文档库 最新最全的文档下载
当前位置:文档库 › 林德_HPV 02 E1电控闭式变量泵

林德_HPV 02 E1电控闭式变量泵

林德_HPV 02 E1电控闭式变量泵
林德_HPV 02 E1电控闭式变量泵

CY系列柱塞泵资料

出售CY系列5CY 10CY 25CY 40CY 63CY 80CY 160CY 250CY 400CY 全系列柱塞滑靴产品系列: 本厂专业生产CY14-1B系列各种定量/变量形式的轴向柱塞泵型号: (1)MCY14-1B(定量轴向柱塞泵)、 (2)SCY14-1B(手动变量轴向柱塞泵)、 (3)YCY14-1B (恒功率变量轴向柱塞泵) (4)MYCY14-1B(定级变量轴向柱塞泵) (5)PCY14-1B(恒压变量轴向柱塞泵)、 (6)BCY14-1B(电液比例变量轴向柱塞泵) 1)流量:2.5-400MCY14-1B(定量轴向柱塞泵)具体型号如下: 2.5MCY14-1B、5MCY14-1B、10MCY14-1B、16MCY14-1B、25MCY14-1B、32MCY14-1B、40MCY14-1B、63MCY14-1B、80MCY14-1B、160MCY14-1B、250MCY14-1B、400MCY14-1B;2)流量:10-400SCY14-1B(手动变量轴向柱塞泵)具体型号如下: 10SCY14-1B、16SCY14-1B、25SCY14-1B、32SCY14-1B、40SCY14-1B、63SCY14-1B、80SCY14-1B、160SCY14-1B、250SCY14-1B、400SCY14-1B;3)流量:10-400YCY14-1B(恒功率变量轴向柱塞泵)具体型号如下: 10YCY14-1B、16YCY14-1B、25YCY14-1B、32SCY14-1B、40YCY14-1B、63YCY14-1B、80YCY14-1B、160YCY14-1B、250YCY14-1B、400YCY14-1B;4)流量:10-160MYCY14-1B(定级变量轴向柱塞泵)具体型号如下: 10MYCY14-1B、16MYCY14-1B、25MYCY14-1B、32MYCY14-1B、40MYCY14-1B、63MYCY14-1B、80MYCY14-1B、160MYCY14-1B;5)流量:10-400PCY14-1B(恒压变量轴向柱塞泵)具体型号如下: 10PCY14-1B、16PCY14-1B、25PCY14-1B、32PCY14-1B、40PCY14-1B、63PCY14-1B、80PCY14-1B、160PCY14-1B、250PCY14-1B、400PCY14-1B;6)流量:25-400BCY14-1B(电液比例变量轴向柱塞泵)具体型号如下: 25BCY14-1B、63BCY14-1B、160BCY14-1B、250BCY14-1B、400BCY14-1B YCY14-1B斜盘式压力补偿变量柱塞泵/马达 工作原理 主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。压力补偿变量泵的出口流量随出口压力的大小近似地在一定范围内按恒功率曲线变化。当来自主体部分的高压油通过通道(a)、(b)、(c)进入变量壳体下腔(d)后,油液经通道(e)分别进入通道(f)和(h),当弹簧的作用力大于由油道(f)进入伺服活塞下端环形面积上的液压推力时,则油液经(h)到上腔(g),推动变量活塞向下运动,使泵的流量增加。当作用于伺服活塞下端环形面积上的液压推力大于弹簧的作用力时,则伺服活塞向上

电控单体泵供油系统的组成及工作原理

电控单体泵供油系统的组成及工作原理 黑龙江省农业机械维修研究所 王宝臣 张继伟 电控单体泵供油系统与传统的机械式喷油泵相比,在结构形式上主要有两点不同,一是每个油泵都是独立的,分别安装在发动机气缸体上,对应每个气缸,在气缸体上有安装单体泵的孔,六缸柴油机有六个单体泵(四缸柴油机有四个单体泵),这六个单体泵是由整个发动机的凸轮轴来驱动,也就是说,单体泵一般作为整体部件装在柴油机的气缸体上,由配气凸轮轴上的喷射凸轮驱动。而传统的六缸柴油机的机械式喷油泵是布置在整机缸体的外侧,通过外部托架固定在发动机缸体上,在喷油泵泵体内,有一根凸轮轴,专门驱动六套柱塞。第二点不同是电控单体泵的上部有电磁阀,电磁阀能够按照特性图谱的数据精确地控制喷射正时及喷油时间。传统的机械式喷油泵是位置控制,通过控制齿条的位置来控制油量,无法控制提前角的柔性。 单体泵的优点很多,它使燃烧更适合工况的需要,因而燃烧更充分,效率更高,降低了排气污染和燃油消耗率。它还有以下优点: (1)由凸轮轴通过挺柱驱动,结构紧凑,刚度好; (2)喷油压力可以高达116@108 Pa ;(3)较小的安装空间;(4)高压油管短,且标准化; (5)调速性能好,适用不同用途发动机,任意设定调速特性; (6)具有自排气功能;(7)换泵容易。 电控单体泵供油系统是带时间控制的模块式装置,发动机每个气缸都配有一个单独的模块,主要组件: (1)整体插入式高压泵;(2)快速作用的电磁阀;(3)较短的高压油管;(4)喷油器总成。一、燃油系统的组成 单体泵供油系统组成如图1所示:1.低压油路 柴油从柴油箱1出来,经过燃油输油泵3进入 图1 单体泵柴油供给系统组成 11柴油箱 21燃油进油管 31燃油输油泵 41滤清器前燃油管 51燃油滤清器 61滤清器后燃油管 71单体泵 81高压油管 91喷油器 101限压阀 111回油管 121回油管 131燃油箱内进回油管距离规定 柴油滤清器5过滤之后,非电控机型则进入铸在缸 体内的低压油室,回油也在此油室内,低压油室的压 力为5@105 Pa 。电控发动机柴油从柴油滤清器出来之后,从外部接头进入连接电控单体泵的金属低压油路,每个泵都单独与外面的燃油进油管连接。燃油回油通道铸在气缸体上,低压油路中压力的稳定对发动机的功率输出是至关重要的。在发动机出现功率不足的情况时,应首先测量低压油路的压力,测量位置为低压油路外部接头处。在发动机转速为 2300r /m i n 时,压力P \415@105 Pa 。 2.高压油路 低压油路内的燃油从单体泵7经过很短的高压 油管8进到喷油器9,当压力达到212@107 Pa 时,喷油器开启,将燃油呈雾状喷入到燃烧室,与空气混合而形成可燃混合气。从柴油箱到金属燃油管接头这段油路中的油压是由燃油输油泵建立的,而输油泵 在发动机额定转速下的出油压力一般为5@105 Pa 左右,故这段油路称为低压油路,只用于向单体泵供给滤清的燃油。从单体泵到喷油器这段油路中的油 压是由单体泵建立的,约为116@108 Pa 左右。

