文档库 最新最全的文档下载
当前位置:文档库 › 生物工程_生物技术专业英语课文翻译_

生物工程_生物技术专业英语课文翻译_

生物工程_生物技术专业英语课文翻译_
生物工程_生物技术专业英语课文翻译_

2.3.5 甲烷和甲醇

少数(细菌和酵母)被称为甲基营养菌的微生物能够利用甲醇作为唯一的碳源;到目前为止,只发现一小部分细菌具有利用甲烷的能力,称为甲烷营养菌。极少数微生物能利用甲酸为碳源。这三种化合物的代谢是相关的,被最终氧化为CO2,它们合成细胞物质的机制与自养CO2固定化作用机制是不同的。

[能够利用CO2作为唯一碳源的包括进行光合作用的植物与微生物和很少一部分无机化能营养型细菌,其是利用无机化合物的反应作为能量的来源。这些生物目前在生物工程中的应用较少。若想进一步了解CO2自养固定化的读者可参阅任何一本生物化学课本,但必须注意到,至少有两种不同的代谢途径:卡尔文循环和还原性羧酸循环。] 甲烷的氧化过程为:(反应式)

第一步是通过一种氧合酶与NADH(或NADPH)辅因子来进行,(与上述高级烷烃的氧化相比较)。

氧合酶(3种蛋白质复合物)也可以氧化其它多种化合物,包括多种烷烃甚至甲醇本身。

接下来的第二步反应由甲醇脱氢酶催化,以一种新发现的物质吡咯并喹啉醌为辅因子。

在某些细菌中,甲醛进一步转化为甲酸的过程被同种酶催化;而在另一些细菌中,有一种独立作用的甲酸脱氢酶,NAD 是它的辅因子。

最后一步反应是将甲酸转化为CO2,它是通过甲酸脱氢酶来催化进行的,伴有NAD+的还原过程。

来自甲醇或甲烷中的碳同化为细胞物质甲醛,经过两种独立的代谢途径:一磷酸核酮糖循环和丝氨酸途径,分别如图2.11和2.12所示。

单磷酸核酮糖循环与卡尔文循环相似,都是通过磷酸戊糖途径的反应进行CO2自养固定化而生成以后的C1化合物受体,只多了两种酶:磷酸己糖合成酶和3-磷酸己糖异构酶。

丝氨酸途径中的关键酶是:生成乙酰CoA和甘油的苹果酰CoA以及丝氨酸转甲基酶,这是一种广泛存在的酶,作用于四氢叶酸(四氢叶酸是一种辅因子,可形成必需的活化C1中间产物,N10-甲酰四氢叶酸,而后乙醛酸途径利用乙酰CoA。所以细胞就可在C2底物上进行生长。异柠檬酸裂解酶去阻遏从而确保C3单元的生成。

酵母中,磷酸戊糖循环又进一步发生了一些变化,甲醛与5-磷酸木酮糖反应生成了3-磷酸甘油醛和2-羟基丙酮。此反应过程由转酮酶催化,完成甲醛循化同化过程唯一需要另外加入的酶是一种新的激酶,它将二羟基丙酮转化为二羟基磷酸丙酮。

2.4 葡糖异生作用

当一个有机体利用C2和C3化合物进行生长,或者利用经过代谢过程能够生成C2或C3这种化合物的物质进行生长的时候,在丙酮酸的代谢水平或者低于该水平(例如脂肪烃、乙酸、乙醇或者乳酸),对有机体来说,就必须合成各种糖类以满足其代谢需求。这被称为葡糖异生作用。

尽管糖酵解途径中的大部分反应都是可逆的,但那些被丙酮酸激酶和磷酸果糖激酶催化地反应则是不可逆的,对细胞来说,就要避开这种阻碍。

一般而言,磷酸烯醇式丙酮酸不能由丙酮酸形成,尽管在少数有机体内存在一种磷酸烯醇式丙酮酸合成酶可以催化这

个反应。

通常,草酰乙酸作为磷酸烯醇式丙酮酸的前体物质。

这个反应由磷酸烯醇式丙酮酸羧化酶催化进行,它是葡糖异生作用中的关键酶。已经讲过草酰乙酸的生成,果糖二磷酸化酶的作用可避开磷酸果糖激酶的不可逆作用的性质(其作用产生1,6-二磷酸果糖)。

从这一点来看,通过终止糖酵解途径可积累己糖,通过磷酸戊糖循环又可生成C3和C4糖,葡萄糖不是葡糖异生作用的终产物,然而6-磷酸葡萄糖被用来合成细胞壁组分,和各种细胞外物质及储备多糖。

2.5 好氧生物的能量代谢

在葡萄糖代谢和三羧酸循环中已经讲过,如何把各种代谢中间产物的氧化过程与辅因子(NAD+、NADP+、FAD+)还原为其还原型(NADH、NADPH、FADH)的还原反应过程联系起来的。这些产物的还原性是由一系列复杂的反应过程而是释放。这个反应过程最终与空气中氧气的还原相关。在这个反应过程中,由电子传递上的ATP或者2-3个具体位点上的无机磷而生成A TP,这取决于最初还原剂的性质。如图2.14,总反应式如下:。。。。。。。

每摩尔葡萄糖经过恩伯纳-迈耶霍夫途径所生成的A TP和丙酮酸经三羧酸循环产生的A TP总结于表2.1。

能够被生物利用的A TP形式的能量是在膜上产生的,可以是真核细胞的线粒体膜或者是细菌细胞的细胞质膜,其产生过程大致相同。具体差异根据个体差异而不同。电子传递链的主要成分是黄素蛋白,醌和细胞色素。细胞色素具有还原性(接受氢离子或者电子),经过氧化可以有效释放电子到下一个载体上。每个载体都有不同的氧化-还原能,大约可以从NADH/NAD+反应的320摩尔到1/2O2/H2O终反应的800mV。在电子传递链上的特定位点,两个相邻电子载体的氧化-还原能差就已足够进行可逆反应:。。。。向合成ATP的方向进行。这个过程需要一种复杂的多亚基酶A TPase的协助。

有两种原理来说明A TPase是怎样作用的。在化学渗透学说中,过去二十年里米歇尔对其进行了发展,认为电子传递上的各组分是跨膜排列的,由于质子从一边向另一边移动,这样便产生了pH和电子浓度梯度。质子跨膜运动就推动了A TPase 反应合成A TP。ATPase是定向作用的,质子只能从一边靠近催化位点,图2.15对这个概念进行了简单说明。

ATP合成的第二种解释为,电子传递链上的载体与假设的将要被活化的中间产物相互作用使A TP磷酸化。这种中间产物称为偶联因子。

两种理论个具有优缺点,都可以解释不成对氧化磷酸化作用产生的影响,如鱼藤酮、安必妥、抗霉素A等。它们可以阻止A TP的合成。

2.6 厌氧生物能量生成过程

在2.5部分中所说的A TP生成过程需要供应氧气。某些有机体则可以用磷酸盐,另一些则用硫酸盐或铁离子来代替氧气分子,而且如果在培养集中,这些物质被大量供应,那么有机体利用电子传递体在没有空气的条件下仍可以生成A TP,从而进行厌氧生长。如果没有合适的电子受体,或者(如大多数细菌)有机体缺少这类物质,那么一旦缺少氧气,有机体将不能以这样的方式合成A TP。所以,进行厌氧生长的有机体就必须将A TP 合成反应与能量生成反应相联系,才能获得A TP,这被称为底物水平磷酸化。这只发生在有限数量的反应中。反应自由能的变化必须能够进行ATP磷酸化反应。其中最为重要的反应归纳于表2.2。

这6种反应,其中后3种只对少数生物体来说是重要的。表2.2中其它的3个反应中,反应1与反应2涉及糖酵解的中间产物,涉及乙酰磷酸的反应3广泛存在于厌氧有机体中。乙酰磷酸由乙酰CoA与无机磷反应而合成,它还是被磷酸酮醇酶作用的。

乙酰CoA可以由乙酰乙酰CoA 降解而生成,或者由丙酮酸经3种反应中的一种而生成:丙酮酸脱氢酶反应,丙酮酸甲酸裂解酶反应,铁氧还蛋白氧化还原酶反应,该反应与丙酮酸脱氢酶反应产生同样的产物,但是用到了一种铁硫蛋白,铁氧还蛋白不是NAD+作为还原剂(还原型铁氧还蛋白被氢化酶还原为铁氧蛋白,释放出氢气)这三种酶中,后两种对氧敏感,当含有它们的有机体被暴露于空气中的时候,它们便会迅速失活。

越来越多的证据表明,电子传递磷酸化同样可以进行延胡羧酸还原酶的反应。这种酶对于某些产甲烷菌,还原硫酸盐的有机体及进行氢气与二氧化碳发酵的氢化菌来说大概是重要的。反应:。。。。。,氢原子可以由各种辅因子提供,包括NADPH,而某些有机体如大肠杆菌、其氢原子的生成经过了电子传递链,即使与好氧有机体中的电子传递链不同,但也至少是类似的。因此,尽管没有氧气,有机体仍通过偶联不同的反应从而生成A TP。

所有的厌氧有机体都面临两个问题:第一,在氧化磷酸化作用中,缺少将NADH或NADPH的再氧化与A TP的生成相联系。每摩尔底物所生成的A TP量比好氧代谢产生的少。第二,不能将NADH的氧化与氧气的还原相联系,这样如何进行这个重要的反应就成为一个问题,当所有的NAD+不可逆的转化为NADH,代谢过程也就很快被停止。

