文档库 最新最全的文档下载
当前位置:文档库 › 函数概念与基本初等函数复习学案

函数概念与基本初等函数复习学案

函数概念与基本初等函数复习学案
函数概念与基本初等函数复习学案

考研---基本初等函数知识汇总-必看

一、三角公式总表 ⒈L 弧长=αR=n πR 180 S 扇=21L R=21R 2 α=3602R n ?π ⒉正弦定理: A a sin =B b sin =C c sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= ⒋S ⊿=21a a h ?=21ab C sin =21bc A sin =21ac B sin = R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) ⒌同角关系: ⑴商的关系:①θtg =x y = θ θ cos sin =θθsec sin ? ②θθθθθcsc cos sin cos ?== =y x ctg ③θθθtg r y ?==cos sin ④θθθθcsc cos 1sec ?== =tg x r ⑤θθθctg r x ?== sin cos ⑥θθθθsec sin 1csc ?== =ctg y r ⑵倒数关系:1sec cos csc sin =?=?=?θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22?θθθ++=+b a b a (其中辅助角?与点(a,b )在同一象限,且 a b tg = ?) ⒍函数y=++?)sin(?ωx A k 的图象及性质:(0,0>>A ω) 振幅A ,周期T= ω π 2, 频率f=T 1, 相位?ω+?x ,初相? ⒎五点作图法:令?ω+x 依次为ππ ππ 2,2 3,,2 0 求出x 与y , 依点()y x ,作图 ⒏诱导公试

1 第1讲 函数及其表示

知识点 最新考纲 函数及其表示 了解函数、映射的概念. 了解函数的定义域、值域及三种表示法(解析法、图象法和列表法). 了解简单的分段函数,会用分段函数解决简单的问题. 函数的基本性 质 理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性. 理解函数的最大(小)值的含义,会求简单函数的最大(小)值. 指数函数 了解指数幂的含义,掌握有理指数幂的运算. 理解指数函数的概念,掌握指数函数的图象、性质及应用. 对数函数 理解对数的概念,掌握对数的运算,会用换底公式. 理解对数函数的概念,掌握对数函数的图象、性质及应用. 幂函数 了解幂函数的概念. 掌握幂函数y =x ,y =x 2,y =x 3,y =1 x ,y =x 1 2的图象和性质. 函数与方程 了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法. 函数模型及其 应用 了解指数函数、对数函数以及幂函数的变化特征. 能将一些简单的实际问题转化为相应的函数问题,并给予解决. 1.函数与映射的概念 函数 映射 两集合 A 、B 设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系 f :A →B 如果按照某种确定的对应关系f , 使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应 如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应

名称 称f :A →B 为从集合A 到集合B 的一个函数 称对应f :A →B 为从集合A 到集合B 的一个映射 记法 y =f (x )(x ∈A ) 对应f :A →B 是一个映射 (1)函数的定义域、值域 在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集. (2)函数的三要素:定义域、值域和对应关系. (3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据. (4)函数的表示法 表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数 若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. [疑误辨析] 判断正误(正确的打“√”,错误的打“×”) (1)函数y =f (x )的图象与直线x =a 最多有2个交点.( ) (2)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( ) (3)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ) (4)若A =R ,B ={x |x >0},f :x →y =|x |,则对应关系f 是从A 到B 的映射.( ) (5)分段函数是由两个或几个函数组成的.( ) (6)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)× (2)√ (3)× (4)× (5)× (6)√ [教材衍化] 1.(必修1P18例2改编)下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3 x 3+1 C .y =x 2 x +1 D .y =x 2+1 解析:选B.对于A ,函数y =( x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义 域不同,不是相等函数;对于B ,定义域和对应关系都相同,是相等函数;对于C ,函数y

函数的概念学案

函数的概念学案 学习目标 1、通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用 2、了解构成函数的要素,进一步巩固初中常见函数(一次函数、二次函数、反比例函数)的图像、定义域、值域 3、理解区间的概念,能准确地利用区间表示数集 4、通过从实际问题中抽象概括函数概念的活动,培养抽象概括能力 教学重点体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念 教学难点函数的概念、符号y=f(x)的理解、 教学流程 一、问题1、在初中,甚至在小学我们就接触过函数,在实际生产生活中,函数也发挥着重要的作用,那么,请大家举出以前学习过的几个具体的函数 问题2、请大家用自己的语言来描述一下函数 二、结合刚才的问题,阅读课本实例(1)、(2)、(3),进一步体会函数的概念问题3、在实例(1)、(2)中是怎样描述变量之间的关系的?你能仿照描述一下实例(3)中恩格尔系数和时间(年)之间的关系吗? 问题4、分析、归纳上述三个实例,对变量之间的关系的描述有什么共同点呢? 函数的概念 一般地,设、是,如果按照某种确定的对应关系,使对于集合中的一个数,在集合中都有和它对应,那么就称为从集合到集合的一个函数,记作其中叫做自变量,的取值范围叫做函数的;与的值相对应的值叫做函数值,函数值的集合叫做函数的 问题5、在实例(2)中,按照图中的曲线,从集合B到集合A能不能构成一个函数呢?请说明理由 练习1、 1、在下列从集合到集合的对应关系中,不可以确定是的函数的是()(1),对应关系 (2),对应关系 (3),对应关系 (4),对应关系 2、下图中,可表示函数的图像只能是() 三、区间的概念

