文档库 最新最全的文档下载
当前位置:文档库 › 数值分析教案

数值分析教案

数值分析教案
数值分析教案

数值分析教案

土建学院

工程力学系

2014年2月

一、课程基本信息

1、课程英文名称:Numerical Analysis

2、课程类别:专业基础课程

3、课程学时:总学时32

4、学分:2

5、先修课程:《高等数学》、《线性代数》、《C 语言》

6、适用专业:工程力学

二、课程的目的与任务:

数值分析是工程力学专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。

三、课程的基本要求:

1.掌握数值分析的常用的基本的数值计算方法

2.掌握数值分析的基本理论、分析方法和原理

3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力

4.了解科学计算的发展方向和应用前景

四、教学内容、要求及学时分配:

(一) 理论教学:

引论(2学时)

第一讲(1-2节)

1.教学内容:

数值分析(计算方法)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。

2.重点难点:

算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标:

了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

A 算法

B误差

典型例题

第一章插值方法(4学时)

第二讲(3-4节)

1.教学内容:

代数插值多项式的存在唯一性;Lagrange插值及其误差估计。差商、差分的概念与性质,Newton插值公式及其余项。

2.重点难点:

Lagrange插值基函数、插值公式的构造、插值余项。差商表、差分表,Newton插值公式的构造。

3.教学目标:

了解插值问题的背景及提法、代数插值多项式的存在唯一性;掌握Lagrange插值基函数及其构造法。

1.问题的提出

2.拉格朗日查值公式

3.插值余项

典型例题

第三讲(5-6节)

教学内容:

重点难点:

差商表、差分表,Newton插值公式的构造。

教学目标:

理解差商、差分的定义及其性质,掌握Newton插值公式及其余项。

4.牛顿插值公式

5.埃尔米特插值

典型例题

第四讲(7-8节)

1.教学内容:

曲线拟合的概念、直线拟合、多项式拟合、正则方程组。

2.重点难点:

拟合曲线的类型、正则方程组的建立、拟合多项式的求解。

3.教学目标:

了解曲线拟合的概念、对给出的一组数据点,能判断其拟合曲线的类型、建立相应的正则方程组、求得拟合多项式

6.曲线拟合的最小二乘法

典型例题

第二章数值积分与数值微分(6学时)

第五讲(9-10节)

1.教学内容:

代数精度的概念、插值型的求积公式、牛顿-柯特斯公式、数值积分的误差估计。

2.重点难点:

代数精度的概念、插值型的求积公式、牛顿-柯特斯公式、数值积分的误差估计。

3.教学目标:

了解代数精度的概念、掌握插值型的求积公式、牛顿-柯特斯公式;对给出的一组数据点,能正确使用插值型的求积公式、牛顿-柯特斯公式进行数值计算,并能够进行误差分析。

1.机械求积

2.牛顿—柯特斯公式

典型例题

第六讲(11-12节)

1.教学内容:

梯形法的递推化、龙贝格公式、龙贝格算法程序设计

2.重点难点:

龙贝格算法的思想、龙贝格算法加速的过程、龙贝格算法程序设计

3.教学目标:

了解梯形法的递推化的方法、掌握龙贝格算法的加速过程、能利用变步长的梯形法和龙贝格公式计算实际问题、编写龙贝格算法程序

3.龙贝格算法

典型例题

第七讲(13-14节)

1.教学内容:

通过对高斯公式的定义的讲解,介绍什么是高斯公式、什么是高斯点、什么是高斯求积系数;然后对高斯点的基本特性进行分析分析,推导出节点是高斯点的充分必要条件,从而引导出几种求高斯点的方法及勒让德多项式。

从微分的定义出发,用差商引导出几个微分的数值方法;再对中心差商公式,介绍一种加速的方法;然后利用插值公式,推导出插值型的数值微分公式并进行误差估计。

2.重点难点:

高斯点的基本特性、正交多项式、高斯点的计算

3.教学目标:

理解高斯公式的定义、掌握高斯点的基本特性、能利用梯形法的递推化的方法、掌握龙贝格算法的加速过程、能利用勒让德多项式得出几个低阶的高斯公式并能利用高斯公式解决实际问题。了解差商公式及插值型求导公式,并能利用它们进行数值微分的计算。

4.高斯公式

5.数值微分

典型例题

第三章常微分方程数值解(4学时)

第八讲(15-16节)

1.教学内容:

Euler方法:Euler公式,单步显式公式极其局部截断误差;后退Euler公式,单步隐式公式极其局部截断误差;梯形公式,预测校正公式与改进Euler公式。

2.重点难点:

Euler公式,预测校正公式与改进Euler公式

3.教学目标:

了解欧拉方法的几何意义、对给出的初值问题,能利用Euler公式,改进Euler公式进行微分方程数值求解

1.欧拉法

2.改进欧拉法

典型例题

第九讲(17-18节)

1.教学内容:

龙格-库塔方法:龙格-库塔方法的设计思想、二阶龙格-库塔方法、三阶龙格-库塔方法、四阶龙格-库塔方法、变步长的龙格-库塔方法;亚当姆斯方法:亚当姆斯格式、亚当姆斯预报-效正系统、误差分析。

2.重点难点:

龙格-库塔方法的设计思想;各阶龙格-库塔方法系数的确定。

3.教学目标:

理解龙格-库塔方法的设计思想,熟悉二阶龙格-库塔方法的推导,能利用龙格-库塔方法进行微分方程数值求解。了解亚当姆斯格式。

3.龙格—库塔法

4.亚当姆斯

典型例题

第四章方程求根的迭代法(4学时)

第十讲(19-20节)

1.教学内容:

首先,简单介绍二分法;然后讲解迭代法的设计思想、通过对同一方程的不同迭代格式的计算结果的分析,推导出迭代收敛性定理及局部迭代迭代收敛性定理。然后对收敛速度进行分析。讲解迭代加速的方法,并介绍埃特金加速算法的程序设计。

2.重点难点:

牛顿迭代法及局部收敛性、迭代法及收敛性定理

3.教学目标:

了解欧拉方法的几何意义、对给出的初值问题,能利用Euler公式,改进Euler公式进行数值求解

1.二分法

2.迭代法的概念

典型例题

第十一讲(21-22节)

1.教学内容:

首先介绍牛顿迭代公式及其几何意义,分析其收敛速度;然后利用牛顿迭代公式推导出开方公式,并分析其收敛速度;讲解牛顿下山法的基本思想及下山因子的选取。最后介绍牛顿迭代法的程序设计。

