文档库 最新最全的文档下载
当前位置:文档库 › 数学建模某银行计划用一笔资金进行有价证券的投资

数学建模某银行计划用一笔资金进行有价证券的投资

数学建模某银行计划用一笔资金进行有价证券的投资
数学建模某银行计划用一笔资金进行有价证券的投资

数学建模作业

1.问题重述

某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示。按照规定,市政证券的收益可以免税,其他证券的收益需要按50%的税率纳税。此外还有以下限制:

(1)政府以及代办机构的证券总共至少购进400万元;

(2)所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高);

(3)所购证券的平均到期年限不超过5年。

1.2需要解决的问题

(1)若该经理有1000万元资金,应如何投资?

(2)如果能够以2.75%的利率借到不超过100万元的资金,该经理应如何操作?

(3)在1000万元资金情况下,若证券A的税前收益增加为4.3%,投资应否改变?若证券C 的税前收益减少为4.8%,投资应否改变?

2模型分析

问题分析这个优化问题的目标是有价证券回收的利息为最高,要做的决策是投资计划。即应购买的各种证券的数量的分配。综合考虑:特定证券购买、资金限制、平均信用等级、平均年限这些条件,按照题目所求,将决策变量、决策目标和约束条件构成的优化模型求解问题便得以解决。

3 模型假设

假设

1. 假设银行有能力实现5种证券仸意投资。

2.假设符号0表示没有投资。

3.假设在投资过程中,不会出现意外情况,以至不能正常投资。

4.假设各种投资的方案是确定的。

5. 假设证券种类是固定不变的,并且银行只能在这几种证券中投资。

6.假设各种证券的信用等级、到期年限、到期税前收益是固定不变的。

7.假设各种证券是一直存在的。

4模型建立

决策变量用X1、X2、X3、X4、X5、分别表示购买A、B、C、D、E证券的数值,单位:百万元

目标函数以所给条件下银行经理获利最大为目标。则,由表可得:

MAX Z=0.043X1+0.027X2+0.025X3+0.022X4+0.045X5 (1)

约束条件为满足题给要求应有:

X2+X3+X4> = 4 (2)

X1+X2+X3+X4+X5<=10 (3)

6X1+6X2-4X3-4X4+36X5<=0 (4)

4X1+10X2-X3-2X4-3X5<=0 (5)

且 X1、X2、3X、X4、X5均非负。

5问题解答

(1)设投资证券A,B,C,D,E的金额分别为(百万元),按照规定、限制和1000万元资金约束,列出模型

Max 0.043X1+0.027X2+0.025X3+0.022X4+0.045X5

s.t X2+X3+X4大于等于4

X1+X2+X3+X4+X5小于等于10

(2*X1+2*X2+X3+X4+5X5)除以(X1+X2+X3+X4+X5)小于等于1.4 即6X1+6X2-4X4+36X5小于等于0 (9X1+15X2+14X3+3X4+2X5)除以(X1+X2+X3+X4+X5)小于等于5 即4X1+10X2-1X3-2X4-3X5小于等于0 X1,X2,X3,X4,X5大于等于0

用LINDO求解并要求灵敏性分析,得到:

OBJECTIVE FUNCTION VALUE

1) 0.2983637

VARIABLE VALUE REDUCED COST

X1 2.181818 0.000000

X2 0.000000 0.030182

X3 7.363636 0.000000

X4 0.000000 0.000636

X5 0.454545 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

1) 3.818182 0.000000

2) 0.000000 0.029836

3) 0.000000 0.000618

4) 0.000000 0.002364

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE

X1 0.043000 0.003500 0.013000

X2 0.027000 0.027818 INFINITY

X3 0.025000 0.017333 0.000560

X4 0.022000 0.000636 INFINITY

X5 0.045000 0.052000 0.014000

RIGHTHAND SIDE RANGES

ROW CURRENT ALLOWABLE ALLOWABLE

RHS INCREASE DECREASE

2 4.000000 3.818182 INFINITY

3 10.000000 INFINITY 4.883721

4 0.000000 231.428574 20.000000

5 0.000000 10.000000 12.000000

即证券A,C,E分别投资2 182百万元,7 364百万元,0 454百万元,最大税后收益为0 298百万元。

6模型的评价

兼于银行投资问题对银行的重要性,本题中我建立了相应的投资决策最优化模型,为银行在投资过程的决策提供了参考,我的模型有以下优点:

对问题一,兼于银行的1000万有不同的投资方法,我建立了线性规划模型,在建模的过程中,充分考虑了投资的情况,使约束变的清晰,使题目更加完整。

对于问题二,我根据银行可能借到的和银行本身有的钱,制定了算法,充分利用银行所借的钱来获得更大的收益,利用那些限制条件,建立了数学模型。本模型具有很强的参考价值。

对于问题三,于银行的1000万有不同的投资方法,我建立了线性规划模型,在建模的过程中,充分考虑了投资的情况,使约束变的清晰,使题目更加完整以确定银行是否改变投资方案。本模型具有很强的参考价值。

7模型的改进与推广

本文建立了一个线性规划模型,运用这相模型,我们可以解决很多的实际问题,例如在国民生产中的材料分配问题,在出口贸易中经常遇到配额的问题,我们可以根据这个模型确立一个最佳的配额分配方案。

8参考文件

[1] 姜启源,谢金星,数学建模案例选集,[M],北京:高等教育出版社,2006

[2] 董瑧圃,数学建模方法与实践,[M],北京:国防工业出版社,2006

[3] 陈伟忠,组合投资与投资基金管理,[M],北京:中国金融出版社,2004

[4]王五英,投资项目社会评价方法[M] 北京:经济管理出版社,1993.8

[5]导向科技编著,MATLAB 6.0程序设计与实例应用,[M],北京:中国铁道出版社,2001

[6] 张宜华,精通MATLAB 5,[M],北京:清华大学出版社,1999.

