文档库 最新最全的文档下载
当前位置:文档库 › 华理工大学大学物理习题之 刚体力学习题详解

华理工大学大学物理习题之 刚体力学习题详解

华理工大学大学物理习题之 刚体力学习题详解
华理工大学大学物理习题之 刚体力学习题详解

习题三

一、选择题

1.一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为90?,则v 0的大小为 [ ]

(A

; (B

; (C

(D )

22

163M gl

m 。 答案:A 解:

11122

,

1122

J J J J Mg l ωωωω=+??

?=??? 22211, 243l m l J m J M l ??=== ??? 0012/2v v l l ω==,0021/21

/22

v v l l ωω===,111121

()2J J J J ωωωω-=

= 21122J Mgl ω=, 2

112J J Mgl J ω??

?= ???

, 22

114J Mgl J

ω= 2

2

202244143v ml l Mgl Ml ?? ???=?,Mgl M v m =?202163,2

202

163M v gl m =,所以 3

40gl m M

v =

2.圆柱体以80rad/s 的角速度绕其轴线转动,它对该轴的转动惯量为24kg m ?。在恒力矩作用下,10s 内其角速度降为40rad/s 。圆柱体损失的动能和所受力矩的大小为 [ ]

(A )80J ,80N m ?; (B )800J ,40N m ?;(C )4000J ,32N m ?;(D )9600J ,16N m ?。 答案:D

解:800=ω,40=ω,10=t ,4J =

2201122k E J J ωω-?=

- 2

2011()4(64001600)9600(J)22

k E J ωω?=-=??-=

M 恒定,匀变速,所以有

0t ωωα=-,0t

ωω

α-=

,08040

416N m 10

M J J t

ωω

α--==?

=?

=?

3.一个转动惯量为J 的圆盘绕一固定轴转动,初角速度为0ω。设它所受阻力矩与转动角速度成正比M k ω=- (k 为正常数)。

(1)它的角速度从0ω变为0/2ω所需时间是 [

]

(A )/2J ; (B )/J k ; (C )(/)ln 2J k ; (D )/(2)J k 。

(2)在上述过程中阻力矩所做的功为 [ ]

(A )20/4J ω; (B )203/8J ω-; (C )20/4J ω-; (D) 2

0/8J ω-。

答案:C ;B 。

解:已知 M k ω=-,0,

J ω,01

2

ωω=

(1)d M J k dt ωω==-,d J k dt ωω=-,d k

dt J

ωω=-

t

d k

dt J

ω

ω

ω

ω=-??

,0ln

k t J ωω=-,所以 0ln ln 2J J

t k k

ωω== (2)2222200001111322248J A J J J ωωωωω??===-=- ?

??

4.如图所示,对完全相同的两定滑轮(半径R ,转动惯量J 均相同),若分别用F (N )的力和加重物重力P mg F ==(N) 时,所产生的角加速度分别为1α和2α,则 [ ]

(A )12αα> ; (B )12αα= ; (C )12αα< ; (D )不能确定 。

答案:A

解:根据转动定律,有12,mg R J T R J αα?=?=,

依受力图,有mg T ma -=,T mg ma mg =-< 所以,12αα>。

5. 对一绕固定水平轴O 匀速转动的转盘,沿图示的同一水平直线从相反方向射入两颗质量相同、速率相等的子弹,并停留在盘中,则子弹射入后转盘的角速度应 [ ]

(A )增大; (B )减小; (C )不变; (D )无法确定。 答案:B

解:1102212()J J J J J J ωωωω+-=++

22

121212()J J m r m r m m ====, 12v

r

ωω==

所以

0012J

J J

ωωω=

<+

()

F mg =

二、填空题

1.半径为 1.5m r =的飞轮,初角速度0=10rad/s ω,角加速度25rad/s α=-,若初始时刻角位移为零,则在t = 时角位移再次为零,而此时边缘上点的线速度