2.重点难点:

牛顿迭代法及局部收敛性、牛顿下山法及下山因子的选取

3.教学目标:

掌握牛顿迭代法,能利用牛顿迭代法进行方程求根的数值计算。并能够编制相应的应用程序。

3.牛顿法

典型例题

第五章线性方程组的迭代法(2学时)

第十二讲(23-24节)

1.教学内容:

首先通过例子介绍解线性方程组的迭代法的基本思想;然后介绍雅可比迭代公式及其程序设计;介绍高斯-塞德尔迭代公式;超松驰迭代法及其程序设计;以及迭代公式的矩阵表示。

2.重点难点:

雅可比迭代法、高斯—塞德尔迭代法、超松驰迭代法

3.教学目标:

掌握三种迭代公式,能利用这三种迭代公式进行线性方程组的迭代求解,并编制相应的应用程序。

1.雅可比迭代法

2.高斯—塞德尔迭代法

3.超松驰迭代法

典型例题

第六章线性方程组的直接法(4学时)

第十三讲(25-26节)

1.教学内容:

线性方程组的消去法、Gauss消去法及其Gauss列主元素消去法的计算过程;三种消去法的程序设计。

2.重点难点:

约当消去法,Gauss消去法,Gauss列主元素消去法

3.教学目标:

了解线性方程组的解法;掌握约当消去法、Gauss消去法、Gauss列主元素消去的基本思想;能利用这三种消去法对线性方程组进行求解,并编制相应的应用程序。

1、约当消去法

2、Gauss消去法

3、Gauss列主元素消去法

典型例题

第十四讲(27-28节)

1.教学内容:

三对角方程组及其解的唯一性定理、追赶法的计算公式、追赶法的代数基础。

2.重点难点:

唯一性定理、追赶法的计算公式、追赶法的代数基础

3.教学目标:

了解追赶法的基本思想、掌握追赶法的计算公式,能运用追赶法对线性方程组进行求解。

1、三对角方程组

2、追赶法的计算公式

3、追赶法的代数基础

典型例题

第十五讲(29-30节)

总复习

(二) 实验教学:

实验一、二 插值方法(4学时)

(1) 实验目的:

(1) 学会拉格朗日插值、牛顿插值等基本方法 (2) 设计出相应的算法,编制相应的函数子程序 (3) 会用这些函数解决实际问题

2.实验内容

(1)设计拉格朗日插值算法,编制并调试相应的函数子程序 (2)设计牛顿插值算法,编制并调试相应的函数子程序

(4)已知,

,,392411===用牛顿插值公式求5的近似值。 3.实验原理

写出本次实验所用算法的算法步骤叙述或画出算法程序框图 4.实验环境及实验文件存档名

写出实验环境及实验文件存档名 4. 实验结果及分析

输出计算结果,CPU 时间,结果分析和小结等。

实验三 数值微积分(2学时)

1.实验目的:

(1)学会复化梯形、复化辛浦生求积公式的应用 (2)学会数值微分方法的应用

(3)设计出相应的算法,编制相应的函数子程序 (4)会用这些函数解决实际问题

2.实验内容

(1)设计复化梯形公式求积算法,编制并调试相应的函数子程序 (2)设计复化辛浦生求积算法,编制并调试相应的函数子程序 (3)设计一种数值微分算法,编制并调试相应的函数子程序 (4)分别用复化梯形公式和复化辛浦生公式计算定积分

?10

sin dx x

x

取n=2,4,8,16,精确解为0.9460831

3、 实验原理

写出本次实验所用算法的算法步骤叙述或画出算法程序框图 4.实验环境及实验文件存档名

写出实验环境及实验文件存档名

5.实验结果及分析

输出计算结果,CPU时间,结果分析和小结等。

实验四估计水塔的水流量(2学时)

1.实验目的:

(1)学会对实际问题的分析方法

(2)学会利用所学的知识解决实际问题

(3)设计出相应的算法,编制相应的应用程序

2.实验内容

某居民区,其自来水是有一个圆柱形水塔提供,水塔高12.2m,塔的直径为17.4m,水塔是由水泵根据水塔中的水位自动加水,一般水泵每天工作两次。按照设计,当水塔中的水位降低至最低水位,约8.2m时,水泵自动启动加水。当水位升至最高水位,约10.8m时,水泵停止工作。

下表给出了某一天的测量记录,测量了28个时刻的数据,但由于水泵正向水塔供水,

3、实验原理

写出本次实验所用算法的算法步骤叙述或画出算法程序框图

4.实验环境及实验文件存档名

写出实验环境及实验文件存档名

6.实验结果及分析

输出计算结果,CPU时间,结果分析和小结等。

实验五常微分方程的数值解法(2学时)

1.实验目的:

(1)学会显式欧拉公式的使用

(2)学会二阶龙格-库塔方法的使用

(3)设计出相应的算法,编制相应的函数子程序

(4)会用这些函数解决实际问题

2.实验内容

(1)分别取h=0.05,N=10;h=0.025,N=20;h=0.01,N=50,用显式欧拉方法求

解微分方程初值问题:y’=-50y,y(0)=10

(2)某跳伞者在t=0时刻从飞机上跳出,假设初始时刻的垂直速度为0,且跳伞者垂直下落。已知空气阻力为F=cv 2,其中c 为常数,v 为垂直速度,向下方方向为正。写出此跳伞者的速度满足的微分方程;若此跳伞者的质量为M=70kg ,且已知c=0.27kg/m ,利用二阶龙格-库塔公式计算t<=20s 的速度(取h=0.1s ) 3、 实验原理

写出本次实验所用算法的算法步骤叙述或画出算法程序框图 4.实验环境及实验文件存档名

写出实验环境及实验文件存档名 4、 实验结果及分析

输出计算结果,CPU 时间,结果分析和小结等。

实验六 线性方程组的数值解法(2学时)

1.实验目的:

(1)熟悉用高斯消去法求解线性方程组的过程 (2)熟悉用超松弛迭代法求解线性方程组的过程 (3)设计出相应的算法,编制相应的函数子程序

2.实验内容

分别用高斯消去法求、超松弛迭代法求解线性方程组

?????