[7] 姜启源数学模型高等教育出版社

[8] 萧树铁大学数学实验高等教育出版社

9.结论分析

由以上的结果中目标系数的允许范围可知,证券A的税前收益可增加0.35%,故证券A的税前收益增加4.5%,投资不应改变;证券C的税前收益了减0.112%(按50%纳税),故证券C的税前收益可减4.8%,故投资应改变。

三峡大学数学建模第一题电力生产问题

电力生产问题 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 ( 只有在每个时段开始时才允许启动或关闭发电机。与启动发电机不同,关闭发电机不需要付出任何代价。 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 电力生产问题的数学模型 摘要 本文解决的是电力生产问题,在发电机的发电量能满足每日的电力需求的条件下,为了使每日的总成本达到最低,我们建立了一个最优化模型。 对于问题一:由已知条件可知有固定成本、边际成本、启用成本,据此,我们确定了三个指标:即固定总成本、边际总成本、启动总成本。总成本即为这三项总成本之和。每天分为七个时段,发电机共有四种型号,方案结果应该包括每个时段每种型号平均功率及该时段该型号发电机的数量,一共有56个未知数,为减少未知数,并将非线性约束条件转化为线性约束条件,将整数规划转化为非整数规划,我们以每个时段每种型号的几个发电机发出的总功率为变量,并列出相应的约束条件,然后通过LINGO求出个时段各种型号发电机的总功率,再采用分支定界法求出最小总成本为

146.9210万元。再根据总功率利用Matlab软件计算出总功率所对应的该型号发电机的数量(见表一)。 对于问题二:题目要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。其他条件与问题一相同,因此,只需增加一个约束条件,即发电机机组所能发出的最大总功率乘以80%后大于用电需求。为锻炼编程技术,故在第二问改用Matlab软件编程来求解,将所要求的7个时段4种型号的发电机的平均功率一共28个未知数用X1,X2,,,,X28表示,将其对应的发电机数量用X29,X30,,,X56表示,并利用矩阵列出约束条件和目标函数,然后编程并运行求解,得到的发电机数量有的不为整数,然后采用分支定界法,得到调整后的结果,最小总成本为157.5426万元。 ! 关键词:线性规划、总功率、使用数量、总成本 1.问题重述 1.1问题背景 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 任何代价。 1.2需要解决的问题 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 2.模型假设 假设1:调整发电机功率没有成本 :

数学建模协会活动策划书

数学建模协会观影活动 策 划 书

数学建模协会 数学建模协会观影活动策划书 一、活动名称:数学建模协会观影活动 二、活动目的: 1、数学建模协会举办的活动承载着培养新生代协会力量的重任,适时地开展活动,以锻炼部门成员对活动的策划、筹备和实施的能力,为协会以后的发展注入强大的动力。 2、让会员们参与到活动中,感受协会这个大家庭的温暖,体会在集体活动里合作、共享的团队意识。 3、丰富协会在学习、研究之余的活动形式,陶冶会员情操,促进会员之间的感情。通过表述观后感,提高会员的口头表达能力,锻炼会员即兴发言的能力。 三、活动主题: 数学建模协会作为一个科技型协会,一直以严密的逻辑、严谨的作风著称。为调节会员的课余生活,丰富数学建模协会文体活动形式,鼓励协会会员积极参加活动,并对协会理事会新成员进行有益的锻炼,故开展本次观影活动。

电影作为人类精神文化的一个重要层面,在近代人类思想发展史上有着不可磨灭的作用。这次协会观影活动在于丰富会员们的校园精神生活,提高艺术欣赏品位,增进会员之间的感情,拉近彼此间的距离。 这次推荐的电影是《美丽心灵》,它是一部关于一个真实天才的极富人性的剧情片。故事的原型是数学家小约翰-福布斯-纳什(Jr.John Forbes Nash)。英俊而又十分古怪的纳什早年就作出了惊人的数学发现,开始享有国际声誉。但纳什出众的直觉受到了精神分裂症的困扰,使他向学术上最高层次进军的辉煌历程发生了巨大改变。面对这个曾经击毁了许多人的挑战,纳什在深爱着的妻子艾丽西亚(Alicia)的相助下,毫不畏惧,顽强抗争。经过了几十年的艰难努力,他终于战胜了这个不幸,并于1994年获得诺贝尔奖。这是一个真人真事的传奇故事,今天纳什继续在他的领域中耕耘着。 四、活动时间和地点:2015年3月7日D教305 五、活动主办单位:数学建模协会 六、活动对象:数学建模协会全体会员 七、活动具体流程: (一)分配任务 ⑴宣传任务由宣传部担任,外联部进行协助。 ⑵秘书部负责配合协会会长进行各部门成员的考勤,并在需要的 时候协助会长进行现场联络工作。 ⑶会长抽调部门成员与组织部负责会场布置、以及电影的征集与 筛选。同时组织部与财务部合作进行所需物品的采购。 (二)物品的采购 组织部根据会场以及活动的需要,列出采购清单并进行物品的购买,财务部伴随进行采购过程的监督,并保证所开的票据正确、有效。