机动车污染防治行业现状及发展趋势分析

报告编号:1657500

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网https://www.wendangku.net/doc/61937653.html,基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称: 报告编号:1657500←咨询时,请说明此编号。 优惠价:¥8280 元可开具增值税专用发票 网上阅读:anFangZhiFaZhanQuShiYuCeFenXi.html 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 健康。政府部门不断出台政策加大大气污染治理力度,其中,国务院印发的《大气污染防治行动计划》:提出到2017年,全国地级及以上城市可吸入颗粒物浓度比2012年下降10%以上;京津冀、长三角、珠三角等区域细颗粒物浓度分别下降25%、20%、15%。另外,油品质量升级也规定了时间表,汽油车、柴油车尾气排放标准也不断提升。 由于柴油车排放的污染物中,颗粒物是汽油车排放的104倍,NOX是汽油车的10倍。柴油车的尾气处理很重要。目前汽油车已在全国范围实施国Ⅳ尾气排放标准,北京已经实施京Ⅴ标准,国Ⅴ标准也有望尽快实施。而柴油车国Ⅳ排放标准的执行从原先的规划2011年1月开始已经三次延迟,不断推迟主要原因之一的油品质量升级时间已经确定。所以,我们预计最快2014年下半年,柴油车国Ⅳ排放标准将实施。 据中国产业调研网发布的中国机动车污染防治项目可行性分析与发展趋势预测报告(2016版)显示,治理PM2.5将为汽车催化剂、脱硫催化剂提供广阔的市场空间。机动车是PM2.5主要来源之一,约占22%。目前国内外处理汽车污染排放最有效的技术是采用尾气催化净化方案,而以贵金属为主的三元催化剂以其优良的催化性能成为最主要的汽车尾气净化装置。随着汽油车、柴油车尾气排放标准的提升,届时将显着提升汽车催化剂需求。2013年中国净化器增长20%以上,预计在2000万套左右,预计2020年将达到4000万套。而油品质量升级,需要降低含硫量,对脱硫催化剂需求也将提升。 《中国机动车污染防治项目可行性分析与发展趋势预测报告(2016版)》在多年机动车污染防治行业研究结论的基础上,结合中国机动车污染防治行业市场的发展现状,通过资深研究团队对机动车污染防治市场各类资讯进行整理分析,并依托国家权威数据资源和长期市场监测的数据库,对机动车污染防治行业进行了全面、细致的调查研究。

K3V液压泵变量原理

液压挖掘机K3V泵的结构 主泵主要由转子部分,斜盘部分,配油盘三个部分组成。转子部分接受动力进行旋转动作,使柱塞在缸体中移动 (该装置是整体功能的主要部分)。斜盘摆动可改变排量。配油盘可转换吸油和排油。 1.转子部分 转子部分由驱动轴l、缸体1 6、柱塞5、滑履14、球形衬套24,缸体弹簧23等组成。驱动轴由轴承和滚针轴承在两端支承。后驱动轴左端与前驱动轴用花键套l 9连接,右端花键孔与伺服齿轮泵花键轴连接。这就组成了一个三联串联泵。 柱塞15的球头被滑履包住(可以转动),且有小孔将压力油输送到滑履的球面及与底盘10相接触的平面上。形成静压力轴承,碱小磨擦。 缸体弹簧23的推力将缸体1 6和配油盘18压紧。(此处为球面) 2.斜盘部分见图3—8 斜盘部分由斜盘、底板、斜盘支承、衬套、拨销和伺服活塞等组成。(参见图3—7)斜盘由斜盘支承定位,并可绕其中心摆动。当伺服活塞随调节器控制的液压油进入伺服活塞一端或两端时,斜盘经拨杆的球形部分推动使其绕斜盘支承的中心摆动改变夹角a,而改变泵的排量。 3.配油盘部分 配油盘部分(见图3—8中配油盘部分)中泵体3、配油盘1和配油盘销2组成。配油盘有两个肾形孔,一个吸油一个排油,并与中泵体上外接口相连。 4.泵的最大和最小排量调节 参见图3—7,图中前泵调节螺钉6是泵最大排量调节螺钉。当该螺钉向外松时可使伺服活塞多向右移动,使斜盘摆角增大,使泵的最大排量增加。反之,当该螺钉向内紧时,使泵的最大排量、减小。 前泵,伺服活塞左端(小头端)的螺钉,是泵的最小排量调节螺钉。当该螺钉向外松时,可以使斜盘的角度变得更小,使泵的最小排量变小。反之,当该螺钉向内紧时泵的最小排量变大。 液压挖掘机K3V泵控制原理 一,变量调节器的原理 1.1功率控制 在输入恒定转速恒定扭矩的条件下,双泵上的调节器根据串联的双泵压力载荷的总和,控制泵的斜盘角度以改变泵的流量与压力,通过变量调节阀自动控制每台泵的功率输出变化可以使发动机