???????-=????????????????????????------7251013914443211312433010

24321x x x x 3、 实验原理

写出本次实验所用算法的算法步骤叙述或画出算法程序框图 4.实验环境及实验文件存档名

写出实验环境及实验文件存档名 5、 实验结果及分析

输出计算结果,CPU 时间,结果分析和小结等。

用计算器求超越方程数值解的几个简单有趣的例子

用计算器求超越方程数值解的几个简单有趣的例子 孟也清(原创)REV1.02 01052013 很显然,这些超越方程都可以编个简单程序解决,但这里说的是仅使用普通函数计算器, JUST FOR FUN! 解方程1 X=Cos(X) 这可能是世界上最简单的用函数计算器迭代方式解超越方程的例子了,只要你连续按函数计算器上的COS键。第一个近似解可以是计算器上显示的任何数字,如一开机为0就可按键,或是99999999都无所谓,因为COS是周期函数,所有数字都会以2π为模。 按键若干次后你就看到那个解趋近你使用的计算器的最高精度。 在8位计算器上得到X=0.7390851,约按键50次, 在10位计算器上得到X=0.739085133,约按键52次, 在Windows上的32位计算器上为X=0.73908513321516064165531208767387,约按键200次。 注意上面X是弧度 若X是“度“则收敛更快, 仅10次即可得到32位解X=0.9998477415310881129598107686798 解方程2 X= - LOG(X) 见下图,蓝色为y=log(x), 紫色为y=-x, 交点约为X=0.4 若用X取对数再取正值后再迭代,其过程发散。 所以这样解, 将两次相近的解的几何平均值代回去迭代。有弦位法的意思。 X0=0.4 X1’=-Log(X0) =0.39794 X1=(X0+X1’)/2=0.39897 经过10次迭代可得到 X10=0.399012978260252 用几何平均值代回去迭代,也是10次,因为Xn范围很小。 1

解方程3 X=10LOG(X) 若X为功率,而10LOG(X)表示dBm,则在数值上有两个点它们是相等的。 即求解方程X=10LOG(X)的两个解。 见下图,蓝色为y=x, 紫色为y=10log(x), 交点2约为X=10,y=10LOG(10)=10,此点可用直接迭代求出,但收敛速度不很快。 交点1约为X=1.4,此点用直接迭代或上面平均值迭代均发散,反而在计算器上用凑数法比较快,为1.371288573~4 当然可考虑牛顿法(切线法)切线法似乎也会发散。弦位法应可以,没试过。 2

数值计算引论第4章答案

思考题: 1. (b) 错 (Newton Cotes 点多了就不是好条件了) (c) 错 (d)错 2. 不会,需要用复化公式 习题: 2. 确定下列数值积分公式中的参数,使它具有尽可能高的代数精度 (1) ()()()()1010h h f x dx A f h A f A f h ??≈?++∫ 解 令 ()1f x = ()2h h f x dx h ?=∫ 故()()()10110102A f h A f A f h A A A h ???++=++= 令()f x x = ()0h h f x dx ?=∫ 故 ()()()1011100A f h A f A f h A h A h ???++=?+= 令()2f x x = ()323 h h f x dx h ?=∫ 故 ()()()22310111203 A f h A f A f h A h A h h ???++=?+= 联立上面三式得 11014 33 A A h A h ?=== (2) 同理:11028 33 A A h A h ?=== (3) ()()()()1 1211233f x dx f f x f x ?≈?++????∫ 解 令 ()1f x = ()112f x dx ?=∫ 故 ()12332++= 令()f x x = ()1 10f x dx ?=∫ 故 121230x x ?++= 令()2 f x x = ()1123f x dx ?=∫ 故 2212213x x ++= 联立上面二式得 115x ±= 2315 x =?

(4) ()()()()()1234b a f x dx f a f b f a f b ωωωω′′≈+++∫ 解 令 ()1f x = ()b a f x dx b a =?∫ 故12b a ωω+=? 令()f x x = ()()2212b a f x dx b a =?∫ 故 ()22123412 a b b a ωωωω+++= ? 令()2f x x = ()()3313 b a f x dx b a =?∫ 故 ()223312341223 a b a b b a ωωωω+++=? 令()3f x x = ()()4414 b a f x dx b a =?∫ 故 ()33224412341334a b a b b a ωωωω+++=? 联立上面四式得 ()()()122122 233333224441110021112233314b a b a a b a b a b b a a b a b b a ωωωω?????????????????????????=???????????????????????? 或者能解出具体的值也可以。 3. 略 6. 证明 ( )(( )1 1158059f x dx f f f ???≈++??∫ 解 令 ()1f x = ()112f x dx ?=∫ 故(( )[]115805585299 f f f ??++=++=?? 令()f x x = ()110f x dx ?=∫ 故 ( 1580509 ?×+×+=? 令()2f x x = ()1123 f x dx ?=∫ 故 ( 2212580593??×+×+×=????

数值分析教案 ShandongUniversity

数值分析教案土建学院 工程力学系 2014年2月

一、课程基本信息 1、课程英文名称:Numerical Analysis 1 2、课程类别:专业基础课程 3、课程学时:总学时32 4、学分:2 5、先修课程:《高等数学》、《线性代数》、《C 语言》 6、适用专业:工程力学 二、课程的目的与任务: 数值分析是工程力学专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握数值分析的常用的基本的数值计算方法 2.掌握数值分析的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 数值分析(计算方法)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。 2 A 算法 B误差 典型例题

数值分析

数值分析上机报告

前言 随着计算机技术的高速发展,越来越多的科技工作者使用计算机进行科学研究和解决工程技术问题。数值分析(或计算方法)课程的内容是科学工程计算的必备知识,已经成为众多理工科大学生、研究生的必修课程,越来越受到重视。 由于工程实际中所遇到的数学模型求解过程迭代次数很多,计算量很大,所以需要借助很多编程软件来解决,得到一个满足误差限的解。本文所计算题目,均采用C++编程。在本文中使用C++编写了牛顿法、牛顿-Steffensen法方程求解的程序和雅格比法、高斯-赛德尔迭代法求解方程组的程序及Ru n ge-Kutt a4阶算法,并通过实例求解验证了其可行性,比较了求解同一种问题时不同方法之间的优缺性,其中包含解的精确度和解的收敛速度两个重要指标。