厌氧生物采用很多方法使还原型辅因子重新被氧化。其中的核心部分为:。。。

这里,由AH2 A这步是厌氧生物利用底物时所采用的途径中的一部分。通常,底物B是补充还原反应所必需的,也直接来源于底物;BH2一旦形成,就不再进一步代谢。AH2的代谢与BH2的补偿性生成在化学计量上相关。这样以来,厌氧生物必须积累还原型代谢产物从而能够进行任何底物的降解过程。而且,就像已经说明的那样,既然厌氧生物从降解底物后获得极少的A TP,那么还原型代谢产物的积累与合成的细胞物质必将有极大的联系。以这种方式进行的厌氧代谢将在后面内容中讲述。

2.7 厌氧代谢

选择底物来氧化还原剂,例如NADH、NADPH、FADH2是非常普遍的现象,同时产生相应的各种终产物,因此对厌氧代谢途径的描述也就是个体将积累何种终产物的描述。这些终产物例如乙醇有着很高的商业价值。即使是在厌氧条件下,葡萄糖仍是生成丙酮酸,但是只有小部分丙酮酸进入三羧酸循环从而生成用来合成主要的细胞物质的中间体。三羧酸循环反应只提供这些中间体而不生成能量,通常,三羧酸循环不会完全发挥作用,尤其是α-酮戊二酸脱氢酶不作用,因此,这个循环成为一个铁蹄形,其中草酰乙酸转化为琥珀酸,而柠檬酸转化为α-酮戊二酸。

2.7.1发酵产酒精

在酿酒酵母这样的酵母菌中,氧化剂是缩醛;从葡萄糖转化的丙酮酸大部分转化为酒精。(反应式)

1摩尔葡萄糖可生成2摩尔丙酮酸;产生的酒精可以重新氧化在磷酸丙糖脱氢酶反应过程中生成的NADH,总的化学计量如下式:

ATP为酵母细胞的生长提供能量,但是由表2.1中比较得知,每摩尔葡萄糖在好氧条件下转化的量少于5%。

葡萄糖通过磷酸戊糖途经主要的代谢产物为必需的C5和C4糖,经过这个过程摩尔葡萄糖仅能生成1摩尔的丙酮酸,同时产生2摩尔NADPH和1摩尔NADH。这些附属的还原性物质必须与其它反应相连从而被重新氧化。

这些反应中最重要的反应过程是脂肪酸的形成,它们是化学合成的还原性化合物,其合成过程需要大量的相应的还原性物质。

某些细菌也可进行生产酒精,通常还伴有其他终产物的生成,某些霉菌也能生产酒精,而且厌氧条件一般对生产最大量的酒精来说是必需的。如果产酒精的有机体可以像酿酒酵母那样进行好氧生长,那么一旦通入氧气,积累的酒精就常常被细胞吸收并以醋酸的形式作为生长底物而被利用。

2.7.2 乳酸发酵

发酵产乳酸的过程是仅次于酒精发酵的过程,对于食品工业均具有重要的历史意义。

除乳酸外,杂发酵乳酸菌生产各种还原性化合物,而且没有主要的糖酵酶-醛缩酶;而使用磷酸酮醇酶,它是生成乙酰磷酸的酶。在厌氧条件下,乙酰磷酸经过生成A TP的过程而转化为酒精和乙酸,酒精重新生产NAD+。磷酸酮醇酶的另一个反应产物是3-磷酸甘油,其通过普遍的糖酵解系列反应转化为丙酮酸,然后经过乳酸脱氢酶的作用转化为乳酸。

单纯乳酸菌也进行这样的反应过程;这类有机体没有磷酸酮醇酶,结果乳酸是位的终产物。某些乳酸杆菌生产D-乳酸,其他的则生产L-乳酸,而另一些乳酸杆菌则生产两种乳酸的混合物,主要是乳酸脱氢酶的不同。

2.7.3 丙酸发酵

丙酸菌,例如在格鲁–耶尔奶酪中发现,经过一系列以甲基丙二酰CoA为中间产物的反应,可将丙酮酸转化为丙酸。在特殊的转羧化反应中,被用作丙酸的直接来源。

甲基丙二酰CoA经过内部转羧化作用,由琥珀酸CoA形成,可由草酰乙酸重新生成(经苹果酸、延胡羧酸和琥珀酸),同时2摩尔NADH被氧化NAD+。在某些羧状芽孢杆菌中,丙酸可由丙酮酸经乳酸和丙烯酸直接生成;这个转化过程又将2摩尔NADH重新氧化。

2.7.4 丁二醇发酵

。。。。。。。。。。2摩尔丙酮酸经过浓缩最终生成2,2-丁二醇,只有最后一步反应与NADH的氧化相联系,因此,1摩尔丙酮酸只生成0.5摩尔NAD+,这些有机体也可将丙酮酸转化为其他产物包括乳酸和甲酸。

2.7.5 甲酸发酵

在不同的细菌体内,丙酮酸部分转化为乳酸,部分转化为乙酰CoA+甲酸。后一种反应被称为磷酸裂解反应,甲酸能够少量积累但常常被甲酸水解酶转化为CO2+H2。这种从丙酮酸到乙酰CoA的途径,其优点是它不生成NADH从而避免了必需的再氧化过程。乙酰CoA经过醛脱氢酶作用转化为乙醛。

将乙醛还原为乙醇的过程通过进一步的NADH来完成。注意这种生成酒精的过程与酵母产酒精过程是不同的。

2.7.6 丁酸发酵

历史上,丁酸、丙酮和propan-2-ol的生产过程是最古老的精细发酵过程,i.e.从利用已知单菌株进行的发酵过程规律发展而来。这类葡萄糖代谢的终产物经过图2.17的代谢流程,由羧状芽孢杆菌进行生产。

有一些不同的是,某些羧状芽孢杆菌生产丁酸、乙酸、CO2和H2;而另一些则主要生产丙酮而不是propan-2-ol,由于所选用的物种和菌株以及培养条件的不同,终产物所占的比例也就发生变化。

2.7.7 miscellaneous

2.8 生物合成与生长

微生物细胞可以利用简单的营养物进行自身的繁殖,生物细胞用以完成这个过程所利用的途径数目是巨大的。一个细菌细胞可能包含有100多种酶,而真核生物细胞含有的酶的种类大约为细菌中的2倍。细胞中所有的大分子物质是由100多种单体而组成的(蛋白质、核酸、多糖等)。图2.18总结概括了这些单体物质生物合成途径(氨基酸、嘌呤、嘧啶、脂肪酸、糖等)。这些生物合成途径是相互联系的,都依赖于有足够量的必要的中间体。然而,我们无法说明这些途径的特点,关于它们研究普通生物学的部分,这方面的参考书也较多。因此,由于特定的代谢途径与具体的发酵过程相联系,我们将在合适的章节中进行讲述。

由于细胞所进行的代谢活动是以平衡方式进行的,因此所产生的终产物不会过量也不会不足,这种过量与不足都是不利的。为生物细胞必须能够对周围环境的变化做出调整,同时也要充分利用供给的氨基酸、嘌呤和嘧啶。这是自然习惯常会发生的情况,也是一个复杂的营养物作为生长底物被利用的场所。这些营养物含有大量的含碳化合物,因此,细胞可以通过停止合成已经足量的物质来保存碳和能量,而且通过停止合成多余的酶进一步实现节约,因此就有了两种完全不同的作用方式——酶活性的调控和酶合成的调控,通过这两种方法,细胞就能够调控各种化合物的合成过程。相同的调控机制也用来对合成过程进行平衡,甚至在没有天然物质供给的情况下。这种控制机制在这个部分讲述。

2.8.1 控制机制

2.8.1.1营养物的吸收

细胞代谢控制从细胞吸收营养物的调控开始。大部分营养物,除了氧气与极少数含碳化合物以外,都是通过特定的传递机制而被吸收的,因此,这些营养物在细胞外的稀释液在细胞中得到浓缩,这种“主动传递”过程需要能量供应。这个过程是可以控制的,一旦吸收到细胞内的营养物的含量达到了所需要的浓度,就会停止后面营养物的摄入。

2.8.1.2 区分

第二种形式的代谢控制是利用细胞间隔或是细胞器以实现对代谢产物库的分隔,最明显的例子是真核细胞的线粒体把三羧酸循环反应与细胞质中的反应分隔开来。另一个例子是,过氧化物酶体,它包含降解脂肪酸所有的酶。然而同时有些相似的酶可催化并合成脂肪酸。其他细胞器相类似的控制细胞中的其他反应(液泡、细胞核、叶绿体等)。

2.8.1..3 酶合成控制

细胞中的许多酶作为细胞的基本组成部分而存在,处于生长条件下。其他酶则在需要的时候“出现”,例如乙醛酸途径中的异柠檬酸裂解酶是在当细胞在C2底物上生长的时候才出现的,这被称为酶的诱导合成。相反的,当不再需要它们的时候,就会“消失”,例如,如果已经有足够的组氨酸满足细胞的生长需要,那么于组氨酸合成的酶就不再被合成,这被称为阻遏;如果化合物的供应一旦消失,进行物质合成的酶又将会重新出现,其合成过程称为去阻遏。

为了理解这样的控制是如何作用的,就有必要概述一下蛋白质的合成过程。

蛋白质(包括所有的酶)通过核糖体组织的酶复合物和RNA系列添加氨基酸而合成(图2.19)。确保氨基酸的正确顺序的密码位于信使RNA上,而信使RNA是DNA的一个片断进行复制而在细胞染色体内合成的。这个过程由依赖DNA的RNA多聚酶催化,被称为转录。众所周知,染色体是由DNA双螺旋按照精确排序的碱基组成的:腺嘌呤(A),胞嘧啶(C),胸腺嘧啶(T)和鸟嘌呤(G)。DNA的两条链只是通过相邻碱基间的氢键相连接。由于A总是与T配对,而C总是与G配对,那么从一条单链就可生成一条新的DNA链,这条单链与最初原来的那条链互补。DNA以这样的方式进行复制,从而保留遗传信息或者密码;信使RNA也是来自于DNA的一条单链。除过用尿嘧啶代替胸腺嘧啶,RNA互补于DNA而且其自身的碱基同样携带者遗传密码。尽管许多mRNA读取整条DNA链,但是每个mRNA只是DNA链上的一小部分。