变量柱塞泵

今天给大家讲讲自己对EH油泵——轴向恒压变量柱塞泵——的小小分析,由于能力有限,请大家不吝赐教。 图1 我厂EH油泵 1、图中所示是C型变量控制器的轴向柱塞恒压变量柱塞泵:所谓轴向:工作活塞的行程方向与传动轴平行,与此相对的是径向柱塞泵;所谓恒压变量:完全恒压是不可能的,流量高了,压力会有微降;流量低了,压力会有微小提高(具体多少呢,例如升负荷4号高调门打开的时候,仔细观察下泵的电机电流、EH油压力、还有就地的流量计的变化量)——但这些都是有个前提:流量在柱塞泵设定的最大流量的范围内,若是超过,嘿嘿,一泻千里,压力狂降,降得有多厉害呢,EH油管爆管,或者内漏非常严重的时候,就能观察下降多少了。附送一张性能曲线图,大家自己看看吧 图2 C型变量调压控制器的柱塞泵Q-P曲线

下面来了解下内部的结构

图3 轴向柱塞泵内部结构示意图及实物图

2、该泵通过柱塞在腔体内的反复运动进行工作,从入口吸入油,转至出口时再压出,通过改变斜盘的倾斜角可以改变流量和压力,斜盘的最大倾斜角通过最大限位调节螺钉设置。倾斜角越大,流量越高;反之,流量越低。斜盘的倾斜角还可以通过变量控制器调节 图3中最大限位调节螺钉,是调节泵的最大流量,当系统流量超出这个范围,压力就会不受控制的下降。上面的压力控制器分为C/F/L型,C型的只有下面的红色框框部分,而F/L 型则包含上面的部分。这是泵的压力控制部分。 这里的控制是个难点,我花了不少功夫研究,见下图: 图4 C型变量控制器 这是C型控制器的:1、启泵时“滑阀”在“预紧弹簧”的作用下,被压到右边,则“腔体2”内的“调节压力的控制油”和“泵体泄压油路”连通,压力低,则“腔体1”在“内部弹簧”的作用下压到最右边,泵的柱塞斜盘以最大的倾斜角开始启动。 2、启泵后,泵出口压力逐渐提高,“滑阀”右侧的油压大于“预紧弹簧”的弹力和摩擦力,逐渐把“滑阀”压向左边,“泵出口油压”和“调节压力的控制油”连通,“调节压力的控制油”压力升高,将“腔体2”压向左边,然后顶住“腔体1”向左边移动,减少斜盘的倾斜角度,泵的出口流量开始降低,压力逐渐升高,然后达到稳定的平衡。 3、当系统EH油需求量增大时(如升负荷,调门开大),EH油压的反应速度快于流量变化(这里可以这样理解,例如某个调门要开启,EH油管路突然敞开一个油路,分流走EH油,则系统油压会快速反应,先下降一点),然后“泵出口油压”降低,“滑阀”向右移动,“调节压力的控制油”也会降低,“腔体1”在弹簧的作用下也跟着向右移动,斜盘的倾斜角增大,泵出口流量增加,满足系统需求,但是压力也是会有微小下降的。

A V系列斜轴式变量柱塞泵

A7V系列斜轴式变量柱塞泵 A7V型变量柱塞泵具有压力高、体积小、重量轻、转速高、耐冲击等优点,传动轴能承受一定的径向负荷。吸油压力(开式)为0.09~0.15MPa。适用于工程机械以及轧钢、锻压、矿山、起重、船舶等各种机械的开式液压系统。它有恒功率变量(LV)、恒压(DR)、电控比例变量(EP)、液控变量(HD)、手动变量(MA)五种变量型式。 产品特点: ①斜轴式轴向柱塞变量泵,用于开式回路静压传动。流量、转速与排量成正比,在恒定转速下可实现无级变量。 ②转子与分油盘之间为球面配油,在运转中能自动对中,周速较低,效率较高,驱动轴能承受径向负荷。 订货示例: GY-A7V160LV2.0LZFOO A7V变量泵,规格160,带恒功率LV控制,2.0结构系列,逆时针旋转L。德标花键Z,侧面法兰连接,无辅助元件。 A7V2.0 5.1斜轴式轴向柱塞变量泵——结构剖视 型号说明 A7V2.0 5.1斜轴式轴向柱塞变量泵==《技术数据》

下泵转速均不得超过吸油口S在0.15MPa下的最高转速,但对Vgmin>0的规格:28-20、55-40、80-58可通过减小排量(Vg

A7V系列变量柱塞泵产品说明

SYA7V系列变量柱塞泵产品说明开式回路 规格20???500 2.0/5.1系列 额定电压高达35MPa 峰值压力为40MPa到 特征: - SYA7AO斜轴的轴向开环液压驱动计量泵。 - 作业机械或工业区 - 输出流量和驱动器的速度和位移是成正比的恒定速度无级变速。 - 多种规格,以配合实际的驱动器 - 有利的功率/重量比 - 紧凑型,经济 - 优化的容积效率 - 球形转子和点之间的油底壳油,自动操作,圆周速度低。 - 更高的效率,传动轴承受径向负荷。 Y-A7V2.1剖视图规格为20-160