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

第04讲-函数的概念(讲义版)

第04讲函数的概念 一、考情分析 1.了解构成函数的要素,能求简单函数的定义域; 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用; 3.通过具体实例,了解简单的分段函数,并能简单应用. 二、知识梳理 1.函数的概念 设A,B是两个非空数集,如果按照确定的法则f,对A中的任意数x,都有唯一确定的数y与它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A. 2.函数的定义域、值域 (1)函数y=f(x)自变量取值的范围(数集A)叫做这个函数的定义域;所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域. (2)如果两个函数的定义域相同,并且对应法则完全一致,则这两个函数为相等函数. 3.函数的表示法 表示函数的常用方法有解析法、图象法和列表法. 4.分段函数 (1)在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这种函数称为分段函数. (2)分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集. [微点提醒] 1.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点. 2.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论. 三、经典例题 考点一求函数的定义域 【例1-2】函数y=1-x2+log2(tan x-1)的定义域为________;

【解析】 (1)要使函数y =1-x 2+log 2(tan x -1)有意义,则1-x 2≥0,tan x -1>0,且x ≠k π+π 2(k ∈Z ). ∴-1≤x ≤1且π4+k π1),则x =2 t -1 , ∴f (t )=lg 2t -1,即f (x )=lg 2 x -1 (x >1). 【例2-2】已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________; 【解析】设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2, f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=2ax +a +b =x -1, 所以???2a =1,a +b =-1, 即?????a =1 2,b =-32. ∴f (x )=12x 2-3 2x +2. 【例2-3】已知函数f (x )的定义域为(0,+∞),且f (x )=2f ? ?? ?? 1x ·x -1,则f (x )=________. 【解析】在f (x )=2f ? ?? ?? 1x ·x -1中, 将x 换成1x ,则1 x 换成x , 得f ? ?? ?? 1x =2f (x )·1x -1,

函数-在一点的连续概念

第2章 连续函数 §2.1 连续函数的概念 【导语】 连续是客观世界中最常见的现象,如岁月的流逝、植物的生长、物体的运动等都是连续的.函数的连续性反映了函数在一点的值与这点附近的函数值之间的关系,是函数在一点的性质.如何刻画函数的连续性,连续函数具有什么性质,这就是第2章要解决的问题.本讲主要介绍函数在一点连续的定义。 【正文】 一、函数在一点连续的概念 定义1 设函数()f x 在0x 的某邻域内有定义,如果0 0lim ()()x x f x f x →=成立,那么就称函 数()f x 在0x 处连续,0x 称为函数()f x 的连续点. 一般地,0x x x ?=-称为自变量的改变量,0000()()()()()f x f x f x f x x f x ?=-=+?-称为函数()f x 在0x 处的改变量.函数()f x 在0x 连续指的是:当0x ?→时,有0()0f x ?→,即00 lim ()0x f x ?→?=. 也就是说,函数()f x 在0x 连续指的是:对任意的正数ε,都存在正数δ,使得当x δ?<时,就有0()f x ε?<成立. 从定义可以看出,连续性是函数的一种点性质.函数()f x 在0x 处是否连续与它在其他点是否连续没有关系. 例如对于函数 ,, (),,x x f x x x ∈?=? -?? Q Q 因为0 lim ()0x f x →=,且(0)0f =,所以()f x 在0x =处连 续.由于在00x ≠时极限0 lim ()x x f x →不存在,所以()f x 也 x 0 x 0y=x y x O