一 牛顿法和牛顿-Steffensen 法迭代求解的比较 1. 计算题目 分别用牛顿法,及基于牛顿算法下的Steffensen 加速法 (1) 求ln(x +sin x )=0的根。初值x0分别取0.1, 1,1.5, 2, 4进行计算。 (2) 求sin x =0的根。初值x0分别取1,1.4,1.6, 1.8,3进行计算。 分析其中遇到的现象与问题。 2. 计算过程和结果 1.对方程ln(x +sin x )=0,其导数有些复杂,我们可以对其进行变形,即求解x+sinx=1的解。使用牛顿法,令1sin )(-+=x x x f ,则x x f cos 1)(+=',直至 5 110 1||-+?<-k k x x 时,结束迭代;然后再使用基于牛顿法的Steffensen 加速法进 行计算,直至51101||-+?<-k k x x 时,结束迭代。其迭代结果与迭代次数如下表所示(注N1为牛顿法迭代次数,N2为基于牛顿法Steffensen 加速法迭代次数): 2.对方程sin x =0,使用牛顿法时,令x x f sin )(=,使用牛顿法计算,直至 5 110 1||-+?<-k k x x 时,结束迭代;然后依据Steffensen 加速法进行编程计算,直 至51101||-+?<-k k x x 时,结束迭代。其迭代结果与迭代次数如下表所示:

数值分析简述及求解应用

数值分析简述及求解应用 摘要:数值分析是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,本文主要介绍了数值分析的一些求解方法的原理和过程,并应用在电流回路和单晶硅提拉过程中的,进一步体现数值分析的实际应用。 关键字:解方程组插值法牛顿法 一、引言 随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。有可靠的理论分析,要有数值实验,并对计算的结果进行误差分析。数值分析的主要内容包括插值法,函数逼近,曲线拟和,数值积分,数值微分,解线性方程组的直接方法,解线性方程组的迭代法,非线性方程求根,常微分方程的数值解法。运用数值分析解决问题的过程包括: 实际问题→数学建模→数值计算方法→程序设计→上机计算求出结果。 在自然科学研究和工程技术中有许多问题可归结为求解方程组的问题,方程组求解是科学计算中最常遇到的问题。如在应力分析、电路分析、分子结构、测量学中都会遇到解方程组问题。在很多广泛应用的数学问题的数值方法中,如三次样条、最小二乘法、微分方程边值问题的差分法与有限元法也都涉及到求解方程组。 在工程中常会遇到求解线性方程组的问题,解线性方程组的方法有直接法和迭代法,直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。将方程组的解看作是某极限过程的极限值,且计算这一极限值的每一步是利用前一步所得结果施行相同的演算步骤而进行。迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。迭代法包括Jacobi法SOR法、SSOR法等多种方法。非线性是实际问题中经常用到出现的并在科学和工程中的低位也越来越重要,很多线性模型都是在一定条件下由非线性简化得到的。所以往往需要非线性的研究。非线性的数值解法有牛顿法,迭代收敛的加速解法,弦解法和抛物线法等。还有很多问题都可用常微分方程的定解来描述,主要有处置问题和边值问题。常微分方程是描述连续变化的数学语言,微分方程的求解是确定满足给定方程的可微函数y(x)。下面就数值分析中常用的一些方法和实例进行阐述。 二、数值分析中的一些方法 1、插值法 许多实际问题都用y=f(x)来表示,有的函数虽然有解析式,但由于计算复杂实用不方便,为了找一个既能反映函数的特性又便于计算的函数,我们利用插值法可以得到这个简单函数,插值法包括拉格朗日插值,牛顿插值,Hermite插值等多种方法。 拉格朗日插值是n次多项式插值,其成功地用构造插值基函数的方法解决了

(完整版)数值分析教案

§1 插值型数值求积公式 教学目的 1. 会求插值型数值求积公式及Gauss 型数值求积公式并会讨论它们的代数精度; 2. 理解复化梯形数值求积公式及复化Simpson 数值求积公式和余项的推导的基础上掌握它们; 3. 理解数值微分公式推导的基础上掌握一阶、二阶数值微分公式及余项; 4. 了解外推原理。 教学重点及难点 重点是插值型数值求积公式及Gauss 型数值求积公式的求解及它们代数精度的讨论;难点是Gauss 型数值求积公式节点的求解方法的推导及求解方法。 教学时数 12学时 教学过程 1.1一般求积公式及其代数精度 设)(x ρ是),(b a 上的权函数,)(x f 是],[b a 上具有一定光滑度的函数。用数值方逑下积分 ?b a dx x f x )()(ρ 的最一般方法是用)(x f 在节点b x x x a n ≤<<≤≤Λ10上函数值的某种线性组合来近似 ?∑=≈b a n i i i x f A dx x f x 0 )()()(ρ 其中n i A i ,,0,Λ=是独立于函数)(x f 的常数,称为积分系数,而节点n i x i ,,1,0,Λ=称为求积节点。 我们也可将(1.2)写成带余项的形式 ][)()()(0 f R x f A dx x f x b a n i i i +=?∑=ρ (1.2)和(1.3)都称之为数值求积公式或机械求积公式。更一般些的求积公式还可以包含函数)(x f 在某些点的低阶导数值。 在(1.3)中余项][x R 也称为求积公式的截断误差。 一个很自然的想法是数值求积公式要对低次多项式精确成立这就导出了求积公式数精度的概念。 定义1 若求积公式(1.2)对任意不高于m 次的代数多项式都精确成立,而对1 +m x 不能精 确成立,则称该求积公式具有m 次代数精度。 一个求积公式的代数精度越高,就会对越多的代数多项式精确成立。 例1 确定求积公式 )]1()0(4)1([3 1 )(1 1 f f f dx x f ++-≈?-

数值分析之幂法及反幂法C语言程序实例

数值分析之幂法及反幂法C 语言程序实例 1、算法设计方案: ①求1λ、501λ和s λ的值: s λ:s λ表示矩阵的按模最小特征值,为求得s λ直接对待求矩阵A 应用反幂法即可。 1λ、501λ:已知矩阵A 的特征值满足关系 1n λλ<< ,要求1λ、及501λ时,可 按如下方法求解: a . 对矩阵A 用幂法,求得按模最大的特征值1m λ。 b . 按平移量1m λ对矩阵A 进行原点平移得矩阵1m B A I λ=+,对矩阵B 用反幂法 求得B 的按模最小特征值2m λ。 c . 321m m m λλλ=- 则:113min(,)m m λλλ=,13max(,)n m m λλλ=即为所求。 ②求和A 的与数5011 140 k k λλμλ-=+最接近的特征值 ik λ(k=0,1,…39): 求矩阵A 的特征值中与k μ最接近的特征值的大小,采用原点平移的方法: 先求矩阵 B=A-k μI 对应的按模最小特征值k β,则k β+k μ即为矩阵A 与k μ最接近的特征值。 重复以上过程39次即可求得ik λ(k=0,1,…39)的值。 ③求A 的(谱范数)条件数2cond()A 和行列式det A : 在(1)中用反幂法求矩阵A 的按模最小特征值时,要用到Doolittle 分解方法,在Doolittle 分解完成后得到的两个矩阵分别为L 和U ,则A 的行列式可由U 阵求出,即:det(A)=det(U)。 求得det(A)不为0,因此A 为非奇异的实对称矩阵,则: max 2()s cond A λλ= ,max λ和s λ分别为模最大特征值与模最小特征值。