核糖体附着于mRNA上,而且在核糖体中,mRNA上的碱基每次被读取3个,转译为特定的氨基酸密码。这个密码称为密码子。例如,密码子UCA就至代表着丝氨酸而CAG代表谷氨酸;因此,当黏附于核糖体的mRNA遇到UCACAG 那么就会生成丝-谷氨酸。以共价键连接在特殊转移RNA(tRNA)上的每个氨基酸都可识别mRNA上与其相对应的3个碱基。氨酰- tRNA是反应单元,它被核糖体利用从而合成不断增长的肽链。

每个单一的mRNA分子编码一个蛋白质,它来源于染色体上的一个基因(某些功能酶由不只一个蛋白质构成,例如丙酮酸脱氢酶)。每个基因都可以被多次转录,染色体中就不是仅有这个基因的一个拷贝,从而遗传信息就被扩大了。

经过整个转录与转译过程,合成了蛋白质,对于这个过程的调控是非常复杂的。原核生物与真核生物尤其是在具体的细节上是不同的,而且很多方面还无法解释。尽管如此,细菌系统中的调控机制是可以说明的。

由DNA生成mRNA的过程是由染色体上编码诱导蛋白或者阻遏蛋白的那部分控制的。这种机制如图2.20所示。DNA 上被称为调节基因的部分生成调控阻遏蛋白,它的作用是结合到另一个通常是相邻的基因上。将这个蛋白结合到操作基因上就阻止了一段基因的转录过程。这段基因是一个或多个结构基因,它负责编码酶蛋白的mRNA的合成。如果有诱导物存在,诱导物结合到调控蛋白上,从而阻止了调控蛋白结合到操纵基因上,自由的操纵基因就允许结构基因进行转录而合成相应的蛋白质。这就是如何将一个新的代谢途径引进到操作中。只要有诱导分子的存在,那么酶的和成就一直进行,如果除去诱导物,或者诱导物被消耗完(常常是它诱导的代谢途径),那么酶将停止合成。

当某个分子常常是代谢终产物与阻遏蛋白作用生成一种封锁操纵基因产物的时候,酶合成阻遏就会发生。如果这个产物被除去或者消耗完,那么阻遏蛋白将不再结合到操纵基因上,结构基因开始转录,同时终产物又重新开始合成。

2.8.1.4 分解代谢阻遏

这种代谢调控是对已建立的酶的诱导与阻遏调控的这种想法的延伸,通过向微生物培养液中添加外来营养物来实现。分解代谢阻遏这个术语涉及许多普遍的现象,来看这个例子,当一个微生物可从同时提供给它的一种或多种碳源中进行选择的话,它们则选择利用其偏好的那种底物。例如,如果给一个微生物同时供给葡萄糖和乳糖,则乳糖被忽略直到所有的葡萄糖被消耗完。若供应多种可利用的氮源,那么会出现项类似的情况。对细胞来说,分解代谢物阻遏的优点在于能够以最少的能量消耗对其进行利用。

分解代谢物阻遏的具体机制以生物体发生较大的变化。图2.21所示的一系列事件是大肠杆菌中发生的分解代谢物阻遏过程。对这个过程来讲,最关键的是化合物环化腺苷酸(cAMP,它的磷酸基团连接在核糖部分的3’和5’-羟基上,从而

形成磷酯)。cAMP,经腺苷酸环化酶作用由ATP生成,它与特定的受体蛋白作用(CRP=环化腺苷酸受体蛋白),其正向促进一个操纵子的转录。磷酸二酯酶将cAMP转化为AMP,cAMP的水平与2.2内容中提及的“能荷”紧密相关。葡萄糖代谢的各种产物看上去都是腺苷酸环化酶的强抑制剂[参考 2.8.1.5(b)],只要这些物质存在于细胞中(暗示有连续的可利用的葡萄糖存在),那么基于cAMP- CRP复合物控制的某些操纵子的转录将无法进行。分解代谢阻遏对控制厌氧代谢方式有重要影响,尤其在“次级代谢生物合成”现象中。

2.8.1.5 酶活性修饰

一旦酶被合成,它的活性就可以通过很多手段进行修饰。

(a)转录后修饰

某些酶的存在是有活性的或者低活性的形式,这通过与特定基团的共价吸附作用来相互转化(常常是磷酸,有时是AMP或者UMP)。这种吸附作用由一种单独酶作用,它没有其它的功能,其活性反过来由各种代谢产物来调控。被第一个酶催化的反应可通过细胞的主要代谢状况来调节(如图2.22)。进行这种代谢的例子有大肠杆菌中的谷氨酸合成酶(谷氨酸合成酶对细胞精细调节主要代谢中间产物谷氨酸与谷氨酰胺的库容量来说是非常重要的,它们分别是酶的底物和产物。)和粗糙脓胞杆菌中的糖原磷酸化酶。

(b)效应物作用

酶的作用常常由于其所催化反应所生成底物的累积而减慢,这个化合物就被称为抑制剂或者酶的效应物。这个机制理解起来比较简单:反应物阻止底物靠近酶活性位点,在这个位点上,两者必须是合适的。然而,许多酶尤其是代谢途径最开始进行时的那些酶,对于与它们所催化反应无关的化合物是敏感的。最为普遍的作用就是反馈抑制。

在这个作用中,代谢终产物是途径中早期的酶的活性的负效应物。这种抑制作用确保一旦有大量的终产物生成,那么含碳物质单元则不会再按照该途径进行代谢。当培养基中有终产物存在时,它被摄入到细胞中,此时同样出现这种抑制作用。

反馈抑制与酶合成阻遏有相同的作用,也是因为过量终产物的存在而发生。它可被看作是良好的控制,可以快速进行并容易逆转,而酶的阻遏提供串联控制,需要较长的时间来完成。

反馈抑制的一般机制是基于效应物与酶在某位点相结合,该位点不同于酶的活性位点;效应物改造了蛋白质的形态,故酶对底物反应过程就不再是一个有效的催化剂。认为这种酶是变构控制的,可见于许多合成氨基酸、嘌呤、嘧啶和其它单体物质的代谢途径中。

这个过程会变得相当的复杂,当从共同途径的支链生成了不只一种产物的时候。

这里重要的是,如果三种终产物F、G或者J中的一个达到了他的最高库容量,就必须阻止它的更多生成,但同时又要继续进行其他两种产物的合成。因此,在上面的图中,假设这三种终产物所需要的量是相等的,产物F 则完全阻止反应f,反应c的50%和反应a的33%。因此,从A开始,先是B而后以2/3速率生成C,C不是生成2倍于H的D,而是生成等量的这两种物质,所有的D将转化为G,H仍如以往一样生成J。

这种对酶活性部分抑制的方式,根据途径与有机体不同而不同,生物体所共同采用的一种常用的方法是同工酶。

那就是,对于上面的反应a,有三种各不相同的酶以相同的效率催化该反应,尽管一个同工酶对于产物F的反馈抑制作用是敏感的,第二个是对G敏感,第三个则是对H敏感。这样,仅有一个同工酶被抑制,如果一种终产物达到最大库浓度。反应C也类似的由两种同工酶催化,一个受F的反馈抑制,另一个则受G的反馈抑制。

这类控制作用的例子发生在芳香环氨基酸,苯丙氨酸、酪氨酸的生物合成途径中以及苏氨酸、甲硫氨酸与赖氨酸的生物合成过程中。

反馈抑制作用同时涉及了转运过程的控制。但是,将这个概念用到以下情况中是不准确的,这时代谢产物如ATP、ADP、AMP、NAD(P)+或NAD(P)H是某个特定的酶的正效应物或负效应物。例如,三羧酸循环中的某些酶特别是柠檬酸合成酶被A TP所抑制,同时由于A TP是与循环反应相关的氧化磷酸化反应的终产物,这个应该被解释为一种较间接形式的反馈抑制。

不考虑语义,这种通过不同形式或者辅因子进行的控制广泛作用于主要的代谢过程中的酶。

2.8.1.6 酶的降解

酶不是一种稳定的分子,能被迅速的破坏而且这个过程是不可逆的。正常的半衰期变化较大,短的只有几分钟,长的则可以是数天。尽管可以从基因水平对酶的合成进行调控,但是一旦酶被合成,就可以在某时间内保持其功能。如果周围环境突然发生改变,就无法满足酶的合成的关闭,例如阻遏;细胞需要使酶失活以避免无用的甚至可能是有害的代谢活动。已知的某些例子有,激活的蛋白水解酶将破坏某个特定的酶。激活过程可能由主要代谢产物的出现和缺乏而引发。

2.8.2 同步代谢与生长

我们已经知道了细胞是怎样控制它们的许多组分的生物合成从而合成适量单体与不同的酶分子,这种控制机制受细胞周围环境的影响,细胞总是试图优化内在的生化过程以便更有效的利用预先生成的含碳和含氮化合物,同时产生最大的能量,消耗最少的能量,并以最快的速度进行生长。

在限定的环境条件下,如果没有任何一种氮源,那么有机体就不能生长,在这种条件下,当有机体继续对可利用的碳源进行生长代谢时,终产物将被累积。有机体生物合成过程必须要不停的运作,只有当生物体死亡,这时细胞的反应过程才能达到平衡。

因此,有机体保持其生化机能进行不停的运作是关键的,它们通过许多方法来达到这个目的,这些方法依赖于有机体所处的主要状态:通过阻遏新的厌氧代谢酶,有机体将含碳底物进行任意一种次级代谢;可产生大量的储备化合物如多聚-β-羟基丁酸、脂肪、糖原和其它多糖。如果处于“饥饿”状态,没有外来碳源供应,有机体便将降解这些储备物质,与细胞维持代谢途径相比,生成什么产物来说就显得不那么重要了。