运用数学模型解决问题

运用数学模型解决问题 张家荣 (中山大学新华学院信息科学系逸仙班) 摘要:数学模型是数学创造与数学教学中经常使用的一种重要的数学方法。从方法论的角度考虑,我们了解数学模型的涵义以及它的作用、构建一般的模式,对促进数学学习、灵活的应用数学知识和它的思想方法解决现实问题、提高我们的数学能力都有极其重要的意义。运用数学模型来解决各学科中的数学问题,可以把抽象问题具体化、解题过程规律化,提高答题的准确性,是解决数学问题的有效方法。 关键词:数学模型数学建模数学应用 Abstract: Mathematical model is an important mathematic way in mathematical creation and mathematical education. Thinking in methodology, we realize its mean and function. Setting up the normal mode can improve our mathematic study and use it to solve some mathematic problems. When we solve the problem, we can embody the abstract problem so we can improve our accuracy which is an effective method for solving the mathematic problems. Key words: Mathematical model Mathematical modeling Application of mathematics 前言 随着科学技术的迅速发展,数学模型越来越多的出现我们的工作、生活中。筹划出一个合理的数学模型,必定可以获得更大的效益。在日常活动中也越来越重要,采购中,人们也会谈论找出一个数学模型,或者在出行的时候,优化出行的路线。而对于那些科学技术人员和应用数学工作者来说,建立数学模型解决相关的问题更是必不可少的方法。本论文主要是通过一个例子来阐述数学模型的重要性。 一、什么是数学模型 一般地说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。【1】 二、衣柜能否搬进新居 下面这个例子为“衣柜能否搬进新居”[2],通过这个例子,阐述数学模型的重要性。 题目如下: 老张临搬家前,站在自己大衣柜旁发愁,担心这大衣柜搬不进新居,站在一旁的小李马上拿着一把尺子出去了,不一会儿,小李对老张说:“从量得的电梯前楼道和单元前楼道宽度,绝对没有问题,请问小李的根据是什么?” 这是一个非常普遍的生活问题,而这个问题是完全可以通过建立一个数学模型去解决的!

农场生产计划 数学建模

农场生产计划 数学模型 问题重述 某农场有3万亩农田,欲种植玉米、大豆和小麦三种农作物.各种作物每亩需施化肥分别为 吨、吨、 吨.预计秋后玉米每亩可收获500千克,售价为 元/千克, 大豆每亩可收获200千克,售价为 元/千克,小麦每亩可收获350 千克,售价为 元 /千克.农场年初规划时考虑如下几个方面: 第一目标:年终收益不低于350万元; 第二目标:总产量不低于万吨; 第三目标:玉米产量不超过万吨,大豆产量不少于万吨,小麦产量以 万吨为宜,同时根据三种农作物的售价分配权重; 第四目标:农场现能提供5000 吨化肥;若不够,可在市场高价购买,但希望高价采购量愈少愈好. 模型假设与建立 模型假设: 1、 假设农作物的收成不会受天灾的影响 2、 假设农作物不受市场影响,价格既定 用321,,x x x 分别表示用于种植玉米、大豆、小麦的农田(单位:亩) + +---++++++=6 455433_22_11*)107 35*10735*10760*10712(**min d p d d d d p d p d p z 模型建立 约束条件 (1)刚性约束 30000321<=++x x x (2)柔性约束 第一目标:年终收益不低于350万元; {} ?????=-++++ -- 3500000 245240120min 113211 d d x x x d

第二目标:总产量不低于万吨; {} ?????=-++++ -- 12500000 350200500min 223212 d d x x x d 第三目标:玉米产量不超过万吨,大豆产量不少于万吨,小麦产量以 万吨为宜, {} ?????=-++ -+ 6000000 500min 3313 d d x d {} ?????=-++--2000000 200m in 4424d d x d {} ?? ???=-+++-+-500000035min 55255d d x d d 第四目标:农场现能提供5000 吨化肥;若不够,可在市场高价购买,但希望 高价采购量愈少愈好. {} ?????=-++++ -+ 5000000 15.02.012.0min 663216 d d x x x d 模型求解:(见附件) 种植面积: 玉米:亩 土豆:亩 小麦:亩 能够得到一个满足条件的种植计划 附件: model : sets : L/1..4/:p,z,goal; V/1..3/:x; HN/1..1/:b; SN/1..6/:g,dp,dm; HC(HN,V):a; SC(SN,V):c; Obj(L,SN):wp,wm; endsets data : p=; goal=0;

数学建模的作用意义

数学建模的背景: 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来, 随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用, 而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。 (2)在高新技术领域,数学建模几乎是必不可少的工具。无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。国际上一位学者提出了“高技术本质上是一种数学技术”的观点。 (3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才