只有0x =这一个连续点. 从运算的角度看,连续性保证了函数求值运算与极限运算满足交换律,即 0lim ()()(lim )x x x x f x f x f x →→==. 例1 若函数21 ,1,()1,1x x f x x a x ?-≠-? =+??=-? 在1x =-处连续,求a 的值. 解 因为()f x 在1x =-处连续,所以 1 lim ()(1)x f x f →-=-. 又因为 2111 1lim ()lim lim(1)21x x x x f x x x →-→-→--==-=-+,(1)f a -=, 所以 2a =-. 例2 利用定义证明:若函数()f x 在0x 处连续,则函数()f x 在0x 处连续. 证 对任意的正数ε,因为函数()f x 在0x 处连续,所以存在正数δ,当0||x x δ-<时,有 0()()f x f x ε-<。 又因为00()()()()f x f x f x f x --≤,所以当0||x x δ-<时,有0()()f x f x ε-<。 所以函数()f x 在0x 处连续. Remark:1,, ()1,.x f x x ∈?=?-?? Q Q 例3 利用定义证明函数()e x f x =在任意点0x 处连续. 证 对任意实数0x 和x ,000e e e (e 1)x x x x x --=-. 对任意正数ε,不妨设0e x ε<.要使 0e e x x ε-<, 即要使 00e (e 1)x x x ε--<, 即 0001e e 1e x x x x εε----<<+,

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当 时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加 的;当时为单调减少的,曲线过点。高等 数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当 时单调减少,曲线过(1,0)点,都在右半平面 内。与互为反函数。当时的对数 函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函 数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为 ,为无界函数,周期在定义域为奇函 数,图形如图1-1-11。

函数的概念导学案.docx

3.1.1 函数的概念导学案 【使用说明与学法指导】 预习教材第 44、45 页,对比初中所学的函数概念,找出本节新学到函数概念的相同与不同之处,并对新学到的定义与规定仔细分析,并且熟记与掌握。 【学习目标】 1、理解函数的概念; 2、理解函数的定义域和值域。 3、理解函数的两个要素。 4、了解表示函数的一些记号。 预习案 一、知识回顾 初中阶段,我们学到的函数概念: ________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ____________。 二、函数概念 1、学习了集合的定义之后,对函数做出了如下定义: ________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________

________________________________________________________________________ 。 2、新旧概念相同与不同之处 相同之处:两个概念都提到:对于每一个x,都有 。 不同之处:(1)、新的概念提到,对于每一个x,按照 ______________________,y都有唯一确定的值与之对应。而旧的概念中并没有提到对应法则。(2)、新的概念中提到了自变量 x 的取值范围,也即函数的____________。(3)、函数的一种新记法 _____________。 3、函数值、值域 函数值的定义: _________________________________________________________________ ________________________________________________________________________ ______。 值域的定义: 。 4、初中学了哪几种常见函数,列出来,并举例说明。 5、与: (1)、它们代表同一个函数吗? (2)、当; . 上面两行意思一样吗?那种记法更简单?

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 三、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

1函数的定义及表示 - 中等 - 讲义

函数的定义及表示 知识讲解 一、函数 1.函数的概念 概念:设集合A 是一个非空数集,对A 中的任意的数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作()y f x =,x A ?其中x 叫做自变量.自变量取值的范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()y f a =,所有函数值构成的集合{()}y y f x x A =?,叫做这个函数的值域. 2.函数的三要素:定义域,值域,对应法则 3.函数的表示法 1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式; 2)列表法:就是列出表格来表示两个变量的函数关系; 3)图象法:就是用函数图象表示两个变量之间的关系. 4.求函数定义域注意事项 1)分式的分母不应为零; 2)零的零次幂没有意义; 3)开偶次方根的被开方数大于或者等于零; 4)对数式的真数大于零; 5)()=tan f x x 的定义域为{|}2 x x k k Z π π ??,; 6)复合函数求定义域要保证复合过程有意义,最后求它们的交集. 5.分段函数 定义:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数. 6.复合函数 定义:若()y f u =,()u g x =,(),x a b ∈,(),u m n ∈,那么[()]y f x =称为复合函数,u 称

为中间变量,它的取值范围是()g x 的值域. 注意:函数的定义域必须写成集合或区间的形式. 二、映射 定义:设A B , 是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x 在B 中有一个且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射,这时称y 是x 在映射f 的作用下的象,记作()f x ,于是 ()y f x = x 称为y 的原象,映射f 也可记为: :f A B ? ()x f x ? 其中A 叫做映射f 的定义域(函数定义域的推广).由所有象()f x 构成的集合叫做映射f 的值域.通常记作()f A . 映射三要素:集合A B 、以及对应法则,三者缺一不可;:f A B ?,集合A 中每一个元素 在集合B 中都有唯一的元素与之对应,从A 到B 的对应关系为一对一或多对一,绝对不可以一对多,但也许B 中有多余元素. 三、函数求解析式 1.换元法 2.方程组法 四、函数求值域 1.直接法(分析观察法) 2.函数单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值 域. 3.配方法:二次函数或可转化为二次函数的函数常用此方法来还求解,但在转化的过程中 要注意等价性,特别是不能改变定义域.对于形如2y ax bx c =++(0)a 1或2()[()]()F x a f x bf x c =++(0)a 1类的函数的值域问题,均可使用配方法. 4.分离常数法:当分式中分子分母都函数由参数时.可以采用分离常数法.