SY-A7V5.1剖视图规格250至500

型号说明

技术参数:●工作压力范围: 出A口或B口压力: 额定压力---------- PN =35MPa 最大压力---------- P最大=为40MPa

吸端口S绝对压力: pabs分钟----------0.08兆帕 pabs最大----------0.2兆帕 ●油温度范围:-25℃至80℃ ●粘度范围: tmin-----------10平方毫米/ S的 tmax分别为-----------(短期)千mm/s的 最佳工作粘度:----16?25毫米2 /秒 油的选择:40号低倒液压油 ●液压油过滤器: 过滤10μm的建议,或25?40μm的 使用寿命长10微米(减少磨损) ●流动顺时针:S到B逆时针:S到一个 ●安装位置: 此端口可选,泵必须充满液压油R口塞泵安装在油箱时,应删除,应该是在顶部。 90°弯头,以减少噪音油口螺丝。 垂直安装传动轴: 这个模型必须订购的U1和U2(文字:“与出油口U1和U2)。最低液位不得低于”A“的线路如图1所示。 在油箱的顶部安装 在油箱顶部安装一个特定的安装A7V变量泵,只有在一定条件下。 1)与各种泵控制只能泵的最大摆角(Vgmax)开始。调整最小排量Vgmin的敞开式泵(Vgmin= 0泵),最小流量限位螺钉必须转移到Vmax增加最大尿流率≥5%的最低流量,以防止泵运行在零流,使吸水管排气。 2)在油箱安装上述要求的顺序文本的顶部安装在坦克“

电控高压共轨柴油发动机原理及特点

电控高压共轨柴油发动机原理及特点

前言 电控柴油发动机进入海气已有十个年头了,我们的汽车维修工还没有正确认识它。目前进入我国燃油喷射系统技术有博世、电装、德尔福等几家柴油机用电控技术来控制供油,并非想象中的那么神秘,它的发动机工作原理是一样的。我们常见电控柴油发动机均采用电控共轨或单体泵技术,其主要差异在于发动机的燃油喷射系统,发动机的外形差异不是很大,电控部分的实现、更加有利于整正性能的优化,减少排放、经济性、动力性、以及整车的舒适性等。 第一章电控发动机与普通发动机的差异 一、技术原理上的差异性。 1、高压共轨与四气门技术结合。 电控发动机目前一般采用高压共轨、四气门和涡轮增压中冷技术相结合,四气门结构(二进、二排)不仅可以提高充气效率,更由于喷油嘴可以居中布置,使多孔油未均匀分布,可为燃油和空气良好混合创造条件,同时可以在四气门缸盖上将进气道设计成两个独立的具有圆形状的结构以实现可变涡流。这些因素的协调配合,可大大提高混合气的形成质量(品质),有效降低碳烟颗粒(HC)碳氢和(NOX)氮氧化物排放,并提高热效率。 2、高压喷油和电控喷射技术。 高压喷射和电控喷射技术的有效采用,可使燃油充分雾化,各缸的燃油和空气混合达到最佳,从而降低排放,提高整车性能。 二、部件构成上的差异。 电控高压共轨技术是指在高压油泵、共轨管、压力传感器和

ECU(电脑控制)组成的闭环系统中,将喷射压力的产生和喷射过程彼此分开的一种技术。由高压油泵把高压燃油输送到共轨管,通过对共轨管内的油压进行闭环控制,喷油压力独立可调。 三、高压共轨系统的特点。 高压共轨系统改变了传统的喷油系统的组成结构,最大的特点就是将燃油压力产生和燃油喷射分离,以此对轨管内的油压实现精确控制。 1、可靠性:对轻型车来说系统零部件成熟且有长期使用考核验证,中型比较成熟。 2、继承性:结构简单,安装方便。 3、灵活性:高压共轨油压独立于发动机转速控制,整车控制功能强。 4、喷油压力:共轨管压力1600bar、普通压力180kgf/cm2。 5、多次喷油:可以实现多次喷射,目前最好的共轨系统可以进行6次喷射,共轨系统的灵活性好。 6、升级潜力:多次喷油特别是后喷能力使得共轨系统特别方便与后处理系统配合。 7、匹配适合性:结构移植方便,适应范围广,与柴油机均能很好匹配。 8、时间控制:时间控制系统抛弃了传统喷油系统的泵、管、嘴、系统,用高速电磁阀直接控制高压燃油的通与断,喷油量由电磁阀开启和切断的时间来确定,时间控制系统结构简单,将喷油量和喷油正时的控制合二为一,控制的自由度更大,同时能较大地

DDE公司电控系统说明手册

第1章一般电控系统概述 1.系统总览 电控柴油机一般由四部分组成:传感器,电子控制单元(ECU),电控燃油系统(电控单体泵系统,高压共轨系统,集成式外挂电控单体泵),线束。 2.电控发动机传感器 2.1电控系统必须有以下传感器: 大气压力传感器:检测大气压力,用于高原油量修正,集成在电子控制单元(ECU)当中; 曲轴转速传感器:检测发动机的转速和活塞上止点位置;独立完成对发动机进行转速控制和上止点判断; 凸轮轴位置传感器:检测活塞处于燃烧上止点或排气上止点位置,与曲轴转速传感器一起用于控制顺序喷油;独立完成对发动机进行转速控制和上止点判断; 油门踏板位置传感器:测量司机的主要操作意图,转换成电信号输送给电控单元; 进气压力温度传感器:测量经过中冷器后发动机进气的温度和压力值,修正空气进气量因温度变化的影响,压力值作为判断发动机处于调速状态或瞬态状态的输入信号; 燃油温度传感器:测量发动机燃油的温度值,修正喷油量因温度变化的影响,从而达到准确的喷油量; 水温传感器:测量发动机冷却液的温度值,当发动机处于低温时,给电控单元提供低温信号,以便提供额外的油量,提高目标怠速转速,确保发动机快速起动或快速预热。 2.2电控发动机还有以下可选用传感器 机油压力传感器, 3.电子控制单元ECU功能 3.1发动机功能 3.1.1起动 对于一台发动机,为确保起动的可靠性和起动烟度排放要求,喷油定时和起动扭矩必须根据以下方式设定: ●喷油定时=f(转速,喷油量,冷却液温度) ●起动扭矩=f(转速,冷却液温度,起动时间) 起动控制功能一直处于激活状态直到发动机转速超过起动结束转速,进入到怠速控制,只有到这个时候,驾驶员才能对发动机进行操作。起动停止转速由冷却液温度和大气压力决定。3.1.2低怠速 当发动机进入到怠速控制阶段,怠速控制器起作用,控制发动机的运转。怠速控制器是一个纯PID(比例-积分-微分)控制器,由该控制器保持怠速转速为一个常数。 怠速转速与冷却液温度相关,例如:在发动机温度低时的怠速转速比温度高时的转速要高,达到快速热车的效果。此外,如果油门踏板出现故障,怠速转速将提高,以保持一个驾驶者可将车辆开到维修站的最低转速。 3.1.3驾驶性控制方式 ●扭矩控制 当采用扭矩控制时,来自油门踏板的值被解释为:根据当时发动机的转速,驾驶者对车轮输出扭矩的期望值。 期望扭矩=f(油门踏板位置值,发动机转速) 该控制方式类似于两极式的机械调速器。 ●速度控制 当速度控制起作用时,来自油门踏板的值被解释为:驾驶者对转速的期望值,并且运行于