数学建模生产计划有关问题解析

201数学建模生产计划 摘要 本文主要研究足球生产计划的规划问题。 对于问题一足球总成本包括生产成本与储存成本,又由于足球各月的生产成本、储存成本率及需求量已知,故各月足球的生产量对总成本起决定因素。在此建立总成本与足球生产量之间的关系,运用Matlab求出了总成本的最优解。 对于问题二储存成本率的大小影响了储存成本的高低,要使总成本最低,在储存成本率变化的情况下必须不断调整足球各月生产量,我们在Matlab中运用散点法,取了501个点,进而对图形进行线性拟合,得出储存成本率减小时各月足球生产量的变化情况。 对于问题三考虑到储存容量不能用储存成本率直接由函数表达,因此在Matlab 采用散点法结合表格分析法对501个点进行分析可得到储存成本率为0.39%时,储存容量达到最大。 关键词:最优解散点法线性拟合表格分析法 问题的重述 皮革公司在6个月的规划中根据市场调查预计足球需求量分别是10,000、15,000、30,000、35,000、25,000和10,000,在满足需求量的情况下使总成本最低,其包括生产成本及库存成本。根据预测,今后六个月的足球的生产单位成本分别是$12.50、$12.55、$12.70、$12.80、$12.85和$12.95,而每一个足球在每个月中的持有成本是该月生产成本的5%。目前公司的存货是5,000,每个月足球最大产量为30,000,而公司在扣掉需求后,月底的库存量最多只能储存10,000个足球。 问题一、建立数学模型,并求出按时满足需求量的条件下,使生产总成本和储存成本最小化的生产计划。 问题二、如若储存成本率降低,生产计划会怎样变化? 问题三、储存成本率是多少时?储存容量达到极限。 问题的分析 问题一要求在足球的需求量一定的情况下,使生产总成本和储存成本最小。又足球的生产成本和储存成本率已知,故只需要建立生产总成本和储存成本与各月足球的生产量之间的优化模型,运用Matlab即可求出足球生产总成本和储存成本的最优化组合。

数学建模协会征文比赛活动策划书(完整版)

策划编号:YT-FS-3776-46 数学建模协会征文比赛活动策划书(完整版) Develop Detailed Rules Based On Expected Needs And Issues. And Make A Written Plan For The Links To Be Carried Out T o Ensure The Smooth Implementation Of The Scheme. 深思远虑目营心匠 Think Far And See, Work Hard At Heart

数学建模协会征文比赛活动策划书 (完整版) 备注:该策划书文本主要根据预期的需求和问题为中心,制定具体实施细则,步骤。并对将要进行的环节进行书面的计划,以对每个步骤详细分析,确保方案的顺利执行。文档可根据实际情况进行修改和使用。 一、活动名称: 校园数学建模征文-------“我心中的数学建模” 二、活动口号:“展现数学之美,尽显理性的魅力” 三、活动对象:全院所有同学。 四、活动时间:xx年10月10-----xx年11月15日 五、活动地点:西安文理学院数学建模协会 六、活动目的: 通过“我心中的数学建模”征文活动,向全校各个院系的同学宣传数学建模,让同学们对数学建模有一个基本的了解。借此吸引有兴趣的同学来参加数学建模竞赛,调动同学们对数学知识的积极性及挑战思

维的极限,培养大学生运用数学理论,管理理论,经济学等有关理论和方法、利用文献、计算机等工具分析和解决实际问题的能力,培养学生的创新思维和合作精神,扩大学生竞赛受益面。真正的把数学建模大赛推广到全校学生中去! 七、活动意义: 通过这次征文大赛,使全院同学对数学建模有更深的了解,使更多的同学喜欢上建模并参家建模。在建模中培养同学们的创新精神和综合运用各种知识解决实际问题的能力,增强了同学们学习的主动性。通过参加建模使同学们能够开动脑筋、拓宽思路,充分发挥自己的想象力、洞察力和创造力,激发同学们的学习兴趣、培养良好学习习惯。而且数学建模这项活动也培养了同学们团结合作精神和诚信意识,有益于把同学们培养成为和谐社会中合格、优秀的一员,并且贡献自己的力量。这种团队精神与协调能力在同学们毕业后的工作中,以及对一生的发展都是非常必要的。

引导学生运用数学模型解决实际问题

引导学生运用数学模型解决实际问题 著名数学家怀特海曾说:“数学就是对于模式的研究。” 所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构。数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思维方法,以使学生能运用数学模型解决数学问题和实际问题。 由此,我们可以看到,培养学生运用数学模型解决实际问题的能力,关键是把实际问题抽象为数学问题,通过解决数学问题,从而解决实际问题。本人结合实际教学谈谈运用数学模型,解决实际问题的实例。 实例一:二次函数与实际问题 1.中学课本中的实际例题。 在义务教育课程标准实验数学教材苏科版九年级上第34页习题10:某商场购进一批单价为16 元的日用品。若按每件20元的价格销售,每月能卖出360件,若按每件25元的价格销售,每月能卖出210件。假定每月销售件数y(件)与价格x(元/件)之间满足一次函数。 (1)试求y与x之间的函数关系式。 (2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润W最大?每月的最大毛利润是多少? 解:(1)y=-30x+960。 (2)设每月的毛利润为W元,则 W=(x-16)(-30x+960) =-30x2+1440x-960×16 =-30(x-24)2+1920。 ∴当x=24时,W有最大值,W最大值=1920。 答:将售价定为24元时,每月的最大毛利润为1920元。 2.在一场战争中,敌方战败,敌方准备乘飞机逃跑。我军战机监测到敌方的飞机位于自己正南30 km外,正以3 km/s的速度向北逃去,而我方战机的速度是4 km/s,由东向西追,如图,请问我方战机在何时方能有把握把敌机击落(最近处)。 分析:设时间x秒,两机相距s千米。 那么s是斜边,两直角边分别为3x km,(30-4x)km,则 S=■ =■ 当x=■=4.8时,s有最小值 所以,经过4.8秒后,去击落敌机最有把握。 二次函数在各领域非常重要,上述二例说明了在经济、军事上的实际应用。当然在其他方面如体育方面、建筑方面等都能用到二次函数,只要认真观察,仔细寻找,我们不难发现数学就在身边,数学不再是简单地运算,而是生活中必不可少的成分。我们的生活与数学密不可分,我们通过学习数学为生活服务。因此,对于现实生活中普遍存在的最优化问题,如造价用料最少,利润产出最大等,可透过实际背景、建立变量之间的目标函数——二次函数,以转化为函数的极值问题。