演讲稿数值分析应用实例.doc

非线性方程求根 问题:在相距100m的两座建筑物(高度相等的点)之间悬挂一根电缆,仅允许电缆在中间最多下垂1m,试计算所需电缆的长度。 设空中电缆的曲线(悬链线)方程为 ] , [ , ) ( 50 50 2 - ∈ + = - x e e a y a x a x (1) 由题设知曲线的最低点)) ( , (0 0y与最高点)) ( , (50 50y之间的高度差为1m,所以有 1 2 50 50 + = +- a e e a a a) ( (2) 由上述方程解出a后,电缆长度可用下式计算: ) ( ) (a a a x a x L e e a dx e e dx x y ds L 50 50 50 50 50 2 1- - - - = ? ? ? ? ? ? + = ' + = =? ? ?(3) 相关Matlab命令: 1、描绘函数] , [ , ) ( ) (1500 500 1 2 50 50 ∈ - - + = - a a e e a a y a a 的图形;

2、用fzero 命令求方程在1250=a 附近的根的近似值x ,并计算)(x y 的函数值; 3、编写二分法程序,用二分法求0=)(a y 在],[13001200内的根,误差不超过310-,并给出对分次数; 4、编写Newton 迭代法程序,并求0=)(a y 在],[13001200内的根,误差不超过310-,并给出迭代次数。 5、编写Newton 割线法程序,并求0=)(a y 在],[13001200内的根,误差不超过310-,并给出迭代次数。

线性方程组求解应用实例 问题:投入产出分析 国民经济各个部门之间存在相互依存的关系,每个部门在运转中将其他部门的产品或半成品(称为投入)经过加工变为自己的产品(称为产出),如何根据各部门间的投入产出关系,确定各部门的产出水平,以满足社会需求,是投入产出分析中研究的课题。考虑下面的例子: 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、外部需求、初始投入等如表1所示(数字表示产值)。 表1 国民经济三个部门间的关系单位:亿元 假定总投入等于总产出,并且每个部门的产出与它的投入成正比,由上表可以确定三个部门的投入产出表:如表2所示。 表2 三个部门的投入产出表

《数值分析》教案

1.7.2 三次样条插值的基本原理 三次样条插值也是一种分段插值方法,用分段的三次多项式构造成一个整体上具有函数、一阶和二阶导函数连续的函数,近似地替代已知函数)(x f ,“样条”一词源于过去绘图员使用的一种绘图工具样条,它是用于富于弹性、能弯曲的木条(或塑料)制成的软尺,把它弯折靠近所有的基点用画笔沿着样条就可以画出连续基点的光滑曲线。 假设已知函数)(x f 在区间],[b a 上的)1(+n 个节点b x x x x x a n n =<<<<<=-1210 及其对应的函数值 i i y x f =)(,),,2,1,0(n i =,即给出)1(+n 组样本点数据),(,),,(),,(1100n n y x y x y x ,可以构造一个定义在],[b a 上的函数)(x S , 满足下述条件。 ① i i y x S =)(,),,2,1,0(n i = ② )(x S 在每个小区间],[1+i i x x )1,,2,1,0(-=n i 上,都是一个三次多项式: 3 32210)(x a x a x a a x S i i i i i +++= (1-42) ③ )(),(),(x S x S x S '''在],[b a 上连续。 可见,)(x S 是一个光滑的分段函数,这样的函数称为三次样条(Spline )插值函数。 构造的函数)(x S 是由n 个小区间上的分段函数组成,根据条件②,每个小区间上构造出一个三次多项式,第 i 个小区间上的三次多项式为 332210)(x a x a x a a x S i i i i i +++=,共有n 个多项式,每个多项式有4个待定系数。要确定这n 个多项式,就需要确定 4 n 个系数

数值分析非线性方程求根实验

实验报告 一、实验目的 1.迭代函数对收敛性的影响。 2.初值的选择对收敛性的影响。 二、实验题目 1.用简单迭代法求方程01)(3=--=x x x f 的根。 分别化方程为如下等价方程: 31+=x x ;13 -=x x ;x x 11+=;213-+=x x x 取初值5.10=x ,精度为4 10-,最大迭代次数为500,观察其计算结果并加以分析。 2.①用牛顿法求方程01)(3=-+=x x x f 在0.5附近的根, 分别取初值1000,100,2,1,5.0,5.0,1,2,100,10000-----=x 观察并比较计算结果,并加以分析。 ②用牛顿法求方程0)(3=-=x x x f 所有根。 三、实验原理 简单迭代法程序,牛顿迭代法程序。 四、实验内容及结果

五、实验结果分析 (1)实验1中用简单迭代法求方程01)(3=--=x x x f 的根: 取初始值5.10=x 的时候,等价方程2和4是不收敛的。等价方程1的迭代次数为6,近似值为1.324719474534364。等价方程3的迭代次数为7,近似值为1.324718688942791。说明不同的等价方程得到的结果以及迭代的次数是不一样的。 (2)实验2中用牛顿迭代法求方程01)(3=-+=x x x f 在0.5附近的根: 通过结果可知,当初始值越接近真实值时,迭代的次数就越少。 (3)实验3中用牛顿法求方程0)(3=-=x x x f 所有根: 可知该方程的根为01=x ,12=x ,13-=x ,由于方程是无重根的,所以可以直接用牛顿迭代法做,而不需要使用牛顿迭代加速法做。