为v =

答案:4s ;15m/s -。 解:已知

1.5m r =,0=10rad/s ω,25rad/s α=-,00=θ。

因const α=,为匀变速,所以有

20012t t θθωα=++。

令 0θ=,即 01()02

t t ωα+=得,由此得

022104s 5

t ωα?=-=-=-

0105410t ωωα=+=-?=-,所以 15m /s

v r ω==-

2. 一根质量为 m 、长度为 L 的匀质细直棒,平放在水平桌面上。若它与桌面间的滑动摩擦系数为μ,在0t =时,使该棒绕过其一端的竖直轴在水平桌面上旋转,其初始角速度为ω0,则棒停止转动所需时间为

答案:023L

t g

ωμ=

解:m

df dmg drg gdr L

μμλμ

=== dM r df =? ,m dM rdf grdr L μ==, 2122m mg

M dM g L L L

μμ==?=

? 又,2132d d mg

M J J mL dt dt L ωωμα=-=-=-=

,所以 32g d dt L μω=-,0

00

32t g d dt L

ωμω=-??,两边积分得:032g

t L

μω=,

所以

023L t g

ωμ=

3. 在自由旋转的水平圆盘上,站一质量为m 的人。圆盘半径为R ,转动惯量为J ,角速度为ω。如果这人由盘边走到盘心,则角速度的变化 ?ω =

;系统动

能的变化?E k =

答案:2mR J ω;2

221(1)2mR mR J

ω+。 解:应用角动量守恒定律

2J mR J ωωω'+=

解得 21mR J ωω??'=+ ??

?,角速度的变化 2

mR J ωωωω'?=-= 系统动能的变化 ()222

1122

k E J J mR ωω'?=?-+,即 2

221(

1)2k mR E mR J ω?=+

4. 如图所示,转台绕中心竖直轴以角速度0ω作匀速转动,转台对该轴的转动惯量

52510kg m J -=??。现有砂粒以1g /s 的流量落到转台,并粘在台面

形成一半径0.1m r =的圆。则使转台角速度变为0/2ω所花的时间为

答案:5s

解:由角动量守恒定律 20

0()

2

J mr J ωω+=

得 2J m r =, 由于

3110kg/s m

t -=? 所以 5

3

2323

5105s 1101100.1110m J t r ----?=

===?????

5. 如图所示,一轻绳跨过两个质量均为m 、半径均为R 的匀质圆盘状定滑轮。绳的两端分别系着质量分别为m 和2m 的重物,不计滑轮转轴的摩擦。将系统由静止释放,且绳与两滑轮间均无相对滑动,则两滑轮之间绳的张力为

答案:mg T 8

11=

解:列出方程组 11122211112222(1)(2)()(3)()

(4)

m g T m a T m g m a

T T R J T T R J αα-=??

-=??

-=??-=?

其中,211111

1,2a J M R R α=

=

, 2222221,2a J M R R α== 由(1)、(2)两式得:112

2()

()T m g a T m g a =-??=+?

可先求出a ,解得

12

m 1

m

1212122()2()()m m g a m m M M -=

+++ ,12112112124()

2()()m m m M M T g m m M M ++=

+++ ,12212212124()2()()m m m M M T g m m M M ++=

+++,121221

121242()()

m m m M m M T g m m M M ++=+++

将12m m =,2m m = 1212,M M m R R ===代入,得:11

8

T mg =

三.计算题

1.在半径为R 1、质量为M 的静止水平圆盘上,站一静止的质量为m 的人。圆盘可无摩擦地绕过盘中心的竖直轴转动。当这人沿着与圆盘同心,半径为R 2(< R 1)的圆周相对于圆盘走一周时,问圆盘和人相对于地面转动的角度各为多少?