电力生产问题数学模型

电力生产问题数学模型

————————————————————————————————作者:————————————————————————————————日期:

电力生产问题数学模型 摘要 本文研究电力生产问题中的最优化电力资源配置,属于求解优化电力配置下的最小成本问题。由于电力生产有非线性、多变量等特点,所以我们基于在每一时间段非线性局部最优的前提下,建立整体的单目标多变量的非线性最优化模型 。 因此对于研究的课题,我们建立了一个有约束条件的目标函数的最优化模型来求解。在该模型的基础上我们建立起解决问题所需模型。 解决问题(1)时,我们运用LINGO 工具求解所建立的数学模型,得到每个时段的台数和成本如下表:(详细数据见) 时段1 时段2 时段3 时段4 时段5 时段6 时段7 总成本/元 型号1 0 2 0 2 0 1 0 0 1750 750 1750 1000 1300 750 … … … … … … … … 型号4 0 3 3 3 3 3 3 0 2166.6 1800 3500 1800 1800 解决问题(2)时,我们从节约能源和成本的前提出发,让在工作的每一台发电机保留出20%的发电能力,而不是让其发出多于需求电量的20%白白浪费,因此我们将“每个时段的电力需求”这个约束条件由问题(1)中的j ij j D P m ≤≤改为 8.0?≤≤j ij j D P m 。得到每个时段的台数和成本如下表:(详细数据见) 时段1 时段2 时段3 时段4 时段5 时段6 时段7 总成本/元 型号1 0 5 0 8 1 5 0 0 1400 1400 1400 1400 1400 0 … … … … … … … … 型号4 3 3 3 3 3 3 3 1866.6 2466.6 2466.6 2400 2000 1800 1800 关键词:非线性 整体最优化 LIGNO 软件 时 段 型 号 时 段 型 号

高等专科学校数学建模协会活动计划(完整版)

计划编号:YT-FS-6406-58 高等专科学校数学建模协会活动计划(完整版) According To The Actual Situation, Through Scientific Prediction, Weighing The Objective Needs And Subjective Possibilities, The Goal To Be Achieved In A Certain Period In The Future Is Put Forward 深思远虑目营心匠 Think Far And See, Work Hard At Heart

高等专科学校数学建模协会活动计 划(完整版) 备注:该计划书文本主要根据实际情况,通过科学地预测,权衡客观的需要和主观的可能,提出在未来一定时期内所达到的目标以及实现目标的必要途径。文档可根据实际情况进行修改和使用。 一、数学建模推广月活动。 为了让更多的同学了解数学建模,以便于本协会其他活动的顺利开展,在新生报到后,我们以高教社杯全国大学生数学建模竞赛为契机,通过宣传和组织,展开数学建模推广活动,向广大同学介绍数学建模相关知识,推广月的主要内容有:数学建模竞赛的介绍,数学建模所涉及的数学知识的介绍,数学建模相关软件的推广等。推广月活动的主要形式是:横幅、宣传材料、人工咨询等。 二、组织学生参加每年高教社杯全国大学生数学建模竞赛。 一年一度的高教社杯大学生数学建模竞赛将于9

月15日左右如期举行,届时本协会将在相关指导老师的统一安排下,组织参赛队伍参加此次大赛,力争为我校争取荣誉。 三、年度会员招收工作。 在校社团管理部统一安排的时间,展开新会员招收工作,主要针对大一新生,并适量吸收大二学生,为协会增加一些新鲜力量,为协会的长足发展注入新的活力,招新活动将持续两到三天,在两校区同时进行。 四、干事招聘会。 在招新活动结束后,我们将在全校范围内的,由协会内部主要负责人组成评审团,通过公开招聘的形式,招收一批具有突出能力的新干事,组成一支新的工作人员队伍,为更好的开展协会活动和服务会员打下基础。招收新干事部门有:办公室、外联部、实践部、宣传部、科研部、网络信息部。 五、数学建模专题讲座。 邀请本协会指导老师廖虎教授、余庆红、吴文海