数值计算方法复习知识点

2015计算方法复习 1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组 2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项 3. 会Jacobi 迭代、Gauss-Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性 4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速 5. 会用欧拉预报—校正法和经典四阶龙格—库塔法求解初值问题 6. 会最小二乘法多项式拟合 7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式 第1章、数值计算引论 (一)考核知识点 误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。 (二) 复习要求 1.了解数值分析的研究对象与特点。 2.了解误差来源与分类,会求有效数字; 会简单误差估计。 3.了解误差的定性分析及避免误差危害。 (三)例题 例1. 设x =0.231是精确值x *=0.229的近似值,则x 有2位有效数字。 例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为 )1ln(2++-x x 。 例3. 3 *x 的相对误差约是*x 的相对误差的1/3 倍. 第2章、非线性方程的数值解法 (一)考核知识点 对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法。 (二) 复习要求 1.了解求根问题和二分法。 2.了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。 3.理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。 4.掌握牛顿法及其收敛性、下山法, 了解重根情形。 5.了解弦截法。 (三)例题 1.为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( ) (A) (B) 11,1112-=-= +k k x x x x 迭代公式21211,11k k x x x x +=+=+迭代公式

数值分析关冶版第一章教案

授课题目: 第一章引论 §1数值分析的研究对象(1学时) 教学目标: 使学生了解数值分析的研究对象、作用与特点、数值算法 教学重点:数值分析的研究对象、作用与特点 教学难点: 数值分析的研究对象 教学过程: 一、数值分析的研究对象、作用 数值分析——也称计算数学,是数学科学的一个分支,主要研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现. 主要研究:算法设计,有数学模型给出数值计算方法;上机实现,根据计算方法编制算法程序并计算结果 二、数值分析的作用: 重点研究数学问题的数值方法及其理论。 作用领域广,形成许多交叉学科。 科学计算与理论研究和科学实验是三种科学手段 最重要作用——计算模型数值解

三、数值分析的特点 面向计算机,根据计算机特点提供有效算法。 有可靠的理论分析,能任意逼近并达到精度要求。 要有好的计算复杂性——时间和空间复杂性。 要有数值实验。证明其有效性。 练习: 思考: 作业: 教学反思:

授课题目: §2 数值计算的误差(1学时) 教学目标: 使学生掌握误差、有效数字及其关系、误差估计 教学重点:误差、有效数字及其关系、误差估计 教学难点: 误差估计 教学过程: 误差来源与分类 截断误差 例如,可微函数f(x)的泰勒(Taylor)多项式 则数值方法的截断误差是 舍入误差 例如,用3.14159代替,产生的误差 ●由原始数据或机器中的十进制数转化为二进制数产生的初始误差。 ●在用计算机做数值计算时,受计算机字长的限制产生的误差。 误差与有效数字 定义1 设x为准确值,x*为x的一个近似值,称

为近似值的绝对误差,简称误差。 通常准确值x 是未知的,因此误差e *也是未知的。若能根据测量工具或计算情况估计出误差绝对值的一个上界,即 则ε*叫做近似值的误差限 也可表示成 把近似值的误差e *与准确值x 的比值 称为近似值x *的相对误差,记作 它的绝对值上界叫做相对误差限, 记作 , 定义2 若近似值x *的误差限是某一位的半个单位,该位到x *的第一位非零数字共有n 位,就说x * 有n 位有效数字. 其中 是0到9中的一个数字,m 为整数,且 定理1设近似数x *表示为 x x e -=*****ε≤-=x x e *,***εε+≤≤-x x x . **ε±=x x x x x x e -=******* x x x x e e r -= =. ** * x r εε =

数值分析在生活中的应用举例及Matlab实现

Matlab 实验报告 学院:数学与信息科学学院班级:信息班 学号:20135034027 姓名:马永杉

最小二乘法,用MATLAB实现 1.数值实例 下面给定的是郑州最近1个月早晨7:00左右的天气预报所得到的温度,按照数据找出任意次曲线拟合方程和它的图像。下面用MATLAB编程对上述数据进行最小二乘拟合。 2、程序代码 x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9 ,7,6,5,3,1]; a1=polyfit(x,y,3) %三次多项式拟合% a2= polyfit(x,y,9) %九次多项式拟合% a3= polyfit(x,y,15) %十五次多项式拟合% b1=polyval(a1,x) b2=polyval(a2,x) b3=polyval(a3,x) r1= sum((y-b1).^2) %三次多项式误差平方和% r2= sum((y-b2).^2) %九次次多项式误差平方和% r3= sum((y-b3).^2) %十五次多项式误差平方和% plot(x,y,'*') %用*画出x,y图像% hold on plot(x,b1, 'r') %用红色线画出x,b1图像% hold on plot(x,b2, 'g') %用绿色线画出x,b2图像% hold on plot(x,b3, 'b:o') %用蓝色o线画出x,b3图像% 2.流程图

4.数值结果分析 不同次数多项式拟合误差平方和为: r1=67.6659 r2=20.1060 r3=3.7952 r1、r2、r3分别表示三次、九次、十五次多项式误差平方和。 5、拟合曲线如下图

《数值分析》教案5

1.6.4 分段三次Hermite 插值 为了利用多项式插值方法而又克服高次插值多项式的缺陷,便引入了分段插值的概念。它的基本思想是把函数整个区间上分成许多段,每段都选用适当的低次插值多项式代替函数,整体上按一定的要求连接起来,构成一个分段的插值函数。 为此,把函数)(x f 的自变量x 在区间],[b a 上用)1(+n 个节点分割成n 段: b x x x x x a n n =<<<<<=-1210 根据这些节点的取值 i x ,)(x f 在节点上的函数值i i y x f =)(和导数值 i i m x f =')(),,2,1,0(n i =,可以构造一个分段三次插值函数)(x H ,它满足 下述条件: ①i i y x H =)(,i i y x H '=')(),,2,1,0(n i =。 ② 在每个小区间],[1+i i x x ),,2,1,0(n i =上,都是一个三次多项式: 3 32210)(x a x a x a a x H i i i i i +++= 把这样构成的分段三次函数)(x H 称为分段三次Hermite 插值函数,它的 各小段均为三次多项式,而整体上具有一阶连续导数。 由式(1-34)可直接写出分段三次Hermite 插值函数的分段表达式 12 112 1112 1112 111)()(2121)(++++++++++++'??? ? ??---+'???? ??---+??? ? ??--???? ? ?--++???? ??--???? ??--+=i i i i i i i i i i i i i i i i i i i i i i i i y x x x x x x y x x x x x x y x x x x x x x x y x x x x x x x x x H 也可通过构造基函数给出分段三次Hermite 插值函数的表达式。参照分段线性插值与Hermite 插值基函数公式(1-31)和式(1-32),可得出分段三次