变量泵的原理及应用

1.1液压变量泵(马达)的发展简况、现状和应用 1.1.1 简述 液压变量泵及变量马达能在变量控制装置的作用下能够根据工作的需要在一定范围内调整输出特性,这一特点已被广泛地应用在众多的液压设备中,如:恒流控制、恒压控制、恒速控制、恒转矩控制、恒功率控制、功率匹配控制等。采用变量泵(马达)系统,具有显著的节能效果,近年来使用越来越广泛,而且新的结构和控制方式发展迅速,各个生产厂也在不断改进设计,用以满足液压系统自动控制的不断发展需要。 使用液压系统的目的在于可使某一执行对象以预定的速度向正反两个方向运动。此时,为调节速度需进行节流,致使能量有所损失,并导致系统效率降低,为此需采用变量泵实现容积控制。使用变量泵进行位置和速度控制时,能量损耗最小。正确地使用和调节泵的流量,可使其只排出满足负载运动速度需要的流量,而使用定量泵时只有部分流量供给负载,其余的流量需要旁通至油箱。 此外,为了在不增加管路阻力的条件下提高液压马达的速度,也有必要为减少液压马达的排量而采用变量马达。 表1-1 三大类泵的主要应用现状 图1-1 三大类泵的变量调节

1.1.2 叶片变量泵(马达)的研发历史和发展 根据密封工作容积在转子旋转一周吸、排油次数的不同,叶片泵分为两类,即完成一次吸、排油的单作用叶片泵和完成两次吸、排油的双作用叶片泵。根据叶片泵输出流量是否可调,又可分为定量叶片泵和变量叶片泵,双作用叶片泵均为定量泵。根据叶片变量泵的工作特性不同可分为限压式、恒压式和恒流量式三类,其中限压式应用较多。 恒压式变量泵一般系单作用泵。该泵的定子可以沿一定方向作平衡运动,以改变定子与转子之间的偏心距,即改变泵的流量。它的变量机能由泵内的压力反馈伺服装置控制,能自动适应负载流量的需要并维持恒定的工作压力。在工作中,还可根据要求调节其恒定压力值。因此,在使用该泵的系统中,实际工况相当于定量泵加溢流阀,且没有多余的油液从系统中流过,使能耗和温升都大大降低,缩小了泵站的体积。该泵如与比例电磁阀匹配,可以在系统中实现多工作点自动控制。 限压式变量叶片泵有内反馈式和外反馈式两种。内反馈式变量泵的操纵力来自泵本身的排油压力,外反馈式是借助于外部的反馈柱塞实现反馈的。 限压式变量叶片泵具有压力调整装置和流量调整装置。泵的输出流量可根据负载变化自动调节,当系统压力高于泵调定的压力时流量会减少,使功率损失降为最低,其输出功率与负载工作速度和负载大小相适应,具有高效、节能、安全可靠等特点,特别适用于作容积调速液压系统中的动力源。先导式带压力补偿的变量叶片泵允许根据系统要求自动调节其流量,可在满足工作要求的同时降低能耗。压力补偿的工作原理是:在先导压力作用下,被控柱塞移动,从而使泵的定子在某一位置平衡。当输出压力与先导压力相等时,定子向中心移动,并使输出流量满足工作要求。在输出流量为零的情况下,泵的输出为补偿泄漏和提供先导压力油,而系统压力保持不变。补偿器的响应时间非常短,不会产生压力超调。 叶片马达和叶片泵一样,也有单作用式和双作用式之分。由于单作用式液压马达的偏心量小,容积效率低,结构复杂,故一般所用的液压马达都是双作用式的。因此,变量叶片马达很少在工业上使用。 轴向柱塞泵(马达)的发展历史 (1)弯轴或轴向柱塞泵(马达) 这是汉斯·托马(Hans Thoma)1940年的发明。此后于1946年,他又对缸体的同步驱动进行了改进,将万向接头改为连杆方式,将阀板由平面改成球面。最近,博世力士乐(Bosch Rexroth)公司又推出了将连杆与柱塞组成一体的采用锥形柱塞(柱塞杆装在密封部上)的改进型式。该发明自问世以来60多年间内不断进行改进,现在已经成为各领域最广泛应用的产品。 目前只有博世力士乐公司生产变量弯轴泵,主要品种有A7V系列,排量为20~1000mL/r,最高压力为35MPa,变量角为18°。该公司还开发了A7VO系列泵,该泵为锥形连杆活塞式,排量为28~1000mL/r,最高压力为40MPa。 在A7V和A7VO基础上,博世力士乐公司还开发了A6V和A6VM变量马达。此外,