答案:(1)22222221124422/()mR mR MR MR mR ππ--++,或;(2)21222

221212222/()1

MR mR MR mR MR ππ

++,或。 解:设人相对圆盘的角速度为ω,圆盘相对地面的角速度为M ω。 则人相对地面的角速度为 m M ωωω=+

应用角动量守恒定律 2

221102m M mR MR ωω+

= 得,()2

221102

M M mR MR ωωω++= 解得

22

2222

2221212122

M mR mR mR MR mR MR ωωω=-=-++ 圆盘相对地面转过的角度为

2222222222

2121122242222/()

M M mR mR dt dt mR MR mR MR MR mR π

θωωπ==-=-?=-+++?? 人相对地面转过的角度为

2m m M dt θωπθ==+?21222

221212222/()1

MR mR MR mR MR ππ

==++

2. 如图所示,物体1和2的质量分别为m 1与m 2,滑轮的转动惯量为J ,半径为r 。 (1)如物体2与桌面间的摩擦系数为μ,求系统的加速度a 及绳中的张力T 1和T 2;

(2)如物体2与桌面间为光滑接触,求系统的加速度a 及绳中的张力T 1和T 2。(设绳子与滑轮间无相对滑动,滑轮与转轴无摩擦)。

答案:太长,略。 解:(1

对物体1,在竖直方向应用牛顿运动定律 111()T m g m a -=-

对物体222T N m a μ-=,20N m g -=

对滑轮,应用转动定律

()21T r T r J α-=-,并利用关系 a r α=,

由以上各式, 解得

12122m m a g J m m r μ-=?++;2221112J m m r T m g J m m r μ++

=?++;1122212J

m m r T m g J

m m r

μμ++=?++

(2)0μ=时

1

122

m a g J

m m r

=

?++;22

1112J m r T m g J

m m r

+

=

?++;1

22122

m T m g J

m m r

=

?++

3.一匀质细杆,质量为0.5Kg ,长为0.4m ,可绕杆一端的水平轴旋转。若将此杆放在水平位置,然后从静止释放,试求杆转动到铅直位置时的动能和角速度。 答案:(1)0.98J ;(2)8.57rad/s 。 解:根据机械能守恒定律,有:22

1

2ωJ l mg =。杆转动到铅直位置时的动能和角速度分别为:

210.59.80.20.98J 22k l E J mg ω===??=;8.57rad/s ω=

===

4.如图所示,滑轮的转动惯量J =0.5kg ?m 2,半径r =30cm ,弹簧的劲度系数k =2.0N/m ,重物的质量m =2.0kg 。当此滑轮——重物系统从静止开始启动,开始时弹簧没有伸长。滑轮与绳子间无相对滑动,其它部分摩擦忽略不计。问物体能沿斜面下滑多远?当物体沿斜面下滑1.00m 时,它的速率有多大?

答案:(1)11.8m ;(2)1.7m/s 。

a

解:以启动前的位置为各势能的零点,启动前后应用机械能守恒定律

2

2202111sin 370222v kx mv J mgx r

++-= (1)0v =时,得0x =或2 2.09.8sin3711.8m 2

x ????

==

(2)1=x 时

1.7m/s v =

5.长0.40m l =、质量 1.00kg M =的匀质木棒,可绕水平轴O 在竖直平面内转动,开始时棒自然竖直悬垂,现有质量8g m =的子弹以200m/s v =的速率从A 点射入棒中,A 、O 点的距离为3/4l ,如图所示。求:(1)棒开始运动时的角速度;(2)棒的最大偏转角。 答案:(1)8.9rad/s ;(2)94.5?。 解:(1)应用角动量守恒定律

2

2313434mv l Ml m l ωω???=+ ??? 得

33

33

810200448.9rad/s 191918100.4

316310mv M m l ω--???===????+?+??? ? ?????

(2)应用机械能守恒定律

2211333()cos cos 2342424l l l l

Ml m l Mg mg Mg mg ωθθ??+--=--????

得 29

3

8cos 10.07923M m

l M m g

θω+=-?=-+, 94.5θ=?