在正常的情况下,如果所有的必需养分都能供应,则微生物就能生长。

在分批式培养中,细胞在关闭的系统中繁殖(一旦培养开始,就不会添减发酵罐中的物质),直到某些养分被耗尽或积累的某些产物抑制了有机体的生长,或者细胞的数量达到了不能再有任何空间容纳新生细胞的水平,这个时候,细胞增值才会停止。在细胞生长过程中,各种化合物的相对含量发生变化,由于细胞在核糖体中合成越来越多的蛋白质,RNA的量就会迅速增高,而如图2.23所示,DNA的量就会减少,尽管减少的程度取决于细胞进行DNA复制的速率。

细胞生长速率以倍增时间(td)表示细胞从一个变为2个所需要的时间,以及比生长速率(μ)表示单位重量的已有细胞物质合成新物质的速率。这两个量按下式关联:。。。。。。。。

在分批式培养中,由于营养物质含量的持续下降,μ值一直是变化的;在好氧有机体的许多实际情况中,氧气供应的速率最终控制它们生长的速率。只有在连续培养中,通过不断地加入新鲜养分,具体生长速率才会保持恒定。一个生物能够获得最大生长速率是由谁来控制的依不同生物而异,而且对大部分有机体来说都不得而知。可能是DNA合成的最终速度,或者是细胞吸收某一特定养分的速度,或者是细胞的某部分如细胞壁的装配速度。倍增时间可以从Behakea natriegens的10分钟到酵母菌与真菌的几小时,大部分细菌的倍增时间为30分钟或更长,而某些则需要几天。表2.3例出了例子。

2.8.3 细胞周期与DNA复制

细胞分裂过程在原核与真核生物中是不同的,尽管它们采用相似的机制来控制基因的表达和调控基因产物(酶蛋白)的活性。在一个快速增长的细胞中,DNA合成或多或少的是连续进行的,但在一个真核细胞中,它只在部分细胞周期中形成。细菌的基因是双螺旋结构中的2分子DNA。它们头尾相连形成环状染色体,真核生物细胞含有多条独立的染色体。

在真核生物细胞中,细胞周期可分为几个阶段,每段持续的时间取决于生长条件。随着所有染色体的复制,周期达到最高潮,然后通过有丝分裂两套染色体在母细胞和子细胞之间分配。当生物体进化到更高级的微生物领域将进行有性生殖而不是细菌体的简单的二次分裂或者是酵母的芽殖,这时有丝分裂过程将变得更为复杂。染色体分配的过程将通过减数分裂来进行,经过DNA的复制,染色体将分配到生殖细胞中。

在所有的微生物中,DNA都以相似的机制进行复制,双链DNA解旋,每条链形成互补新链,这个过程如图2.24所示。每个复制叉作双向运动,也就是说,解链与互补新链的合成发生在同一个分离末端。

在细菌中,同一时刻有多个复制叉发挥作用,所以基因可以极快的速度进行复制。当DNA完全复制的时间比细胞分裂的时间长的时候,这个情况就会发生,而且在这样的条件下,每个细胞将含有多个染色体上被复制的部分的拷贝。这样使细胞分裂与染色体的完全复制同步进行,以使每个配体细胞在分裂隔膜形成前就获得自身的DNA。显然,当DNA复制过程完成时,一种“终端蛋白”被合成,就是这个蛋白引发隔膜的形成和细胞分裂。

真核细胞中,细胞成倍复制过程被复杂化,在细胞周期过程中,细胞器要进行分裂,线粒体和叶绿体有自身的DNA 并各自独立的分裂为细胞核子,这样,根据周围环境条件,线粒体与叶绿体的数量就会发生变化。例如,在厌氧条件下生长的酵母,不依赖线粒体提供A TP从而线粒体的数量就比较少。

尽管载有遗传信息的DNA能够精确复制从而使子细胞带有与它们父母相同的染色体图谱,但仍会出现错误。这样的错误导致突变体的形成,突变体可自发的生成,通常以很低的频率(大约每108-1010细胞分裂中有一个突变体),或者被诱导生成,通过将生物体暴露于DNA突变剂中。具有可变化的酶功能的突变体在发酵过程中对于提高产量来说是很有益的,尽管这样,从成千上万个不需要的突变体中寻找我们想要的那个突变体是一个漫长的过程。

在大多数情况下,突变体不能进行某些活动;许多情况下,这种作用将是致死性的从而细胞就不能生长。一般很少数量的突变体能够存活下来,但由于在实验中应用了大量的微生物,因此0.001%的存活就代表着10000个生物。

2.8.4 微生物生长速率

微生物生长的速率常常以每消耗单位重量的底物所生成的细胞数量的形式来表示。摩尔生长率是细胞量(干重)与每摩尔底物的比值,而碳转化系数是细胞量与每克含碳底物的比值,这个对于不同分子大小的底物之间的比较更有意义。表2.4列举了这两种表达方式的一些典型数据,都是最大值,因为在某些特定情况下(尤其是处于低生长率情况下),用于细胞生长的底物的利用是不完全的。

表2.4显示了一个典型特点,参考前面的讨论是很容易理解的,即当兼性有机体从好氧状态转为厌氧状态时,生长率降低,这个现象明显的与厌氧过程中能量降低的流向和A TP产量的减少相关。

经验上,实际的生长率取决于很多因素:

(1)碳源的性质

(2)底物分解代谢途径

(3)任何复杂底物的供应(排除某些合成途径)

(4)同化其他养分的能量需求,特别是氮(如果供应的是氨基酸,那么它比利用NH3所需要的能量少,而比以氮作为氮源所需要的能量多)。

(5)ATP生成反应的速率

(6)抑制剂,不利离子的平衡,或者其他培养基组分,需要转运体系的参与。

(7)生物体的生理状态;几乎所有的微生物都是根据外界环境来改变它们的发展,常常是大量的而且不同的发展过程必须要保持不同质量与能量的平衡。

在连续培养系统中,细胞的生长速度和营养状态时可以进行控制的,进一步的影响因素有:

(8)限制性底物的性质;限制性碳源比限制性氮源的生长效率高;在这个过程中,对过量含碳底物的分解代谢将进入耗能代谢途径。

(9)所允许的生长速率

作为最终控制微生物活动各个方面的因素,必须要补充:

(10)微生物的倾向与微生物学家的能力

学术英语医学Unit1-3-7-9课文翻译

学术英语unit1,unit3,unit4,unit9课文翻译 Unit 1 Text A 神经过载与千头万绪的医生 患者经常抱怨自己的医生不会聆听他们的诉说。虽然可能会有那么几个医生确实充耳不闻,但是大多数医生通情达理,还是能够感同身受的人。我就纳闷为什么即使这些医生似乎成为批评的牺牲品。我常常想这个问题的成因是不是就是医生所受的神经过载。有时我感觉像变戏法,大脑千头万绪,事无巨细,不能挂一漏万。如果病人冷不丁提个要求,即使所提要求十分中肯,也会让我那内心脆弱的平衡乱作一团,就像井然有序同时演出三台节目的大马戏场 突然间崩塌了一样。有一天,我算过一次常规就诊过程中我脑子里有多少想法在翻腾,试图据此弄清楚为了完满完成一项工作,一个医生的脑海机灵转动,需 要处理多少个细节。 奥索里奥夫人 56 岁,是我的病人。她有点超重。她的糖尿病和高血压一直控制良好,恰到好处。她的胆固醇偏高,但并没有服用任何药物。她锻炼不够多,最后一次 DEXA 骨密度检测显示她的骨质变得有点疏松。尽管她一直没有爽约,按时看病,并能按时做血液化验,但是她形容自己的生活还有压力。总的说来,她健康良好,在医疗实践中很可能被描述为一个普通患者,并非过于复杂。 以下是整个 20 分钟看病的过程中我脑海中闪过的念头。 她做了血液化验,这是好事。

血糖好点了。胆固醇不是很好。可能需要考虑开始服用他汀类药物。 她的肝酶正常吗? 她的体重有点增加。我需要和她谈谈每天吃五种蔬果、每天步行 30 分钟的事。 糖尿病:她早上的血糖水平和晚上的比对结果如何?她最近是否和营养师谈过?她是否看过眼科医生?足科医生呢? 她的血压还好,但不是很好。我是不是应该再加一种降血压的药?药片多了是否让她困惑?更好地控制血压的益处和她可能什么药都不吃带来的风险孰重孰轻? 骨密度 DEXA 扫描显示她的骨质有点疏松。我是否应该让她服用二磷酸盐,因为这可以预防骨质疏松症?而我现在又要给她加一种药丸,而这种药需要详细说明。也许留到下一次再说吧? 她家里的情况怎么样呢?她现在是否有常见的生活压力?亦或她有可能有抑郁症或焦虑症?有没有时间让她做个抑郁问卷调查呢? 健康保养:她最后一次乳房 X 光检查是什么时候做的?子宫颈抹片呢? 50 岁之后是否做过结肠镜检查?过去 10 年间她是否注射过破伤风加强疫苗?她是否符合接种肺炎疫苗的条件? 奥索里奥夫人打断了我的思路,告诉我过去的几个月里她一直背痛。从她的角度来看,这可能是她此次就诊最要紧的事。但事实是,她让我如火如荼的思绪戛然而止(当时我正在考虑她的血糖问题,继而又有了一个念头,准备和她讨论饮食和锻炼的事,这时又跳出了另一个想法,要和她探讨是否开始服用他汀类药物)。我的本能反应是举手,阻止她打断我的思路。这并不是说我不想听她一定要说的话,而是我千头万绪,在到点前需要解决所这些问题,这种感