欧3道依茨(DEUTZ)电控单体泵电控发动机培训教材

道依茨(DEUTZ)电控单体泵电控发动机 一、基本原理(包括系统,ECU,传感器,机械部分) 1.1、电控单体泵系统简介 道依茨电控单体泵系统是一个新型的全电子控制柴油机燃油喷射系统,它不再采用机械调速器(没有齿杆装置),而是通过控制电控单体泵上的电磁阀实现喷油量和喷油定时的控制。该电控系统采用的是第二代时间控制方式,与采用位置控制的第一代电子喷射控制相比,具有响应速度快、控制精度高等优点。并且电子控制单元(ECU)EDC16采用扭矩控制策略,可以灵活地控制发动机输出扭矩,更好地满足整车动力的需求。因此,该系统能够满足国家第三阶段(欧3)及后续的排放法规的要求。

1.2、电控单体泵系统组成 电控单体泵系统组成如下图所示: 电控单体泵系统可大体地划分为两个部分: ●燃油系统:低压油路、喷射模块; ●电控系统:电控单元(ECU)、传感器,以及线束。 1.2.1燃油系统

1.2.1.1 低压油路 如下图所示,包括油箱、两级燃油滤清器(其中初燃油滤清器需带手油泵)、输油泵、溢流阀(在发动机缸体上),以及低压管路。其作用是以一定的压力输送燃油。 1.2.1.2 喷射模块 如下图所示,包括电控单体泵、机械喷油器,以及短的高压油管。其作用是将一定量的燃油在非常精确的时刻以极高的压力喷射到燃烧室中。

道依茨电控单体泵是直接安装在发动机的缸体上,由发动机凸轮轴驱动,因此,整个系统刚度高、单体泵很容易拆装,便于维修更换。

1.2.2 电控系统 如下图所示,包括电控系统的核心部件:电控单元(ECU),各种传感器:曲轴转速传感器、凸轮轴转速传感器、进气温度压力传感器、冷却水温度传感器、燃油温度传感器、机油压力传感器(可选)、油门踏板位置传感器、大气压力传感器(安装在ECU内部),以及将它们连接起来的线束。其作用是ECU根据各传感器提供的信息,如油门踏板位置、发动机转速等,计算发动机输出的扭矩、喷油量、供油开始时刻、供油持续期等,进而通过控制电控单体泵的电磁阀的通断电,实现最终喷射。

德尔福产品及服务解决方案事业部

德尔福产品及服务解决方案事业部 篇一:德尔福 德尔福是全球领先的汽车与汽车电子零部件及系统技术供应商。其产品系列包括动力、推进、热交换、内饰、电气、电子及安全系统等,这些产品几乎涵盖了现代汽车零部件工业的主要领域,为客户提供全面的产品与系统解决方案。 德尔福公司的总部位于美国密歇根州特洛伊市,并在法国巴黎、日本东京、巴西圣保罗设有地区性总部。德尔福全球现约有18万4千名员工,在全球40个国家有167个独资制造企业,42个合资企业,53个客户服务中心和营业处,及33个技术中心。XX年德尔福全球销售额突破了287亿美元,位居全球汽车零部件行业领先地位。 德尔福于1999年10月起正式涉足汽车售后市场领域,将其逾100年的汽车配件生产经验带到售后市场上。时至今日,德尔福售后市场的红色徽标已经成为业界强大的汽车售后产品和服务的标志。 德尔福借助自身强大的技术后盾和为整车客户服务的丰富经验及精湛技术,为售后市场提供一系列久经市场考验的产品,同时为客户不断推出新的产品和服务。 德尔福产品及服务解决方案事业部的亚太区总部设在中国上海,并在日本、韩国、澳大利亚、东南亚及印度发展售后市场业务。

德尔福在中国: 德尔福1993年进入中国,并立足在中国长期发展。目前,德尔福在华企业的投资已超过5亿美元,设有十四家合资和独资企业,包括一家控股公司、一家全球研发中心、一家技术服务中心、一家贸易公司和十家制造型企业,在华员工总数超过8000人。德尔福的在华正式运营的企业都已通过ISO9001和QS9000质量认证。 德尔福遵循积极引进先进技术实现本地化的原则,向中国的汽车工业提供广泛多样的产品和系统。目前在中国生产和销售的40多个系列产品中包括:动力总成系统、电子/电气系统、电子系统、安全系统、转向系统、热交换系统等。这些产品大都实现了本地化生产。 德尔福将陆续向售后市场供应的产品包括汽车电子、热交换系统、柴油系统、制动系统、底盘系统及保养服务类产品等。“通过提供有强大的生产布局基础的德尔福产品,我们将把德尔福超过百年的原配套供应经验带到售后市场,”司徒先生说。 德尔福贸易(上海)有限公司还将向正在国内布局的德尔福柴油服务中心提供燃油系统零部件产品,包括共轨系统、电控单体泵系统、转子泵及其零件、喷油器和滤清器等。除此之外,德尔福还将为德尔福柴油服务中心提供最新技术的培训。