计算机数值方法教案

第O 章 绪论 一、教学设计 1.教学内容:数值计算方法这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点:算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。 3.教学目标:了解数值计算方法的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。 4.教学方法:介绍与讨论 二、教学过程 §1。1引论 1.课程简介: 数学科学的一个分支,它研究数值计算方法的设计、分析和有关的理论基础与软件实现问题。另外,有一个较常用的名词“数值分析”,其包含的内容属于计算数学的一个部分。 2.历史沿革: ①数学最初导源于计算,计算曾经是古代数学的最重要的组成部分。 ②各个时期的大数学家,在发展基础数学的同时也都对计算方法作出了重要贡献。例如:牛顿、拉格朗日、高斯、秦九韶等。 ③直到20世纪40年代,由于技术手段和计算工具条件的不足,发展比较缓慢,作用也比较有限。 3.计算方法的形成: ①20世纪下半叶,计算机极大地扩展了数学的应用范围与能力。如:天气预报 ②计算能力的提高与所用计算方法的效能密切相关。 ③以原来分散在数学各分支的计算方法为基础的一门新的数学科学“计算数学”开始形成并迅速发展。 4.作用与意义: 科学实验、科学理论、科学计算已成为人类进行科学活动的三大方法。这是伽利略、牛顿以来在科学方法论方面取得的重大进展。 5.计算方法的任务: ①将计算机不能直接计算的运算,化成在计算机上可执行的运算。 例:!!212n x x x e n x ++++≈ , h x y h x y x y )()()(-+≈' ②针对数值问题研究可在计算机上执行且行之有效的新系列计算公式。 例:解线性方程组,已有Cram 法则,但不可行。(几十万年) ③误差分析,即研究数值问题的性态和数值方法的稳定性。 6.计算机数值方法的研究对象:(与科学计算有关的数学问题是多种多样的,最基本类型有:) 利用计算机解决科学计算问题的全过程大致如下: 实际问题――>构造数学模型――>设计数值计算方法――>程序设计――>上机求 出结果――>回到实际问题。 数学模型举例: 例1:鸡兔同笼:(共10只,34只脚)导致方程组; 例2:曲边梯形的面积。 相应地,本课程主要研究的数值问题有:函数的插值与逼近方 法;微分与积分计算方法;线性方程组与非线性方程组计算方 法;微分方程数值解等。 7.主要特点 既有纯数学的高度抽象性与严密科学性的特点,同时又具 有应用广泛性与数值试验的高度技术性。(要求先掌握基本数 学知识,以及计算机的基本操作)

数值分析每节课的教学重点、难点

计算方法教案新疆医科大学 数学教研室 张利萍

一、课程基本信息 1、课程英文名称:Numerical Analysis 2、课程类别:专业基础课程 3、课程学时:总学时54 4、学分:4 5、先修课程:《高等数学》、《线性代数》、《Matlab 语言》 二、课程的目的与任务: 计算方法是信息管理与信息系统专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握计算方法的常用的基本的数值计算方法 2.掌握计算方法的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 计算方法(数值分析)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

数值计算实例

数值计算 插值 假设需要得到x 坐标每改变0.1 时的y 坐标, 用三次插值方法对机翼断面下缘轮廓线上的部分数据加细, 并作出插值函数的图形. 程序: clear, close all x=[0,3,5,7,9,11,12,13,14,15]; y=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.0,1.6]; plot(x,y); xi=0:0.1:15; yi_cubic=interp1(x,y,xi,'cubic'); plot(x,y,'ro',xi,yi_cubic); pp=csape(x,y,'second'); v=ppval(pp,xi); v; T=(ppval(pp,0.1)-ppval(pp,0))/0.1; angle=atan(T)*180/pi; s=v(130:151); ss=min(s); 图形: 最小二乘拟合

已知空气温度与动力粘度关系如下,进行最小二乘拟合 0℃170.8×10^-4mPa.s 40℃190.4×10^-4mPa.s 74 ℃210.2×10^-4mPa.s 229 ℃263.8×10^-4mPa.s 334℃312.3×10^-4mPa.s 409℃341.3×10^-4mPa.s 481℃358.3×10^-4mPa.s 565℃375.0×10^-4mPa.s 638℃401.4×10^-4mPa.s 750 ℃426.3×10^-4mPa.s 810 ℃441.9×10^-4mPa.s 程序: >> x=[0 40 74 229 334 409 481 565 638 750 810]; >> y=[170.8 190.4 210.2 263.8 312.3 341.3 358.3 375.0 401.4 426.3 441.9]; >> p=polyfit(x,y,2) p = -0.0002 0.4652 172.5460 >> xi=[0:2:810]; >> yi=polyval(p,xi); >> plot(x,y,'ko-',xi,yi,'k--') 解线性方程组的直接法

数值计算方法教案数值积分(20200511215237)

计算方法课程中学习数值积分内容的心得和体会 计算方法又称 数值分析”。是为各种数学问题的数值解答研究提供最有效的算法。主要内容为函数逼 近论,数值微分,数值积分,误差分析等。常用方法有迭代法、差分法、插值法、有限元素法等。现代的 计算方法还要求适应电子计算机的特点。 数值分析即 计算方法”下面来谈谈学习了计算方法中学习数值积 分内容的心得与体会。 首先了解一下数值积分的内容: b c (1)针对定积分 I 二 f xdx ,若 f x =x 5 ,a=0,b=1,即有 I 二 L a *■ 0 f x = Sin -x , f x 二sinx 2 , ........ ,时,很难找到其原函数。 x (2)被积函数并没有具体的解析形式,即 f x 仅为一数表。 b 定积分I f x dx 的几何意义为,在平面坐标系中I 的值即为四条曲线所围图形的面 a 积,这四条曲线分别是y = f x ,y=0, x=a ,x=b b 二 a f x dx : b -a f - 以及梯形公式I = [ f (x )dx 化七卫f (a )+ f (b )] 梯形公式的几何意义是,用以下梯形面积替代曲边梯形的面积: 1 6 1 5门 X x dx =— 6 1 J ,但当 0 6 其几何意义为用以下矩形面积替代曲边梯形面积 a b 2