生物工程生物技术专业英语翻译(七)

第七章仪器化 7.1介绍 本章主要介绍发酵过程中检测和控制的仪表。显然这些仪表并不时专门用于生物发酵领域的,它们在生物工程或相关的领域中也有广泛的应用。在实际中,大多数应用与生物工程的分析仪表并不是由生物工程发展的产物,至今,生物学家常用的仪表是在化学工业中应用的而发掌出来的。但是,这些精确的仪表并不是为更加复杂的生物反应专门设计的,在计算机控制出现以后,这表现的更加明显。 计算机自动化的发展主要基于各种探测器的发展,它们可以将有意义的信号转化成控制动作。现在适合于提供发酵过程详细参数的适当仪器已经有了很大的改进,这可以提高产量和产率。遗憾的是,在商业化中实现这些自动控制还很困难,但是改变这种情况只是时间的问题。本章只讨论现有的仪表和设备,它们目前都有各自的局限性。 计算机控制是目前发酵工程中的惯用语,不久之后,发酵过程也许真的可以和计算机匹配。但是在这一进步过程中,我们开始考虑一句谚语,“工具抑制创造性思维”。计算机控制需要在线仪表,我们在章中会有涉及。 7.2 术语 如果我们所有对生物工程过程的理解需要仪表,我们真正熟悉我们所用的仪表就非常重要,否则我们就会对这些仪

表的适用性和特性产生错误的判断。下面对一些常用的性质加以介绍。 反应时间通常是描述90%输入信号转换成输出信号所需要的时间。作为经验法则,用于生物系统的仪表的反应时间要小于倍增时间的10%。因此,在典型的发酵工程中,如果倍增时间是3h,超过18min反应时间的仪表将无法完成在线控制。很多仪表有更小的反应时间,它们通常被用于一些其它样品的操作,它们的测定和控制动作的之后时间更长。 灵敏度是衡量仪表输出结果变化和输入信号变化之间的关系。通常,考虑到高灵敏度的仪表可以测量微小的输入变化,灵敏度越高的仪表越好。然而,仪表的其它参数,如线性,精确性,和测定范围也是选择仪表的考虑因素。 输入与输出的线性关系是二者最简单的关系,校正过程也最为容易。 分辨率是可以测定的输入信号的最小值,通常以仪表读数最大偏转角的百分数来表示。 残留误差是指输出结果与输入保持恒定时的真实结果的偏离值。 重现性永远不要被忽视,只要有可能,就要对仪表进行校正,尤其是那些测定氧气和二氧化碳测定的仪表。 7.3 过程控制 在过程控制中,有三种可能实现的目标:

生物工程专业英语翻译(第一篇)改

1.1 生物技术的属性 生物技术是一个属于应用生物科学和技术的一个领域,它包含生物或亚细胞组分在制造行业、服务也和环境管理等方面的应用。生物技术利用细菌、酵母菌、真菌、藻类、植物细胞或培养的哺乳动物细胞作为工业过程的组成成分。只有将包括微生物学、生物化学、遗传学、分子生物学、化工原理在内的多种学科和技术综合起来才能获得成功的应用。 生物技术过程通常会涉及到细胞的培养和生物量,并得到所需的产品,后者可进一步分为:生成所需产品(如酶、抗生素、有机酸和类固醇); 原料的分解(如污水处理、工业废料处理和石油泄漏处理)。 生物技术的反应过程是分解过程,即把复杂化合物分解为简单化合物(如葡萄糖分解为乙醇),也是合成或同化过程,即把简单的分子合称为复杂的化合物(如抗生素的合成)。分解过程通常释放热量,而合成过程通常吸收能量。 生物技术包括发酵过程(如啤酒、果酒、面包、奶酪、抗生素和疫苗的生产)、供水与废物处理、食品技术以及越来越多的新应用,包括从生物医学到从地品位矿石中回收金属各个领域。由于生物技术的普遍性,它将在许多工业生产过程中产生重大的影响。理论上,几乎所有的有机物都能用生物技术来生产。到2000年,生物技术在未来全球市场的潜力预计接近650亿美元(表1.1)。然而,我们必须意识到,许多重要的生物产品仍将利用现有的分子模型通过化学方法合成。因此,应该从广义上来理解生物化学和化学以及他们与生物技术的关系。 生物技术所采用的众多技术通常比传统工业更经济、更低能耗、更安全,而且生产过程中的残留物都能够通过生物降解而且无毒。从长远来看,生物技术提供了一种可以解决众多世界性难题的方法,尤其是医药、食品生产、污染控制和新能源发展领域的问题。 表1.1 全球生物技术市场在2000年之前的增长潜力 摘自Sheets公司(1983n年)生物技术通报11月版。

生物工程生物技术专业英语翻译一

第一章导论 1.1生物工程的特征 生物工程是属于应用生物科学和技术的一个领域,它包含生物或其亚细胞组分在制造业、服务业和环境管理等方面的应用。生物技术利用病毒、酵母、真菌、藻类、植物细胞或者哺乳动物培养细胞作为工业化处理的组成部分。只有将微生物学、生物化学、遗传学、分子生物学、化学和化学工程等多种学科和技术结合起来,生物工程的应用才能获得成功。 生物工程过程一般包括细胞或菌体的生产和实现所期望的化学改造。后者进一步分为: (a)终产物的构建(例如,酶,抗生素、有机酸、甾类); (b)初始原料的降解(例如,污水处理、工业垃圾的降解或者石油泄漏)。 生物工程过程中的反应可能是分解代谢反应,其中复合物被分解为简单物质(葡萄糖分解代谢为乙醇),又或者可能是合成代谢反应或生物合成过程,经过这样的方式,简单分子被组建为较复杂的物质(抗生素的合成)。分解代谢反应常常是放能反应过程,相反的,合成代谢反应为吸能过程。 生物工程包括发酵工程(范围从啤酒、葡萄酒到面包、

奶酪、抗生素和疫苗的生产),水与废品的处理、某些食品生产以及从生物治疗到从低级矿石种进行金属回收这些新增领域。正是由于生物工程技术的应用多样性,它对工业生产有着重要的影响,而且,从理论上而言,几乎所有的生物材料都可以通过生物技术的方法进行生产。据预测,到2000年,生物技术产品未来市场潜力近650亿美元。但也应理解,还会有很多重要的新的生物产品仍将以化学方法,按现有的生物分子模型进行合成,例如,以干扰为基础的新药。因此,生命科学与化学之间的联系以及其与生物工程之间的关系更应阐释。 生物工程所采用的大部分技术相对于传统工业生产更经济,耗能低且更加安全,而且,对于大部分处理过程,其生产废料是经过生物降解的,无毒害。从长远角度来看,生物工程为解决世界性难题提供了一种方法,尤其是那些有关于医学、食品生产、污染控制和新能源开发方面的问题。 1.2生物工程的发展历史 与一般所理解的生物工程是一门新学科不同的是,而是认为在现实中可以探寻其发展历史。事实上,在现代生物技术体系中,生物工程的发展经历了四个主要的发展阶段。 食品与饮料的生物技术生产众所周知,像烤面包、啤酒与

医学英语_课文翻译

Unit One Text A:Hippocratic Oath, The Medical Ideal 或许在医学史上最持久的,被引用最多次的誓言就是”希波克拉底誓言”.这个以古希腊著名医师希波克拉底命名的誓言,被作为医师道德伦理的指导纲领.虽然随着时代的变迁,准确的文字已不可考,但誓言的主旨却始终如一——尊敬那些将毕生知识奉献于医学科学的人,尊重病人,尊重医师尽己所能治愈病人的承诺。 作为被大家公认的”医学之父”,我们对希波克拉底知之甚少.他生活于约公元前460-380年,作为一名职业医师,与苏格拉底是同代人.在他的时代,他被推举为当时最著名的医师和医学教育者.收录了超过60篇论文的专著——希波克拉底文集,被归于他的名下;但是其中有些论文的内容主旨相冲突,并成文于公元前510-300年,所以不可能都是出自他之手. 这个宣言是以希波克拉底命名的,虽然它的作者依然存在疑问。根据医学历史权威的看法,这个宣言的内容是在公元前四世纪起草的,这使希波克拉底自己起草这个宣言成为可能。无论如何,不管是否是希波克拉底自己起草的(希波克拉底宣言),这个宣言的内容都反映了他在医学伦理上的看法。 作为代表当时希腊观点的唯一一小部分,希波克拉底誓言首次被写时并没有受到很好的欢迎。然而,在那远古时代结束时,医生们开始遵循誓言的条款。当科学医学在罗马帝国衰亡后遭受一显而易见的衰退时,这个誓言,连同希波克拉底医学的指示命令,在西方都几乎被遗忘是有可能的。正是通过东方坚持不懈的探索精神,使得希波克拉底医学信念和希波克拉底宣言得以在这一恶化的时期幸存下来,尤其是通过阿拉伯当局在医学上的著作。希腊医学知识而后在西方基督教复活是通过了阿拉伯文论著和原始希腊文的拉丁文翻译。 到17世纪后期,专业行为标准已经在西方世界建立。被专业组织通过的第一部医学伦理学的法典是由英国内科医生托马斯·珀西瓦尔(1740 - 1804)1794年编写的, 并在1846年被改编和通过了美国医学协会(AMA)。Thomas Percival提出的道德规范为职业医师提供了金标准,主宰着医生们服务他人时的道德权威和独立性以及医生对病人的责任,还有医生的个人荣誉。 6.The seeds had been sown by Hippocrates - or one of his ghost writers. 种子已经被希波克拉底或者他的代笔者们所播种。 7.二战之后,由于在罪犯身上进行骇人听闻的医学实验而违反了医学伦理准则,23位来自行德国纳粹集中营的医生被判有罪。这一事件导致了纽伦堡宣言的诞生(1947),这意味着关于人类受试者的道德治疗的讨论的开启,概述了在医学研究中关于这些受试者权益的道德问题。这反过来导致1948年世界医学协会通过了维也纳宣言的宣誓。 Contemporary dilemmas in the Modern World