数学建模活动策划书

数学建模活动策划方案(初稿) 一、活动背景 数学建模协会面向全校招新活动圆满完成。为了促进协会会员对数学建模的了解,增强对数学建模的认识,数学建模协会对近期一年时间策划此次活动,希望通过活动,增强新会员对数学建模协会的兴趣和认识度,是新会员对数学建模的活动、工作有一定了解和一个全新的认识。 二、活动目的及意义 为了让同学们对数学建模及竞赛有一个初步的了解,激发广大学子学习数学建模的热情,促进我校大学生课外科技活动的蓬勃开展,提高大学生的创新意识及运用数学知识和计算机技术解决实际问题的能力,推广数学建模精神,让同学们了解数学建模,接近数学建模,喜欢数学建模。活动对培养同学们应用数学知识解决实际问题的兴趣,开拓眼界等都有着十分重要的意义。活动的开展不仅为民院学子提供了一次施展才华和挑战自我的机会,也为学子创造了一个学习实践与思想交流的平台。 三、活动主题 走进数学建模 四、主办单位 社团联合会数学建模协会 五、承办单位

社团联合会数学建模协会 六、活动内容 (一)数学建模知识讲座 (二)新老会员见面交流会 (三)团队娱乐游戏活动 (四)小型数学建模大赛 七、活动步骤 (一)数学建模知识讲座 1、前期准备:邀请相关老师并协调好时间、通知协会会员及兴趣 爱好者 2、中期过程:(1)安排知识讲座时间、地点以及准备相关物品 (2)内容:数学建模思想、数学建模理论 3、后期安排:相关工作人员做工作总结 (二)新老会员见面交流会 1、前期准备:邀请相关人员为交流会做准备、通知协会会员 2、中期过程:安排见面交流会的时间、地点以及准备相关物品 3、后期安排:相关工作人员做工作总结 (三)团队娱乐游戏活动(待定) (四)小型数学建模大赛 1、前期准备:对举行小型数学建模大赛的意义进行宣传,并通知 比赛时间地点、比赛模式,邀请相关老师参与 2、中期过程:由相关老师批阅后进行表彰

数学建模之电力的生产问题

数学建模之电力的生产问 题 Prepared on 22 November 2020

电力生产最小成本 摘要 本文是需解决发电机厂每天在不同时间段用电需求量不同的情况下,根据给定不同型号不同数量的发电机,合理分配各台发电机在不同时间段的开启和关闭以及运行时的输出功率,既使得一天内总发电成本最小,又使发电机组在一天中各个时段的总输出功率达到用电需求的问题,为解决这个问题,采用了单目标非线性规划方法,建立了所求问题的最优化模型,借助Lingo软件对模型进行求解,得到每日最小发电总成本,以此制定发电机组的启停计划。 问题一:为了使发电厂一天总的发电成本最低,同时还要考虑到不同时间段开机数量不同对启动成本的相互影响,将七个时间段的成本统一考虑,其中,启动成本与发电机开启数量有关,要让成本少,应在满足相应约束条件下尽量减少开机数量,尽量让上一阶段的发电机下一阶段依然工作,边际成本与开启发电机台数、输出功率、最小功率、时长有关,固定成本与开启发电机台数、时长有关,选取相应的约束条件对目标函数进行约束,从而给出优化模型,运用非线性规划的方法,利用Lingo编程求解,得到发电厂每天最小发电总成本为:1427179 元。具体的发电机使用方案见附录一中表一、表二。 问题二:根据题目的要求,在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升,在建模时将每台发电机的实际输出功率降至80%,所以可以按照问题一建立的模型,将其约束条件中每个时间段的实际输出功率改为功率的80%但同时要满足用电量,同样利用Lingo编程求解,得到发电厂每天最小发电总成本为:1444670元。具体的发电机使用方案见附录一中表三、表四。 在得到上述两个问题的结果后,对结果的正确性性进行检验,并且对所得结果进行分析,给出自己的评价,并且对所建模型的合理性进行判断,以及对模型做了适当的推广。 关键词:单目标非线性规划发电机的合理搭配电力生产最优解

数学建模是使用数学模型解决实际问题

数学建模是使用数学模型解决实际问题。 对数学的要求其实不高。 我上大一的时候,连高等数学都没学就去参赛,就能得奖。 可见数学是必需的,但最重要的是文字表达能力 回答者:抉择415 - 童生一级 3-13 14:48 数学模型 数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。 简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。 数学建模 数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。 数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。 数学建模的一般方法和步骤 建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法: 机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。 测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。测试分析方法也叫做系统辩识。 将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下: 1、实际问题通过抽象、简化、假设,确定变量、参数; 2、建立数学模型并数学、数值地求解、确定参数; 3、用实际问题的实测数据等来检验该数学模型; 4、符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。 数学模型的分类: 1、按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。 2、按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。