再来是辛普森公式 l=J f (x )dx RZ Wl? ] f (a )+4f |兰辿〕十f (b ) 」a 6 「 I 2丿 J 辛普生公式的几何意义为,阴影部分的面积为抛物线曲边梯形,该抛物线由 (a, f (a) > 1卑卫,f '卑卫j ,(b, f (b))三点构成。 I 2 I 2丿丿 b n 从而到处其一般公式为 f x dx A k f x k ,其中x k 称为节点,A 称为求积系数,或 a k=0 权。 衡量一个积分公式的好坏,要用具体的函数来衡量,寻找怎样的函数来衡量呢?简单的 多项式函数是一个理想的标准。若某积分公式对于x k (k=0,1,|H,m )均能准确成立,但对于x m41 不能准确成立。则称该公式具有m 次代数精度。代数精度只是衡量积分公式好坏的1种标准。 f x dx “ b - a f 口的代数精度及几何意义 I 2丿 b b 【解】当f x =x 0=1时,公式左边 f x dx 1dx=b-a ,公式右边二b-a ,左= a a 右; a a+ b b 2 ***研究中矩形公式

数值分析教学计划

《数值分析》教学计划 课程名称:《数值分析》 任课教师: 授课班级:2008计算机专业 授课时数:4节/周,全期共68学时。 一、课程概述 (一)教学目标与要求 “数值分析”是信息与计算科学、数学与应用数学本科专业必修的一门专业基础课。学生需在掌握数学分析、高等代数的基础知识之上,学习本课程。在实际中,数学与科学技术一向有着密切关系并相互影响,科学技术各领域的问题通过建立数学模型与数学产生密切的联系,并以各种形式应用于科学和工程领域。而所建立的这些数学模型,在许多情况下,要获得精确解是十分困难的,有时是不可能的,这就使得研究各种数学问题的近似解变得非常重要了,“数值分析”就是专门研究各种数学问题的近似解的一门课程。通过这门课程的教学,使学生掌握用数值分析方法解决实际问题的算法原理及理论分析,提高学生应用数学知识分析和解决实际问题的能力。 (二)教材及教学参考书 1、李庆扬等编.数值分析(第四版).北京:清华大学出版社,2001 2、李有法.数值计算方法.北京:高等教育出版社,1998 二、学时分配(见附表) 三、课程内容 第一章绪论 1、数值分析研究对象与特点 2、数值计算的误差 3、误差定性分析与避免误差危害 第二章插值法 1、引言 2、拉格朗日插值 3、均差与牛顿插值公式 4、差分与等距节点插值 5、埃尔米特插值 6、分段低次插值 7、第七节三次样条插值 第三章数值积分与数值微分 1、引言 2、牛顿—柯特斯公式 3、复化求积公式

4、龙贝格求积公式 5、高斯求积公式 6、数值微分 第四章解线性方程组的直接方法 1、高斯消去法 2、高斯主元素消去法 3、矩阵三角分解法 4、向量和矩阵的范数 5、误差分析 6、矩阵的正交三角化及其应用 第五章解线性方程组的迭代法 1、基本迭代法 2、迭代法的收敛性 3、分块迭代法 第六章非线性方程求根 1、方程求根与二分法 2、迭代法及其收敛性 3、迭代收敛的加速方法 4、牛顿法 5、弦截法与抛物线法 6、解非线性方程组的牛顿迭代法 第七章矩阵特征值问题计算 1、幂法与反幂法 2、豪斯霍尔德方法 3、QR方法 四、学习方式 教学手段:多媒体课堂教学与实践性上机教学结合教学环境:多媒体、网络实验室 五、课程考核 考核类型:专业必修课

数值分析教学大纲新

《数值分析》教学大纲(新) (Numerical Analysis) 适用专业:全校工科专业课程性质:学位课 学时数:48学时学分数:3学分 课程号:开课学期:第1学期 大纲执笔人:杨帆大纲审核人:欧志英 一、课程的地位和教学目标 数值分析是全校研究生的一门重要学位课,工科研究生应该掌握数值分析的基本知识和方法, 主要介绍用计算机解决数学问题的数值计算方法及其理论。内容新颖,起点较高,并加强了数值试验和程序设计环节。通过本课程的学习,使学生熟练掌握各种常用的数值算法的构造原理和过程分析,提高算法设计和理论分析能力,并且能够根据数学模型,提出相应的数值计算方法编制程序在计算机上算出结果。力求使学生掌握应用数值计算方法解决实际问题的常用技巧。 二、课程教学内容和基本要求 (一)数值分析引论(Introduction)(3学时) 教学重点、难点: 重点:理解有效数字和误差的概念,理解离散化方法与递推化方法。 难点:有效数字和误差的关系,递推化方法的编程实现。 教学内容和基本要求 1、数值分析课程的特点 了解数值分析的四个特点。即:面向计算机,可靠的数学理论分析,良好的计算复杂性,可进行数值实验。 2、有效数字; 理解有效数字概念,掌握有效数字确定的方法; 3、误差的概念,和误差的求解。 理解误差的基本概念,了解误差的各种来源,会误差估计;基本要求: (二)非线性方程求根(Solving Nonlinear Equations)(5学时) 教学重点、难点: 重点:二分法,迭代法,牛顿法和割线法求解非线性方程。 难点:迭代法的收敛性和误差分析以及迭代加速。

教学内容和基本要求 1、二分法 掌握二分法及其收敛性。 2、迭代法的基本理论 迭代法的基本思想和收敛性判别定理以及误差分析。 3、迭代加速技术。 掌握迭代加速技术的基本思想和Aitken加速公式。 4、牛顿法及其割线法 掌握牛顿法和割线法及其收敛性。 (三)线性方程组的直接解法(Direction Solving Linear Systems) (5学时) 教学重点、难点: 重点:线性方程组的高斯消元法以及LU分解法。 难点:利用向量和矩阵的范数进行误差分析。 教学内容和基本要求 1、高斯消元法 掌握顺序高斯消元法和选列主元高斯消元法 2、LU分解法 掌握LU分解法。 3、误差分析 掌握向量和矩阵的范数,利用这两类范数进行误差分析。 (四)线性方程组的迭代解法(Iterative Method for Solving Linear Equations)(5学时) 教学重点、难点: 重点:三种经典迭代法的构造。 难点:迭代法的收敛性和误差分析 教学内容和基本要求 1、迭代法的一般理论 掌握迭代公式的构造和迭代法的收敛性和误差分析。 2、三种经典迭代法 掌握雅可比和高斯-塞德尔以及逐次超松子这三类迭代法求解线性方程组的迭代 格式。 (五)插值法与最小二乘拟合(Interpolation, Curve Fitting and Polynomial Approximation)(10学时) 教学重点、难点: 重点: 拉格朗日和牛顿插值法以及最小二乘法。 难点:三次样条插值

相关文档
相关文档 最新文档