生物工程专业英语翻译(第二章)

Lesson Two Photosynthesis 内容: Photosynthesis occurs only in the chlorophyllchlorophyll叶绿素-containing cells of green plants, algae藻, and certain protists 原生生物and bacteria. Overall, it is a process that converts light energy into chemical energy that is stored in the molecular bonds. From the point of view of chemistry and energetics, it is the opposite of cellular respiration. Whereas 然而 cellular细胞的 respiration 呼吸is highly exergonic吸收能量的and releases energy, photosynthesis光合作用requires energy and is highly endergonic. 光合作用只发生在含有叶绿素的绿色植物细胞,海藻,某些原生动物和细菌之中。总体来说,这是一个将光能转化成化学能,并将能量贮存在分子键中,从化学和动能学角度来看,它是细胞呼吸作用的对立面。细胞呼吸作用是高度放能的,光合作用是需要能量并高吸能的过程。Photosynthesis starts with CO2 and H2O as raw materials and proceeds through two sets of partial reactions. In the first set, called the light-dependent reactions, water molecules are split裂开 (oxidized), 02 is released, and ATP and NADPH are formed. These reactions must take place in the presence of 在面前 light energy. In the second set, called light-independent reactions, CO2 is reduced (via the addition of H atoms) to carbohydrate. These chemical events rely on the electron carrier NADPH and ATP generated by the first set of reactions. 光合作用以二氧化碳和水为原材料并经历两步化学反应。第一步,称光反应,水分子分解,氧分子释放,ATP和NADPH形成。此反应需要光能的存在。第二步,称暗反应,二氧化碳被还原成碳水化合物,这步反应依赖电子载体NADPH以及第一步反应产生的ATP。 Both sets of reactions take place in chloroplasts. Most of the enzymes and pigments 色素for the lightdependent reactions are embedded 深入的内含的in the thylakoid 类囊体 membrane膜隔膜 of chloroplasts 叶绿体. The dark reactions take place in the stroma.基质 两步反应都发生在叶绿体中。光反应需要的大部分酶和色素包埋在叶绿体的类囊体膜上。暗反应发生在基质中。 How Light Energy Reaches Photosynthetic Cells(光合细胞如何吸收光能的) The energy in light photons in the visible part of the spectrum can be captured by biological molecules to do constructive work. The pigment chlorophyll in plant cells absorbs photons within a particular absorption spectrums statement of the amount of light absorbed by chlorophyll at different wavelengths. When light is absorbed it alters the arrangement of electrons in the absorbing molecule. The added energy of the photon boosts the energy condition of the molecule from a stable state to a less-stable excited state. During the light-dependent reactions of photosynthesis, as the absorbing molecule returns to the ground state, the "excess" excitation energy is transmitted to other molecules and stored as chemical energy. 生物分子能捕获可见光谱中的光能。植物细胞中叶绿素在不同光波下吸收部分吸收光谱。在吸收分子中,光的作用使分子中的电子发生重排。光子的能量激活了分子的能量状态,使其

生物工程生物技术专业英语翻译二

生物工程生物技术专业英 语翻译二 The Standardization Office was revised on the afternoon of December 13, 2020

第二章生长与代谢的生物化学 前言 一个微生物以生产另一个微生物为目的。在某些情况下,利用微生物的生物学家们希望这样的情况能够快速频繁的发生。在另外一些产物不是生物体自身的情况下,生物学家必须对它进行操纵使微生物的目标发生变化,这样以来,微生物就要努力的挣脱对它们繁殖能力的限制,生产出生物学家希望得到的产物。生物体的生长过程及其生产出的各种产物与微生物代谢的本质特点是密不可分的。 代谢过程是两种互相紧密联系又以相反方向进行的活动过程。合成代谢过程主要是细胞物质的生成,不仅包括构成细胞的主要组成物质(蛋白质、核酸、脂质、碳水化合物等等),同时也包括它们的前提物质——氨基酸、嘌呤与嘧啶、脂肪酸、各种糖与糖苷。合成代谢不是自发进行的,必须由能量所推动,对大多数微生物来说,是通过一系列的产能分解代谢过程来供给能量。碳水化合物分解为CO2和水的过程是最为常见的分解代谢反应,然而微生物以这样的方式还能够利用更大范围的还原性含碳化合物。分解代谢与合成代谢所有微生物生物化学的基础,可以从两者的平衡关系或者分别对它们进行讨论。 实际中,我们要有效的区分那些需要空气中的氧进行需氧代谢的生物与那些进行厌氧代谢的生物。还原性含碳化合

物与O2反应生成水和CO2,这是一个高效的放热反应过程。因此,一个进行需氧代谢的生物要使用一小部分底物进行分解代谢以维持某一水平的合成代谢,即成长过程。对于厌氧型生物,其底物的转化的过程基本上是一个不匀称的反应(氧化还原反应),产生很少的能量,因此,大部分底物都要被分解从而维持一定水平的合成代谢。 在生物体中这种差别能够明显的体现出来,比如酵母,它属于兼性厌氧生物,即它可在有氧条件下生长也可在无氧环境下生存。需氧酵母使糖以同样的速度转化为CO2和水,相对产生高产量的新酵母。而厌氧条件下,酵母菌生长缓慢,此时酵母被有效的转化为酒精和CO2。 代谢与能量 分解代谢与合成代谢间的有效联系在于,各种分解代谢过程促进少量反应物的合成,而后又被用来促进全面的合成代谢反应。在这种重要的中间产物中,其中最为重要的是ATP,其含有生物学家所说的“高能键”。在ATP分子中,酐与焦磷酸残基相联。高能键在水解过程中所产生的热量就被用来克服在其形成过程中需要摄入的能量。像ATP这类分子,为细胞提供了流通能量,当将ATP用于生物合成反应时,其水解产物为ADP(腺苷二磷酸)或者某些时候为AMP(腺苷一磷酸):(反应式)

医学英语课文翻译

Unit One Text A: Hippocratic Oath, The Medical Ideal 或许在医学史上最持久的,被引用最多次的誓言就是”希波克拉底誓言”.这个以古希腊著名医师希波克拉底命名的誓言,被作为医师道德伦理的指导纲领.虽然随着时代的变迁,准确的文字已不可考,但誓言的主旨却始终如一——尊敬那些将毕生知识奉献于医学科学的人,尊重病人,尊重医师尽己所能治愈病人的承诺。 作为被大家公认的”医学之父”,我们对希波克拉底知之甚少.他生活于约公元前460-380年,作为一名职业医师,与苏格拉底是同代人.在他的时代,他被推举为当时最著名的医师和医学教育者.收录了超过60篇论文的专著——希波克拉底文集,被归于他的名下;但是其中有些论文的内容主旨相冲突,并成文于公元前510-300年,所以不可能都是出自他之手. 这个宣言是以希波克拉底命名的,虽然它的作者依然存在疑问。根据医学历史权威的看法,这个宣言的内容是在公元前四世纪起草的,这使希波克拉底自己起草这个宣言成为可能。无论如何,不管是否是希波克拉底自己起草的(希波克拉底宣言),这个宣言的内容都反映了他在医学伦理上的看法。 作为代表当时希腊观点的唯一一小部分,希波克拉底誓言首次被写时并没有受到很好的欢迎。然而,在那远古时代结束时,医生们开始遵循誓言的条款。当科学医学在罗马帝国衰亡后遭受一显而易见的衰退时,这个誓言,连同希波克拉底医学的指示命令,在西方都几乎被遗忘是有可能的。正是通过东方坚持不懈的探索精神,使得希波克拉底医学信念和希波克拉底宣言得以在这一恶化的时期幸存下来,尤其是通过阿拉伯当局在医学上的著作。希腊医学知识而后在西方基督教复活是通过了阿拉伯文论著和原始希腊文的拉丁文翻译。 到17世纪后期,专业行为标准已经在西方世界建立。被专业组织通过的第一部医学伦理学的法典是由英国内科医生托马斯·珀西瓦尔(1740 - 1804)1794年编写的, 并在1846年被改编和通过了美国医学协会(AMA)。Thomas Percival提出的道德规范为职业医师提供了金标准,主宰着医生们服务他人时的道德权威和独立性以及医生对病人的责任,还有医生的个人荣誉。 种子已经被希波克拉底或者他的代笔者们所播种。 二战之后,由于在罪犯身上进行骇人听闻的医学实验而违反了医学伦理准则,23位来自行德国纳粹集中营的医生被判有罪。这一事件导致了纽伦堡宣言的诞生(1947),这意味着关于人类受试者的道德治疗的讨论的开启,概述了在医学研究中关于这些受试者权益的道德问题。这反过来导致1948年世界医学协会通过了维也纳宣言的宣誓。 誓言的重申一直是个问题。医学伦理相当复杂。他们必须平衡病人的期望、社会需求和禁忌、经济和政治现实以及并不断发展的医学和科学知识之间的关系。例如,当初的誓言要求无论在任何情况下患者都应得到治愈。然而,在双盲试验中使用安慰剂是在药物开发必不可少的,但却意味着医生没有试图进行治疗。而当初的誓言,也将禁止病人分流治疗。病人分流治疗用于战争或灾害时根据病人的生存机会优先进行治疗。对有或没有医疗保险的病人进行不同的医疗保健是不可能的。使用高剂量毒性药物进行化疗的某些危险形式将被禁止。最后,能够减轻身处无法治愈境地的病人痛苦的安乐死被当初的誓言所禁止。 因此,人们争辩自希波克拉底的时代以后,原始的希波克拉底誓言在一个发生了翻天覆地的社会经济、政治和道德变革的社会是无效的。这指引我们对誓言进行修改,使其更适合我们的时代。四个当今使用最广泛的版本是:日内瓦宣言(前文已提及);迈蒙尼德的祷告;Lasagna宣言;修复后的希波克拉底宣言.虽然他们的措辞和内容不同,主要原则是一样的