(整理)函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2, n x x n ≠=,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A +- →→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ? ?? ?? ? ? ? +? -?? () 2 11c o s ~2(1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ?φ≤≤(,且 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

基本初等函数(整理)

1.1 初等函数图象及性质 1.1.1 幂函数 1函数(μ是常数)叫做幂函数。 2幂函数的定义域,要看μ是什么数而定。 但不论μ取什么值,幂函数在(0,+ ∞ )内总有定义。 3最常见的幂函数图象如下图所示:[如图] 4 2 -551015 -2 -4 -6 4①α>0时,图像都过(0,0)、(1,1 注意α>1与0<α<1的图像与性质的区别. ②α<0时,图像都过(1,1)点,在区间(0 上无限接近y轴,向右无限接近x轴. ③当x>1时,指数大的图像在上方. 1.1.2 指数函数与对数函数

1.指数函数 1函数 (a 是常数且a>0,a ≠ 1)叫做指数函数,它的定义域是区间(-∞ ,+∞ )。 2因为对于任何实数值x ,总有,又,所以指数函数的图形,总在x 轴的上方, 且通过点(0,1)。 若a>1,指数函数是单调增加的。若0

2.对数函数 由此可知,今后常用关系式,如: 指数函数的反函数,记作(a是常数且a>0,≠ a1),叫做对数函数。它的定义域是区间(0,+∞ )。 对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。 的图形总在y轴上方,且通过点(1,0)。 若a>1,对数函数是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞ )内函数值为正。 若01 0

1.1 函数的概念及其基本性质

第一章 函数 1.1 函数的概念及其基本性质(4课时) 教学要求:理解集合、区间、邻域及映射的概念,理解函数的概念,掌握函数的表示方法,了解函数的基本性质,理解复合函数及分段函数的概念,了解反函数及隐函数的概念,掌握基本初等函数的性质及图形,会建立简单应用问题中的函数关系式。 教学重点难点:重点是理解集合、映射及函数的概念;难点是理解反函数及隐函数的概念。 教学过程: 一、集合及其运算 1、集合概念 (1) 什么是集合? 所谓集合是指具有某种特定性质的事物的总体,组成这个集合的事物称为该集合的元素. (2) 集合的表示法 a 列举法:就是把集合的元素一一列举出来表示.由元素n a a a ,,21组成的集合A,可表示成 A={n a a a ,,21} b 描述法:若集合M 是由具有某种性质P 的元素x 的全体所组成,就可表示成 }|{P x x M 具有性质= (3) 集合元素的三大特性:确定性、互异性、无序性. (4) 元素与集合,集合与集合之间的关系:属于、包含、子集、真子集、空集. 2、集合的运算 (1) 并集 {| }A B x x A x B ?=∈∈或;(2) 交集 {| } A B x x A x B ?=∈∈且 (3) 差集 \{| }A B x x A x B =∈?但 (4) 全集与补集(或余集) 全集用I 表示,称A I \为A 的补集记作C A . 即 \{| }C A I A x x I x A ==∈?但 集合的并、交、补满足下列法则: (1) 交换律:A B B A ?=?,A B B A ?=? (2) 结合律:)()(C B A C B A ??=??,)()(C B A C B A ??=?? (3) 分配律:)()()(C B C A C B A ???=??, )()()(C B C A C B A ???=?? (4) 对偶律:C C C B A B A ?=?)(,C C C B A B A ?=?)( (5)幂等律:A A A ?=A A A ?=;(6)吸收律:A A ?Φ=A A ?Φ= 两个集合的直积或笛卡儿乘积 {(,)| }A B x y x A y B ?=∈∈ 且 二、区间与邻域 1、映射与领域 区间:开区间 ),(b a 、闭区间 ],[b a 、半开半闭区间],(b a ,),[b a 、有限,无限区间. 邻域:)(a U 或}|{),(δδδ+<<-=a x a x a U a :邻域的中心,δ:邻域的半径 去心邻域: }||0|{),(δδ<-<=a x x a U 左δ邻域),(a a δ-、右δ邻域),(δ-a a . 2、映射概念 定义 设,A B 是两个非空集合,如果存在一个法则f ,使得对A 中的每一个元素x .按法则f ,在B 中有唯一确定的元素y 与之对应,则称f 为从A 到B 的映射,记作 f B →:A 或,f y x A →∈:x| 其中,并y 称为元素x 的像,记作)(x f ,即 )(x f y =,而x 称为元素y 的一个原像。 映射f 的定义域:f D A =,映射f 的值域:(){()|}f R f A f x x A ==∈