数学建模 工厂最优生产计划模型

数学建模与数学实验 课程设计报告 学院数理学院专业数学与应用数学 班级学号 学生姓名指导教师 2015年6月 工厂最优生产计划模型 【摘要】本文针对工厂利用两种原料生产三种商品制定最优生产计划的问题,建立优化 问题的线性规划模型。在求解中得到了在不同生产计划下收益最优化的各产品的产量安排策略、最大收益,以及最优化生产计划的灵敏度分析。 对于问题一,通过合理的假设,首先根据题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函数MAX。由题目中所得,工厂原料及价格的约束条件下运用lingo 软件算出最优生产条件下最大收益为1920元,其次是不同产品的产量。 对于问题二,灵敏度分析是研究当目标函数的费用系数和约束右端项在什么范围变化时,最优基保持不变。对产品结构优化制定及调整提供了有效的帮助。根据问题一所给的数据,运用lingo软件做灵敏度分析。 关键词:最优化线性规划灵敏度分析 LINGO 一、问题重述 某工厂利用两种原料甲、乙生产A1、A2、A3三种产品。如果每月可供应的原料数量(单位:t),每万件产品所需各种原料的数量及每万件产品的价格如下表所示:(1)试制定每月和最优生产计划,使得总收益最大; (2)对求得的最优生产计划进行灵敏度分析。 、模型 假设 ( 产品加工时不考虑排队等待加工的问题。 (2)假设工厂的原材料足够多,不会出现原材料断货的情况。

(3)忽略生产设备对产品加工的影响。 (4)假设工厂的原材料得到充分利用,无原材料浪费的现象。 三、符号说明 Xij (i=1,2,;j=1,2,3;)表示两种原料分别生产出产品的数量(万件); Max 为最大总收益; A1,A2,A3为三种产品。 四、模型分析 问题一分析:对于问题一的目标是制定每月和最优生产计划,求其最大生产效益。由题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函数MAX 。由题目中所得,工厂原料工厂原料及价格的约束,列出约束条件。 问题二分析:研究当目标函数的费用系数和约束右端项在什么范围变化时,最优基保持不变。通过软件数据进行分析。 五、模型建立与求解 问题一的求解: 建立模型: 题目的目标是寻求总利益最大化,而利润为两种原料生产的六种产品所获得的利润之和。 设Xij (i=1,2,;j=1,2,3;)表示两种原料分别生产出产品的数量(万件) 则目标函数:max=12(x11+x21)+5(x12+x22)+4(x13+x23) 约束条件: 1)原料供应:4x11+3x12+x13<=180; 2x21+6x22+3x23<=200 2)非负约束:x11,x12,x13,x21,x22,x23>=0 所以模型为: max=12(x11+x21)+5(x12+x22)+4(x13+x23) 200x x 6x 2180 x x 34x 232221131211<=++<=++ 0x >=ij (i=1,2;j=1,2,3且为整数)} 模型求解: model : max =12*x11+12*x21+5*x12+5*x22+4*x13+4*x23; 4*x11+3*x12+x13<=180; 2*x21+6*x22+3*x23<=200; End 计算结果: Global optimal solution found. Objective value: Infeasibilities: Total solver iterations: 0 Variable Value Reduced Cost

数学建模策划书

2015年第四届数学中国数学建模小美赛 策 划 书 数学建模协会 二零一五年十一月二十五号

一.活动主题: 2015年第四届数学中国数学建模国际赛(小美赛) 二.活动背景: 数学,作为一门研究现实世界数量关系和空间形式的科学,在它生产和发展的历史长河中,一直是和人们生活的实际需要密切相关的。作为用数学方法解决实际问题的第一步,数学建模自然有着与数学同样悠久的历史。 近半个多世纪以来,随着计算机技术的迅速发展,数学应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分,如今,经济发展的全球化、计算机的迅速发展、数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库。 数学建模就是以计算机为工具,将具体的现实问题抽象成与之对应的数学模型,从而用数学方法解决人们在生活中遇到的问题,为人们的生活带来便利,数学建模是一种模型,是用数学语言对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,但并非现实问题的直接翻版,数学模型的建立,常常对现实问题深入细微的观察和分析,又需要灵活巧妙地利用各种数学知识,这种应用知识从实际问题中抽象、提炼出数学模型的过程就称为数学建模,中国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一,数学建模越来越受到人们的重视。 三.活动目的与意义: 今年数学中国成功获得全球数学建模能力认证中心的授权,其目的在于激励学生培养数学建模的能力,明确数学建模能力要求及范围,为数模社会效益化积累人才。 为了进一步推广美赛在中国的普及,进一步提高我国的数学建模总体水平和英文科技论文书写能力,数学中国联合内蒙古自治区数学学会、全球数学建模能力认证中心共同推出“数学中国数学建模国际赛”,旨在帮助广大想参加美赛的同学提高英文写作能力,最强等于开放性题目的处理能力,促进数学建模的快速发展。 四.活动开展形式: 以三人一组的形式组队,包含队长一名、队员两名,在计算机上进行比赛,形成以网络为桥梁的大规模竞赛格局,比赛期间比赛队伍可与老师沟通研究探讨,在规定时间内以论文形式上交。 五.活动时间与地点: 活动时间:2015年11月27日上午8时——12月01日上午8时 活动地点:图书馆一楼 六.活动内容: 三人组队参赛,可跨校跨组别参赛,比赛期间,在网上做题,最后成果以