生物工程生物技术专业英语翻译(二)

第二章生长与代谢的生物化学 2.1 前言 一个微生物以生产另一个微生物为目的。在某些情况下,利用微生物的生物学家们希望这样的情况能够快速频繁的发生。在另外一些产物不是生物体自身的情况下,生物学家必须对它进行操纵使微生物的目标发生变化,这样以来,微生物就要努力的挣脱对它们繁殖能力的限制,生产出生物学家希望得到的产物。生物体的生长过程及其生产出的各种产物与微生物代谢的本质特点是密不可分的。 代谢过程是两种互相紧密联系又以相反方向进行的活动过程。合成代谢过程主要是细胞物质的生成,不仅包括构成细胞的主要组成物质(蛋白质、核酸、脂质、碳水化合物等等),同时也包括它们的前提物质——氨基酸、嘌呤与嘧啶、脂肪酸、各种糖与糖苷。合成代谢不是自发进行的,必须由能量所推动,对大多数微生物来说,是通过一系列的产能分解代谢过程来供给能量。碳水化合物分解为CO2和水的过程是最为常见的分解代谢反应,然而微生物以这样的方式还能够利用更大范围的还原性含碳化合物。分解代谢与合成代谢所有微生物生物化学的基础,可以从两者的平衡关系或者分别对它们进行讨论。 实际中,我们要有效的区分那些需要空气中的氧进行需氧代谢的生物与那些进行厌氧代谢的生物。还原性含碳化合物与O2反应生成水和CO2,这是一个高效的放热反应过程。因此,一个进行需氧代谢的生物要使用一小部分底物进行分解代谢以维持某一水平的合成代谢,即成长过程。对于厌氧型生物,其底物的转化的过程基本上是一个不匀称的反应(氧化还原反应),产生很少的能量,因此,大部分底物都要被分解从而

维持一定水平的合成代谢。 在生物体中这种差别能够明显的体现出来,比如酵母,它属于兼性厌氧生物,即它可在有氧条件下生长也可在无氧环境下生存。需氧酵母使糖以同样的速度转化为CO 2和水,相对产生高产量的新酵母。而厌氧条件下,酵母菌生长缓慢,此时酵母被有效的转化为酒精和CO 2。 2.2 代谢与能量 分解代谢与合成代谢间的有效联系在于,各种分解代谢过程促进少量反应物的合成,而后又被用来促进全面的合成代谢反应。在这种重要的中间产物中,其中最为重要的是ATP ,其含有生物学家所说的“高能键”。在ATP 分子中,酐与焦磷酸残基相联。高能键在水解过程中所产生的热量就被用来克服在其形成过程中需要摄入的能量。像ATP 这类分子,为细胞提供了流通能量,当将ATP 用于生物合成反应时,其水解产物为ADP (腺苷二磷酸)或者某些时候为AMP (腺苷一磷酸):(反应式) 仍含有一个高能键的ADP 通过腺苷酸激酶反应也可生成ATP :(反应式)。 磷酸化作用是生物体中普遍的反应,通常由ATP 作用而发生。 经过磷酸化生成的物质通常比最初的化合物更具有反应活性,用无机磷酸进行磷酸化反应是无法进行的,因为,平衡反应式的相反方向生成大量的水(55M )。 细胞的“能量状态”认为是由占有优势的组分:ATP 、ADP 、AMP 作用形成的。为了给出一个量值,Daniel Atksirson 提出了“能荷”这个概念,定义一个细胞的能荷为: 在“满荷”细胞中,仅含有ATP 一种腺嘌呤核苷酸,它的能荷值定义为 1.0。如果三种核苷酸的量相等,即ATP=ADP=AMP ,则细胞的能荷为ATP+0.5 ADP ATP+ ADP+AMP

医学英语课文翻译

Unit5 Reading B 肺炎的翻译和定义 1.当肺炎这个词被用在医学实践中,它最长指的是一种急性的反应,常见地细菌造成的综合征,它的特点是一半或一侧肺或两侧肺的临床的和/或放射照相的征象的实变。常用的这个词意然而已经很大程度上延伸到被各种各样的微生物造成的包括非细菌性的肺部的感染。Pneumonitis肺炎也偶尔被用作是肺炎pneumonia的一个同义词,特别的当炎症的肺由非感染因素造成比如化学或射线伤害。 2.从实际目的出发,肺炎的分类应当既依解剖学部位,又指明病因:前者使用描绘性词语表达肺(一侧肺或左右两侧)病程的发展程度和分布,后者指明涉及的微生物。考虑到,作为最初的原因,肺炎感染的原因被认为是否是社区或者是医院的感染是不被知道的。它也被有帮助的认为是否肺炎也许能由咽部吸入造成和是否或不是发生在免疫力下降的宿主身上。 3.从解剖学上肺炎习惯表明是否包括一个或更多进入肺叶或是否被限制在一节段或多节段的过程。在涉及面及小时,肺炎也许是节段的。对解剖部位的描述在实际中完全依赖胸透,(它透过X光检查)所显示的肺炎过程比体检所得到的的估计更准确。早期的诊断医生通过病理学组织在支气管肺炎和小叶性肺炎中分辨。支气管肺炎被认为是支气管在炎症性的过程被一小部分或中端的气管和肺叶对向它限制的并发症,因此是肺叶的交替性肺炎。小叶性肺炎,在另一方面,频繁地从头发生和特征是一种炎症性的外流或液体渗出物填充经过一叶或多叶肺。 4.作为补充的是小叶肺炎被认为是在临床和放射上表现的融合性实变出现在一部分或一肺叶或两个肺。组织离段型肺炎被认为是合并不扩张的大多肺叶但是和解剖学上的支气管肺段在一侧或两侧更紧密。当X光阴影的区域出现更多的小的阴影,压迫性肺炎是一个适当的可描述的组织,虽然这仍是暗指一个融合的和局限的过程。如果显示亚段病变的阴影呈零星状(非融合的),散布于一肺或左右肺的一部分或全部,很难定位,则仍可以使用支气管肺炎。

生物工程专业专业英语复习重点

Chapter One Fundamentals of Medicine Passage 1 Anatomy of Mouse and Human Heart 单词: Anatomy 解剖学 anatomical 解剖的,解剖学的 atria 心房 atria chamber 心房腔 cardiovascular 心血管系统 genetical 遗传的 conception 受孕 diaphragm 横膈,横膈膜 fetus 胎儿,胎 gestational 妊娠的,妊娠期的 morphological 形态学的 murine 鼠类,鼠性的 neonatal 新生的,新生期的,新生儿的,新生婴儿 pericardial cavity 心包腔 prenatal 产前的,出生前的 pulmonary 肺的 septation 分隔,中隔,隔膜 thoracic cavity 胸腔 句子:A fast-increasing number of genetically modified mouse models with structural and functional abnormalities in the cardiovascular system undoubtedly will contribute to an improved understanding of molecular and morphological mechanisms that regulate human heart development in health and disease.(5分)小鼠基因修饰模型是通过改变小鼠基因因而使其心血管系统结构和功能异常得到改变的一种动物模型。这类模型的大量增加,无疑会促进我们理解人的心脏在健康及病理状态下的分子和形态学机制。 Developmentally, it is interesting to note that the gestational window during which the heart develops is quite different in the mouse and human. In the human it takes about 2 mo (from conception) for the heart to complete septation, followed by another 7 mo to further mature until the baby is born and the pulmonary circulation kicks in. In the mouse, however, it takes only 2 wk from the time of conception for cardiac septation to complete. After that, the mouse fetus has less than 1 wk of prenatal life before birth. Without going into any detail, it suffices to say that some of the developmental events that in the human are more or less completed at birth are still in progress in the neonatal mouse. 人们有趣地发现小鼠与人的心脏在孕育其中的发育有很大不同。人的心脏约在最初2个月的时间(自受孕起)完成中隔生长,并在随后的7个月中进一步成熟,直至胎儿出生和肺循环产生。而小鼠,其心脏自受孕开始只用2周时间来完成中隔的生长。之后不到一周的时间小鼠便出生了。不需要太多细节,我们有充分的理由说,某些在人类婴儿出生时已基本完成的发育过程,在新生小鼠身上还继续进行着。 Passage 2 A Framework for the Study of Human Physiology

