反应的方向作出判断,诞生了化学热力学。 热力学是物理化学和热力学的一个分支学科,它主要研究物质系统在各种条件下的物理和化学变化中所伴随着的能量变化,从而对化学反应的方向和进行的程度作出准确的判断。化学热力学的核心理论有三个:所有的物质都具有能量,能量是守恒的,各种能量可以相互转化;事物总是自发地趋向于平衡态;处于平衡态的物质系统可用几个可观测量描述。化学热力学是建立在三个基本定律基础上发展起来的。热力学第一定律就是能量守恒和转化定律,它是许多科学家实验总结未来的。一般公认迈尔于1842年首先提出普遍“力”的转化和守恒的概念。焦耳1840~1860 年间用各种不同的机械生热法,进行热功当量测定,给能量守恒和转化概念以坚实的实验基础,从而使热力学第一定律得到科学界的公认。热力学第一定律给出了热和功相互转化的数量关系。为了提高热机效率,1824 年卡诺提出了著名的卡诺定理。为了进一步阐明卡诺定理,1850年克劳修斯提出热力学第二定律。1851 年开尔文认为:“不可能从单一热源取热使之完全变为有用的功而不引起其他变化”,相当于摩擦生热过程的不可逆性。除上述两种说法外,热力学第二定律还有几种不同的叙述方式,它们之间是等效的。1912年,能斯脱提出热力学第三定律,即绝对温度的零点是不可能达到的。其他科学家还提出过几种不同表述方式,其中1911 年普朗克的提法较为明确,即“与任何等温可逆过程相联系的熵变,随着温度的趋近于零而趋近于零”。这个定律非常重要,为化学平衡提供了根本性原理。吉布斯给出了热力学原理的更为完美的表述形式,用几个热力学函数来描述系统的状态,使化学变化和物理变化的描述更为方便和实用。他发表了著名的“相律”,对相平衡的研究起着重要的指导作用。20世60年代,昂萨格和普里戈金等都为热力学理论的重大进展作出杰出的贡献。热力学理论对一切物质系统都适用,具有普遍性的优点。这些理论是根据宏观现象得出的,因此称为宏观理论,也叫唯象理论。热力学所根据的基本规律就是热力学第一定律、第二定律和第三定律,从这些定律出发,用数学方法加以演绎推论,就可得到描写物质体系平衡的热力学函数及函数间的相互关系,再结合必要的热化学数据,解决化学变化、物理变化的方向和限度,这就是化学热力学的基本内容和方法。 经典热力学是宏观理论,它不依赖于物质的微观结构。分子结构理论的发展和变化,都无需修改热力学概念和理论并且它只处理平衡问题而不涉及这种平衡状态是怎样达到的,只需要知道系统的起始状态和终止状态就可得到可靠的结果,不涉及变化的细节,所以不能解决过程的速率问题。热力学理论已经解决了物质的平衡性质问题,但是关于非平衡现象,现有的理论还是初步的,有待进一步研究。热力学三大定理可谓物理化学的经典。每条定律的提出都经过了相当长的历史:热力学的基本定律之一,是能量守恒和转换定律的一种表述方式。热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。它的另一种1850 年进行的热功当

化学课改心得体会

化学课改心得体会 【篇一:化学学习心得体会】 化学外出学习心得体会 芦柞中学宋敬坤 这次化学骨干教师培训会,体现了“终身学习”“可持续发展”的教育理念。由过多关注 基础和基本技能转变为获得知识和技能的同时,更加关注学生的情感态度和价值观。因此要 克服传统的教学理念和教学模式的定势,更新教学理念,逐步走进化学新课程。 一、转变教师的教学待业,树立“以为人本”的教育理念义务教育阶段的化学课程应体现启蒙性、基础性。要面向全体学生,使他们都能得到发 展。二、改变学生的学习方式,增强“学生是学习的主人”意识。在课堂教学中,要改变学生的学习方式提倡科学探究与合作。学会交流与合作。 三、改革对学生化学学习活动评价的方法,促进学生素质的全面发展,要建立促进学生 全面发展的评价体系。评价时要发现和发展学生多方面的潜能,了解学生发展的请求,帮助 学生认识自我,建立信心。发挥评价的教育功能,培养学习活动的主动性、积极性、创新意识与创新欲望。篇二:关于化学学 习的心得和建议 关于化学学习的心得和建议化学是一门古老的学科,但是在今天它依然具有很旺盛的生命力和广阔的发展前景。学习化学,首先我认为收获的还是知识。通过学习《从化学的角度看世界》第一章,可以了解到自然界各种不同的物质往往都有着不同的性质。从第二章学到了原子的概念以及核 外电子运动的特征和排布等,还有化学键和分子结构。有趣的是,离子键可以理解成一个非 常想要送出电子的原子和一个非常想得到电子的原子结合的方式,而当两个氧原子都想要达 到8电子结构达到稳定状态时,它们会对说为什么我们不共用一些电子呢,于是它们各把自

己的两个电子放在中间共用,这样便形成了共价键。而第三章的学习,让我对化学反应有了 初步的认识,尤其是对热力学第一定律印象比较深刻。能量不能被 创造也不能被毁灭,它只 能从一种形式转化为另一种形式,这解释了生活中很多的习以为常 的现象,也正因如此永动 机是不可能存在的。在接下来的化学学习中,我相信还会有更多的 知识等待我去吸收、挖掘 和收获。 学习化学,我认为还收获的是一些跟生活息息相关的信息。比如说,三鹿奶粉事件,中 国卫生部发布消息称,石家庄生产的三鹿婴幼儿奶粉受到了三聚氰 胺的污染,可导致人体泌 尿系统产生结石。产家加入三聚氰胺是为了使检测得到的蛋白质含 量数据有所提高,从而降 低成本,获得更多的利润,这是化学用错了地方的体现。再比如说 化妆品的成分,在欧洲伊 莉莎白一世时,曾用牛奶、牛油和水果制造化妆品,也就是使用天 然的动植物油脂对皮肤作 单纯的物理防护;而如今,化妆品技术飞速发展,结合了现代化学 化工技术和生物技术,具 有抗衰老,修复受损皮肤,保护人类批发等多重效果的高科技产品。这也是化学在生活中的 应用。还有药品安全问题,药房里的针对疾病的各种药物往往是由 比较复杂的有机物合成的, 若将化学应用得当,可以造福人类,若是被私利等蒙蔽了双眼,往 往会酿成灾祸。所以说,化学是与生活分不开的,生活中处处都体 现着化学。而正因为如此,我们更应该用心学 习化学知识,并应用到实际生活中去。对于化学这门课程,我希望 它是有趣的,让我可以十分投入并且对它感兴趣,这样有利 于我更好的学习。在学习过程中,尽可能的将化学融入生活会使学 习更加得轻松易懂。其实 化学不仅仅是科学家的事,我们完全可以把化学带出课堂,比如说 做一次有趣的实验,研究

相关文档