数学建模电力安排问题

电力生产问题 摘要 本文解决的是电力生产中发电机的安排问题,在满足每日各时间段电力需求的条件下,安排各型号发电机来供电,以期获得最小的成本。为解决此问题,我们建立了两个最优化模型。 针对问题一:建立了非线性单目标最优化模型。从已知条件、目标函数、约束条件三方面进行综合分析可知,每天的总成本由总固定成本、总边际成本、总启动成本组成,确定总成本为目标函数,各时段各型号发电机工作数量及其总超出功率为主要变量,并列出相应约束条件。最后通过Lingo软件[2]求出最小成本为1540770元,并得出各时段各型号发电机的数量及其功率如下表(具体见表三): 针对问题二:建立了线性单目标最优化模型。引入非负变量,即为各时段新增开的各型号的发电机台数,通过此变量线性表示出启动成本。以总成本为目标函数,在模型一的基础上,只需改变一个约束条件,即发电机组在任意时间段内所能发出的最大总功率的80%要大于等于该时段的用电需求。最后通过lingo软件求出最小成本为1885420元,并得出各时段各型号发电机的数量及其功率。 关键词:非线性最优化模型线性最优化模型最小生产成本

1 问题重述 1.1 问题背景 在电力生产过程中,为满足每日的电力需求并且使生产成本达到最小,因不同发电性能的发电机成本不同,故可以选用不同型号的发电机组合使用。 1.2 题目信息 题中给出了一天中七个时段的用电需求(见表一)及四种发电机的发电性能和相应成本(见表二)。其中,所有发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于其最小输出功率,且所有发电机均存在一个启动成本,以及工作于其最小功率状态时固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。 问题(1):在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2):如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 2 模型假设 假设1:不计发电机启动时所需时间; 假设2:各发电机均在24时关闭,即不考虑循环过程; 假设3:各发电机的输出功率在时段初调整好后,保持不变; 假设4:题目所列出的成本以外的成本消耗不计。

用数学模型思想方法解决实际问题

用数学模型思想方法解决 初中数学实际应用问题 关键词: 数学模型难点策略 随着新课改的进步落实,素质教育全方位、深层次推进,数学学科要求学生具有较高的数学素质、数学意识和较强的数学应用能力。而数学实际应用问题具有这种考查功能。它不仅具有题材贴近生活,题型功能丰富,涉及知识面广等特点,而且其应用性、创造性及开放性的特征明显。新课标把探索培养学生应用数学知识和数学思想方法解决实际问题的能力已落实到各种版本的数学实验教材中去了。今天社会对数学教学提出更高要求,不仅要求培养出一批数学家,更要求培养出一大批善于应用数学知识和数学思想方法解决实际问题的各类人才。初中阶段是探索和培养各类数学人才的黄金时段,而把实际问题转化为数学问题又是绝大多数初中学生的难题,如果在教学中我们有意识地运用数学模型思想帮助学生克服和解决这一难题,那么学生就会摆脱实际应用问题的思想束缚,释放出学习和解决实际应用问题的强大动力,激活创造新思维的火花。 把实际问题转化为一个数学问题,通常称为数学模型。数学模型不同于一般的模型,它是用数学语言模拟现实的一种模型,也就是把一个实际问题中某些事物的主要特征,主要关系抽象成数学语言,近似地反映客观事物的内在联系与变化过程。建立数学模型的过程称为数学建模。它主要有以下三个步骤:①实际问题→数学模型;②数学模型→数学的解;③数学的解→实际问题的解。对初中学生来说,最关键最困惑的是第一步。 一、初中学生解决实际应用问题的难点 1.1、缺乏解决实际问题的信心 与纯数学问题相比,数学实际问题的文字叙述更加语言化,更加贴近现实生活,题目也比较长,数量也比较多,数量关系显得分散隐蔽。因此,面对一大堆非形式化的材料,许多学生常感到很茫然,不知如何下手,产生惧怕数学应用题的心理。具体表现在:在信息的吸收过程中,受应用题中提供信息的次序,过多的干扰语句的影响,许多学生读不懂题意只好放弃;在信息加工过程中,受学生自身阅读分析能力以及数学基础知识掌握程度的影响,许多学生缺乏把握应用题的整体数学结构,并对全立体结构的信息作分层面的线性剖析的能力。即使能读懂题意,也无法解题;在信息提炼过程中,受学生数学语言转换能力的影响,许多学生无法把实际问题与对应的数学模型联系起来,缺乏把实际问题转换成数学问题的转译能力。 数学建模问题是用数学知识和数学分法解决实际生活中各种各样的问题,是一种创造性的劳动,涉及到各种心理活动,心理学研究表明,良好的心理品质是创造性劳动的动力因素和基本条件,它主要包括以下要素:自觉的创新意识;强烈的好奇心和求知欲;积极稳定的情感;顽强的毅力和独立的个性;强烈而明确的价值观;有效的组织知识。许多学生由于不具备以上良好的心理品质因而对解决实际问题缺乏应有的信心。 1.2、对实际问题中一些名词术语感到生疏 由于数学应用题中往往有许多其他知识领域的名词术语,而学生从小到大一直生长在学校,与外界接触较少,对这些名词术语感到很陌生,不知其意,从而就无法读懂题,更无法正确理解题意,比如实际生活中的利率、利润、打折、保险金、保险费、纳税率、折旧率、移动电话的收费标准等概念,这些概念的基本意思都没搞懂。如果涉及到这些概念的实际问题就谈不上如何去理解了,更谈不上解决问题。例如:从2001年2月21日起,中国电信执行新的电话收费标准,其中本地网营业区内通话费是:前3分钟为0.2元(不足3分钟按3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟计算)。上星期天,一位同学调查了A、B、C、D、E五位同学某天打本地网营业区内电话

相关文档
相关文档 最新文档