生物工程_生物技术专业英语课文翻译_完整版

第一章导论 1.1 生物工程的特征 生物工程是属于应用生物科学和技术的一个领域,它包含生物或其亚细胞组分在制造业、服务业和环境管理等方面的应用。生物技术利用病毒、酵母、真菌、藻类、植物细胞或者哺乳动物培养细胞作为工业化处理的组成部分。只有将微生物学、生物化学、遗传学、分子生物学、化学和化学工程等多种学科和技术结合起来,生物工程的应用才能获得成功。 生物工程过程一般包括细胞或菌体的生产和实现所期望的化学改造。后者进一步分为:(a)终产物的构建(例如,酶,抗生素、有机酸、甾类); (b)初始原料的降解(例如,污水处理、工业垃圾的降解或者石油泄漏)。 生物工程过程中的反应可能是分解代谢反应,其中复合物被分解为简单物质(葡萄糖分解代谢为乙醇),又或者可能是合成代谢反应或生物合成过程,经过这样的方式,简单分子被组建为较复杂的物质(抗生素的合成)。分解代谢反应常常是放能反应过程,相反的,合成代谢反应为吸能过程。 生物工程包括发酵工程(范围从啤酒、葡萄酒到面包、奶酪、抗生素和疫苗的生产),水与废品的处理、某些食品生产以及从生物治疗到从低级矿石种进行金属回收这些新增领域。正是由于生物工程技术的应用多样性,它对工业生产有着重要的影响,而且,从理论上而言,几乎所有的生物材料都可以通过生物技术的方法进行生产。据预测,到2000年,生物技术产品未来市场潜力近650亿美元。但也应理解,还会有很多重要的新的生物产品仍将以化学方法,按现有的生物分子模型进行合成,例如,以干扰为基础的新药。因此,生命科学与化学之间的联系以及其与生物工程之间的关系更应阐释。 生物工程所采用的大部分技术相对于传统工业生产更经济,耗能低且更加安全,而且,对于大部分处理过程,其生产废料是经过生物降解的,无毒害。从长远角度来看,生物工程为解决世界性难题提供了一种方法,尤其是那些有关于医学、食品生产、污染控制和新能源开发方面的问题。 1.2 生物工程的发展历史 与一般所理解的生物工程是一门新学科不同的是,而是认为在现实中可以探寻其发展历史。事实上,在现代生物技术体系中,生物工程的发展经历了四个主要的发展阶段。 食品与饮料的生物技术生产众所周知,像烤面包、啤酒与葡萄酒酿造已经有几千年的历史;当人们从创世纪中认识葡萄酒的时候,公元前6000,苏美尔人与巴比伦人就喝上了啤酒;公元前4000,古埃及人就开始烤发酵面包。直到17世纪,经过列文虎克的系统阐述,人们才认识到,这些生物过程都是由有生命的生物体,酵母所影响的。对这些小生物发酵能力的最确凿的证明来自1857-1876年巴斯得所进行的开创性研究,他被认为是生物工程的始祖。 其他基于微生物的过程,像奶制品的发酵生产如干酪和酸乳酪及各种新食品的生产如酱油和豆豉等都同样有着悠久的发展历史。就连蘑菇培养在日本也有几百年的历史了,有300年历史的Agarius蘑菇现在在温带已经有广泛养殖。 所不能确定的是,这些微生物活动是偶然的发现还是通过直观实验所观察到的,但是,它们的后继发展成为了人类利用生物体重要的生命活动来满足自身需求的早期例证。最近,这样的生物过程更加依赖于先进的技术,它们对于世界经济的贡献已远远超出了它们不足为道的起源。 有菌条件下的生物技术19世纪末,经过生物发酵而生产的很多的重要工业化合物如乙醇、乙酸、有机酸、丁醇和丙酮被释放到环境中;对污染微生物的控制通过谨慎的生态环境操作来进行,而不是通过复杂的工程技术操作。尽管如此,随着石油时代的来临,这些化合

医学英语综合教程课文翻译

Unit1肺与肾得功能 肺得血管系统 肺从两个血管系统---—支气管循环系统与肺循环系统获得血液供应。它得营养血液来自于支气管循环系统,流向肺部除肺泡外得所有组织,因为支气管循环系统始于主动脉及上肋间动脉,接受大约1%得心输出量。大约三分之一得支气管循环得静脉输出流入全身静脉,然后回到右心房。剩余得输出流入肺静脉,并在心脏最小静脉得作用下,在正常情况下,以1%-2%得量自右向左分流. 肺动脉系统沿着气道从肺门向外周延伸,向下连接下段气道(直径大约2毫米)得动脉,它们壁薄且富有弹性。从这儿开始,动脉成肌肉化发展,直至其达到30微米,此时肌层消失。因为这些小肌肉动脉起着积极控制肺部血流分布得作用,所以大部分动脉压降产生在这些小肌肉动脉中.肺小动脉将血液排空,送入广泛分布得毛细血管网,进入肺静脉。肺静脉得壁很薄,它们最终在肺门处与动脉与支气管汇合,出肺进入左心房. 肾结构成分 人类肾脏在解剖学上位于腹膜后隙,与下胸椎与上腰椎平行。每个成年人得肾脏大约重150克,长、宽、厚分别为12厘米、6厘米以及3厘米.肾脏得冠状部分分为/由两个明确得区域(组成)。外周部得皮质大约1厘米厚,深部得髓质由几个肾锥体构成。这些锥体状结构得底部位于皮髓质结合处。锥体得顶部伸入肾门,称为肾**。每个肾**被一个肾小盏包裹.肾小盏与肾大盏相聚组成肾盂。经肾**流出得尿液汇集在肾盂,通过输尿管排入膀胱。由主动脉分支出来得肾总动脉为两肾输送血液。肾总动脉通常分为两个主侧支,这两个侧支又进一步分为叶动脉,为肾脏上、中、下区域供应血液。当这些血管进入肾实质,变成叶间动脉通向肾皮质时,(这些血管)又进一步细分。细分后得更小血管在皮髓质结合处成为竖支--弓状动脉.从弓状动脉伸出得叶间动脉进入皮质。由于传入小动脉始于这些末端叶间动脉,所以为肾小球毛细血管输送血液。 组织学上,肾脏就是由一个叫做“肾单位"得基本单位组成.每个肾脏约含有一百万个肾单位,“肾单位”有两个主要成分:过滤成分―紧包着毛细血管网(肾小球)与一个附着在上面得小管组成.这个小管包含几个明显得解剖与功能成分。 Unit 2细胞与衰老 衰老就是一种正常得生理过程,伴有肌体内平衡适应性反应得进行性改变。研究老年人健康问题与保健得特殊分支称作老年医学。 衰老得明显特征众所周知:头发花白与脱落,牙齿脱落,皮肤起皱,肌肉减少,脂肪积存增加。衰老得生理征兆就是肌体对环境压力反应得功能与能力逐渐减退、。如同保持不断地体内平衡应对温度、饮食与氧供反应变慢一样,机体代谢也减慢了。衰老得这些迹象与机体中细胞数得净减少及存余细胞得功能缺失有关。 衰老得另一个表现就是组织得细胞外成分也随年龄得变化而变化。负责肌腱力量得胶原纤维得数量增加,而质量却随着衰老降低。动脉壁胶原质中得变化造成动脉壁伸展性缺失,如同动脉壁上得积聚物造成动脉粥样硬化(即动脉壁脂肪物质堆积)一样。弹性蛋白就是另一种细胞外成分,主要负责血管与皮肤得弹性。随着年龄得变化,它得变粗,变碎并需要获得更大得钙亲与力,这些可能也就是造成动脉粥样硬化得原因。 葡萄糖在机体中就是最丰富得糖类,它在衰老得过程中也可能起作用.根据一个假设,任意给细胞内外得蛋白质增加葡萄糖,结果会在相邻蛋白质分子间形成不可逆交联。当人衰老时,会形成更多得交联,这可能导致正在衰老得组织变得僵化,丧失弹性. 虽然正常情况下,每分钟会有好几百万得新细胞产生,但人体有几种细胞:心脏细胞,骨骼肌纤维细胞,神经细胞就是无法替代得。实验显示,许多种类得细胞分裂能力有限。在机体外生长得细胞仅仅分裂几次就停止了。细胞分裂数与捐献者得年龄有关,与这些细胞获取得不

生物工程生物技术专业英语翻译(六)

第六章生物工程中的下游加工(技术) 6.1前言 “下游加工(技术)”对于从任何工业化生产中回收有用产品所需要的所有步骤来说是一个有用的词语。对于生物工程特别重要,我们想要的最终形式的产物常常非常远的从最先在生物反应器中获得的状态除去。例如,—个典型的发酵过程是一个分散的固体(细胞、也许有营养培养基的某些组分等)与稀释水溶液的混合物;所想要的产物也许作为一种非常复杂的混合物的组分存在于细胞中,或者存在于稀释的培养基溶液中,或甚至两者中都有。任何情况下,这个产品的回收、浓缩和纯化都需要有用并有效的操作,这也受生— 产经济性的限制。任何特殊的要求,如需要除去污染物或限制生产微生物(process organism )都只会增加困难。 许多实验室中的标准操作在生产中都是不实用或者不经济的。而且,生物产品常常是非常脆弱(labile )敏感的化 合物,其活性结构只能在限定并有限的pH、温度、离子强度 「 等条件下才能保持。想着这些限制( bearing in mind ), 如果 要用到所有可用的科学方法以发挥最佳的效果就需要更多的创造性。也明显的是,没有一种独特的、理想的、普遍适用的操作或 者仅是操作顺序可以推荐;对一个特定的问题应当以最适宜的方

式把单个单元操作结合起来。 6.2粒子的分离 在发酵终点,多数情况下第一步是将固体(通常是细胞,但也可以是在一个特定支持物上的细胞或者酶,不包括反应培养基固体组分)从几乎一直是水溶液的连续均匀的液体系统中分离出来。与这个分离相关的一些细胞特性列于表6.1 ; 注意,细胞的比重不比fermentation broth 大很多。细胞 的大小也给细菌带来了困难,但是比较大的细胞更容易分离,有 时候甚至只需要简单的定位于倾析器。分离的容易性取决于fermentation broth 的性质,它的pH、温度等等, 在许多情况下,通过添加助滤剂、絮凝剂的等等进行改进(见后面)。表6.2给出了分离方法的大体分类。 6.2.1 过滤 这个是分离filamentous fungi 和fermentation broth 中的filamentous bacteria (例如,链霉菌)所使用的最广泛和最典型的 方法。它也可以用于酵母絮凝物的分离。根据机理,过滤可以采 用表面过滤或者深层过滤;或者离心过滤; 所有情况下的驱动力都是压力,由超压产生或者由真空产生。 过滤的速率,如在一定时间内收集的滤液的体积,是过滤面积、液体的黏度和通过过滤基质的压力降以及(deposited filter cake )沉积的滤饼的作用。过滤基质与滤饼filter cake 的抗,性

相关文档
相关文档 最新文档