变量柱塞泵知识讲解

变量柱塞泵

变量柱塞泵 1、变量柱塞泵概述及工作原理 变量柱塞泵的压力油经泵体、泵壳变量壳体中的通油孔通过单向阀进入变量壳体的下腔,当拉杆向下运动时,推动伺服活塞向下移动,伺服阀的上阀口打开,变量壳体下腔的压力油经变量活塞中的通油孔进入变量壳体上腔,由于上腔面积大于下腔,液压力推动活塞向下运动,带动销轴使变量头绕钢球中心旋转,改变变量头的倾斜角(增大),柱塞泵的流量随之增大。反之拉杆向上运动,变量头的倾斜角向相反方向变化,泵的流量也随之变化。当倾斜角度变至零以后,则变量头向负偏角方向变化,液流产生换向,泵的进出油口变换。编 2、变量柱塞泵常见故障 1.液压泵输出流量不足或不输出油液 (1)吸入量不足。原因是吸油管路上的阻力过大或补油量不足。如泵的转速过大,油箱中液面过低,进油管漏气,滤油器堵塞等。 (2)泄漏量过大。原因是泵的间隙过大,密封不良造成。如配油盘被金属碎片、铁屑等划伤,端面漏油;变量机构中的单向阀密封面配合不好,泵体和配油盘的支承面有砂眼或研痕等。可以通过检查泵体内液压油中混杂的异物判别泵被损坏的部位。(3)倾斜盘倾角太小,泵的排量少,这需要调节变量活塞,增加斜盘倾角。 2.中位时排油量不为零

变量式轴向柱塞泵的斜盘倾角为零时称为中位,此时泵的输出流量应为零。但有时会出现中位偏离调整机构中点的现象,在中点时仍有流量输出。其原因是控制器的位置偏离、松动或损伤,需要重新调零、紧固或更换。泵的角度维持力不够、倾斜角耳轴磨损也会产生这种现象。 3.输出流量波动 输出流量波动与很多因素有关。对变量泵可以认为是变量机构的控制不佳造成,如异物进入变量机构,在控制活塞上划出阶痕、磨痕、伤痕等,造成控制活塞运动不稳定。由于放大器能量不足或零件损坏、含有弹簧的控制活塞的阻尼器效能差,都会造成控制活塞运动不稳定。流量不稳定又往往伴随着压力波动。这类故障一般要拆开液压泵,更换受损零部件,加大阻尼,提高弹簧刚度和控制压力等。 4.输出压力异常 泵的输出压力是由负载决定的,与输入转矩近似成正比。输出压力异常有两种故障。(1)输出压力过低 当泵在自吸状态下,若进油管路漏气或系统中液压缸、单向阀、换向阀等有较大的泄漏,均会使压力升不上去。这需要找出漏气处,紧固、更换密封件,即可提高压力。溢流阀有故障或调整压力低,系统压力也上不去,应重新调整压力或检修溢流阀。如果液压泵的缸体与配流盘产生偏差造成大量泄漏,严重时,缸体可能破裂,则应重新研磨配合面或更换液压泵; (2)输出压力过高若回路负载持续上升,泵的压力也持续上升,当属正常。若负载一定,泵的压力超过负载所需压力值,则应检查泵以外的液压元

PVH变量柱塞泵使用说明书

PVH变量柱塞泵使用说明书 PVP柱塞泵是一种大流量、高性能的变量直轴式柱塞泵。在汽轮机DEH控制系统中,它作为高压供油装置中的主要动力元件,可为系统提供稳定、充足的液压动力油。 1工作原理 PVH柱塞泵采用的是斜盘直轴结构(如图1所示), 图1 泵中的缸体由驱动轴通过电机驱动,装在缸体孔中的柱塞连着柱塞滑靴和滑靴压板,所以滑靴顶在斜盘上。当缸体转动时,柱塞滑靴沿斜盘滑动,使柱塞沿平行于缸体的旋转轴线作往复运动。配流盘上的油

口布置成当柱塞被拉出时掠过进口,当柱塞被推入时掠过出口。泵的排量取决于柱塞的尺寸、数量及行程。而柱塞行程则取决于斜盘倾角。改变斜盘倾角可加大或减小柱塞行程。斜盘倾角可用下述任何一种方法调整,如手动控制、伺服控制、压力补偿控制及负载传感加限压器控制等。图1所示即为压力补偿器控制的泵。 2压力补偿器控制工作原理 压力补偿器工作原理如图2所示。 图2 该补偿器包括一个壳体,内含控制阀芯、加载弹簧、端盘和加载弹簧机构。通过调整加载弹簧的预紧力,可以确定泵的设定压力。 系统压力(泵出口压力)作用于控制阀芯的左端,只要系统压力低于加载弹簧设定值,控制阀芯就被弹簧推向左端,从而使得伺服活塞连接于泵体泄油口,伺服弹簧则把泵保持于全排量。当泵出口压力升高到设定压力时,控制阀芯克服弹簧力向右端移动,使伺服活塞连接于泵的压力进口。该压力克服伺服弹簧力使伺服活塞移动并减小泵

的斜盘倾角。随着系统压力升高斜盘倾角减小从而减小柱塞行程直到泵的输出流量减小到刚好把系统压力维持于设定值所需要的流量。 3 技术参数(PVP74) 3.1最大排量: 74cc/REW 3.2最大流量:约100l/min(电机转速1450r/min) 3.3压力范围: 1050-3625PSI(70-250Par) 3.4 转向:顺时针(从轴端看) 3.5密封材料:氟橡胶 3.6带可调排量止档(出厂时已设定为最大) 3.7 驱动电机功率: 30KW 4 注意事项 4.1 严禁在无油和空吸状况下启泵。 4.2 首次启泵前应按泵的旋转方向手动旋转油泵,排出吸油泵芯内的空气。 4.3 首次启泵时,应先点动电机,确认泵的转向正确(从电机端看为顺时针方向)。 4.4 油温低于18℃严禁启泵。 4.5 进入油泵的液压油,油温低于60℃。 4.6 油泵启动前液压管路及油箱内液压油清洁度应优于ISO标准17/14级或NAS标准8级。 4.7油泵应在卸荷状况下启动。