3.1.1(第1课时)函数的概念 学案(含答案)

3.1.1(第1课时)函数的概念学案(含答 案) 3. 13.1函数的概念与性质函数的概念与性质3 3..1. 11.1函数及其表示方法函数及其表示方法 第第11课时课时函数的概念函数的概念学习目标 1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念. 2.体会集合语言和对应关系在刻画函数概念中的作用. 3.了解构成函数的要素,能求简单函数的定义域和值域.知识点一函数的有关概念函数的定义给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数函数的记法yfx,xA定义域x 称为自变量,y称为因变量,自变量取值的范围即数集A称为函数的定义域值域所有函数值组成的集合yB|yfx,xA称为函数的值域知识点二 同一个函数一般地,函数有三个要素定义域,对应关系与值域如果两个函数表达式表示的函数定义域相同,对应关系也相同,则称这两个函数表达式表示的就是同一个函数特别提醒两个

函数的定义域和对应关系相同就决定了这两个函数的值域也相同思考定义域和值域分别相同的两个函数是同一个函数吗答案不一定,如果对应关系不同,这两个函数一定不是同一个函数1任何两个集合之间都可以建立函数关系2已知定义域和对应关系就可以确定一个函数3若函数的定义域只有一个元素,则值域也只有一个元素4函数yfxx2,xA与uftt2,tA表示的是同一个函数 一.函数关系的判断例11多选下列两个集合间的对应中,是A 到B的函数的有AA1,0,1,B1,0,1,fA中的数的平方BA0,1, B1,0,1,fA中的数的开方CAZ,BQ,fA中的数的倒数 DA1,2,3,4,B2,4,6,8,fA中的数的2倍答案AD解析A选项121,020,121,为一一对应关系,是A到B的函数B选项00,11,集合A中的元素1在集合B中有两个元素与之对应,不符合函数定义,不是A到B的函数C选项A中元素0的倒数没有意义,不符合函数定义,不是A到B的函数D选项122,224,326,428,为一一对应关系,是A到B的函数2设Mx|0x2,Ny|0y2,给出如图所示的四个图形其中,能表示从集合M到集合N的函数关系的个数是A0B1C2D3答案B解析中,因为在集合M中当1x2时,在N中无元素与之对应,所以不是;中,对于集合M中的任意一个数x,在N中都有唯一的数与之对应,所以是;中,x2对应元素y3N,所以不是;中,当x1时,在N中有两个元素与之对应,所以不是因此只有是反思感悟1判断对应关系是否为函数的两个条件A,B必须是非空实数集A中任意一元素在B中有且只有一个元素与之对应

(完整word版)六大基本初等函数图像与性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

函数连续性

第四章 函数的连续性 §1 连续性概念 Ⅰ. 教学目的与要求 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. Ⅱ. 教学重点与难点: 重点: 函数连续性的概念. 难点: 函数连续性的概念. Ⅲ. 讲授内容 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说,连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我 们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数 的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一 函数在一点的连续性 定义1 设函数f 在某U ()0x 内有定义.若()x f x x 0 lim →=()0x f , 则称f 在点0x 连续. 例如,函数连续()x f 12+=x 在点2=x 连续,因为 2lim →x ()x f =2 lim →x ()()2512f x ==+ 又如,函数()x f ???=0 ,00,1sin =≠x x x x ,在点0=x 连续,因为 ()()001sin lim lim 00f x x x f x x ===→→ 为引入函数()x f y =在点0x 连续的另一种表述,记0x x x -=?,称为自变量x (在点 0x )的增量或改变量.设()00x f y =,相应的函数y (在点0x )的增量记为: ()()()()0000y y x f x x f x f x f y -=-?+=-=? 注 自变量的增量x ?或函数的增量y ?可以是正数,也可以是0或负数.引进了增 量的概念之后,易见“函数()x f y =在点0x 连续”等价于0lim 0 =?→?y x . 由于函数在一点的连续性是通过极限来定义的,因而也可直接用δε-方式来叙述, 即:若对任给的0>ε,存在0>δ,使得当δ<-0x x 时有 ()()ε<-0x f x f (2) 则称函数f 在点0x 连续.

相关文档
相关文档 最新文档