电控单体泵系统工作原理

电控单体泵系统工作原理 电控单体泵系统工作原理 电控单体泵系统喷射模块的内部结构如下图所示:单体泵通常装在发动机缸体上,通过滚轮由发动机 凸轮轴上的凸轮驱动挺柱体,柱塞回位弹簧相对发动机凸轮轴压紧滚轮,挺柱体使泵体中的柱塞上下运动,燃油通过内装在发动机缸体内的输油口注入泵中的柱塞腔。 工作原理:电控单体泵喷射系统的工作过程分为以下几个阶段:单体泵电磁阀安装在单体泵的上部,电磁阀断电时,回油道打开,单体泵内的柱塞即使已开始泵油,也不能建立高压,只有当电磁阀通电时,回油油道关闭,油压才迅速升高;高压燃油经过高压油管进入喷油器使其喷油。电磁阀断电时,回油油道打开,迅速溢流卸压,喷油停止。电磁阀通电的持续时间决定了循环供油量。 充油过程:电磁阀不通电,当柱塞下移时,喷射系统内部压力将低于低压油路的喷油压力,此时低压系统燃油将通过柱塞套上的进油口进入高压喷射系统。 旁通过程:当柱塞上升时,柱塞腔里的燃油被压缩,但是如果电磁阀仍处于断电状态,那么柱塞腔里的燃油压力将由回油溢流阀的开启压力决定,远低于喷油器的开启压力,这样燃油将通过回油通道流回到油箱。 喷射过程:柱塞上升过程中,如果电控单元(ECU)在某个特定时刻发出了一个控制喷油脉冲信号,使电磁阀通电,这时回油通道被关闭,柱塞腔形成了一封闭容积,随着柱塞上升,封闭容积里的燃油被压缩,压力迅速上升,并且喷油器的嘴端压力也急剧上升,当压力高于喷油器的开启压力(约300bar)时,喷油器打开,燃油喷到燃烧室中。最高喷射压力可达1800bar。 卸荷过程:当控制喷油脉冲信号终止时,电磁阀断电,回油通道重新打开,燃油由此溢流,柱塞腔以及喷嘴压力迅速下降,喷嘴闭合,喷射过程结束。

德尔福单体泵故障闪码

发动机故障指示灯(2005-1-3) ①指示灯的位置,暗亮和强亮的说明 发动机故障指示灯位于驾驶室前面板处,在无故障的情况下,故障指示灯应该为暗亮或不亮,在发动机发生故障的时候故障指示灯为强亮。 ②故障指示灯亮的故障情况列表

0653 油门5V参考电压超高限故障1612 ERC2通信率过低 0654 转速表低端驱动开路1651 红色停止灯低端驱动对地短路0666 ECU温度不合理1652 红色停止灯低端驱动对电源短路0668 ECU温度超低限1656 转速表低端驱动对地短路 0669 ECU温度超高限1657 转速表低端驱动对电源短路0685 电源继电器故障1658 硬件看门狗故障 0698 增压压力5V参考电压超低限2106 油门故障导致limp home 模式0699 增压压力5V参考电压超高限2135 油门信号不合理故障 0691 冷却风扇低驱动对地短路2147 单体泵驱动电压过低 0692 冷却风扇驱动对电源短路2148 单体泵驱动电压过高 1107 增压压力传感器信号不合理—偏低2229 环境压力传感器信号超高限1108 增压压力传感器信号不合理—偏高2228 环境压力传感器信号超低限1229 电磁阀1开路C001 CAN1通讯故障 1230 电磁阀1短路D001 CAN2通讯故障 ③如何读故障码(如何指令控制器输出,如何读码) 1、进入故障模式 故障码的读取有两种方法,一种是使用专用的故障诊断工具(包括手持式的和PC-based)进行读取,另外一种是在在没有诊断仪的情况下,通过使故障指示灯按照一定频率的闪烁来读取故障码,本手册主要介绍后面一种故障码的读取方法。 为了使故障指示灯开始闪烁,首先要让电控单元内的程序进入故障诊断模式;进入故障模式的方法很简单,只需把点火开关置于ON档(使电控单元上电),注意不要起动发动机,然后把怠速使能开关置于ON的位置,这样就进入了故障诊断模式。进入诊断模式后,电控单元就会把当前存在的故障通过故障指示灯来闪烁输出,供维修人员识别读取。 2、故障码闪烁输出 本电控系统的故障码是由四位16进制数字组成的,故障码的输出首先是把故障码的每一位都转化为二进制码,然后一位一位的闪烁输出,下图是一个例子,图中所表示的是要输出0x0113的故障码,图中的时间延迟在表一中给出了具体的定义及其数值。 在进入故障模式后,故障指示灯会自动连续的闪烁来输出故障码,直到把所有当前的故障码都输出完毕为止。当所有的故障码都输出一遍之后,如果要进行再一次读取,可以关闭怠速使能开关,然后再次打开即可。 故障码故障描述故障码故障描述

AR系列变量柱塞泵

M O Spool Control Piston Pivot Journal Bearing Shaft Yoke Slipper Retainer Piston Ass'y Spring Cylinder Block Port Plate Flow Adj. Screw Pressure Adj. Screw Pressure Compensator Valve Graphic Symbol A16,32 Design 263.5(10.37)Fully Extended 240(9.45)Fully Extended 130(5.188(7.187(7.36)190(7.48)AR16,20 Design Drain Port 3 Up to 16 MPa (2320 PSI), 22.2 cm /rev (1.35 CU.IN./rev) No.1 "AR" SERIES PISTON PUMPS Variable Displacement-Single Pumps Pressure Compensator Type,AR16 / AR22-FR01Pub. EC-0104 Smaller in Size and Lighter in Mass As indicated in the dimensional comparison presented below, the AR16 is smaller than the A16 (32 design). Also, the mass of AR16 is substantially lighter than the A 16.Features Low Noise The noise level of AR16 has been reduced by 1-2 dB (A) at full flow and full cut-off compared with that of the excellent A16 quiet pump. [Comparison of "AR16" with "A16"] DIMENSIONS I N MILLIMETRES (INCHES)

相关文档
相关文档 最新文档