习题五

一、选择题

1.已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则 [ ]

(A )波的频率为a ; (B )波的传播速度为 b/a ; (C )波长为 π / b ; (D )波的周期为2π / a 。 答案:D

解:由22cos()cos(

)2/2/y A at bx A t x a b ππππ=-=-,可知周期2T a

π

=

。波长为b π2。

2.如图,一平面简谐波以波速u 沿x 轴正方向传播,O 为坐标原点.已知P 点的振动方程为cos y A t ω=,则 [ ]

(A )O 点的振动方程为 []cos (/)y A t l u ω=-; (B )波的表达式为 {}cos [(/)(/)]y A t l u x u ω=--; (C )波的表达式为 {}cos [(/)(/)]y A t l u x u ω=+-; (D )C 点的振动方程为 []cos (3/)y A t l u ω=-。

答案:C

解:波向右传播,原O 的振动相位要超前P 点u l /ω,所以原点O 的振动方程为

{}0cos [(/)]y A t l u ω?=++,因而波方程为]}[cos{u

l

u x t A y +-

=ω,可得答案为C 。

3.一平面简谐波以速度u 沿x 轴正方向传播,在t t '=时波形曲线如图所示.则坐标原点O 的振动方程为[ ]

(A )]2

)(cos[π

+'-=t t b u a y ; (B )]2)(2cos[π

-'-π=t t b u a y ;

(C )]2

)(cos[π+'+π=t t b u a y ;

(D )]2

)(cos[π

-'-π=t t b u a y 。

答案:D

解:令波的表达式为 cos[2()]x

y a t ν?λ

=-+π

当t t '=, cos[2()]x

y a t ν?λ

'=-+π

由图知,此时0x =处的初相 22t ν?'+=-ππ, 所以 22

t ?ν'=--π

π,

由图得 b 2=λ, b

u

u

2=

=

λ

ν

故0x =处 c o s [2]c o s [()

]

2

u y a t a t t b ν?'=+=--ππ

π

4.当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?[ ]

(A )媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒; (B )媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同;

x

O u 2l l

y

C P

(C )媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不等;(D )媒质质元在其平衡位置处弹性势能最大。 答案:D

解:当机械波传播到某一媒质质元时,媒质质元在平衡位置处形变最大,因此其弹性势能也最大。运动到最大位移处形变最小,其弹性势能最小。媒质质元的振动动能和弹性势能是等相位的,能量向前传播,媒质质元机械能不守恒。所以答案应选D 。

5.设声波在媒质中的传播速度为u ,声源的频率为S ν。若声源S 不动,而接收器R 相对

于媒质以速度R v 沿着S 、R 连线向着声源S 运动,则位于S 、R 连线中点的质点P 的振动频率为[ ]

(A )S ν; (B ) R S u v u ν+; (C )

S R u u v ν+; (D ) S R u

u v ν-。 答案:A

解:位于S 、R 连线中点的质点P 相对于声源并没有相对运动,所以其接收到的频率应是声源的频率S ν

二、填空题

1.已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI),则

1= 10m x 点处质点的振动方程为________________________________; 1= 10m x 和2= 25m x 两点间的振动相位差为_____________。

答案:0.25cos(125 3.7)y t =- (SI); 5.55 rad ??=-。 解:(1)1= 10m x 的振动方程为 100.25cos(125 3.7)x y t ==- (2)因2= 25m x 的振动方程为 250.25cos(1259.25)x y t ==- 所以2x 与1x 两点间相位差 21 5.55 rad ????=-=-

2.如图所示,一平面简谐波沿Ox 轴正向传播,波速大小为u ,若P 处质点的振动方程为cos()P y A t ω?=+,则

O 处质点的振动方程___________________________________;

该波的波动表达式_____________________________________。

答案:0cos[()]L y A t u ω?=++;cos[()]x L

y A t u

ω?-=-+

解:(1)O 处质点振动方程 0cos[()]L

y A t u

ω?=++

(2)波动表达式 cos[()]x L

y A t u

ω?-=-

+

3.图示为一平面简谐波在0t =时刻的波形图,则该波的波动表达 式__________________________________;

P 处质点的振动方程

为_________________________________。 答案:]2

)4.05(2cos[04.0π

--π=x t y (SI); P y )2

34.0cos(04.0π

-

π=t (SI)。 解:(1)O 处质点,0t =时 0cos 0y A ?==, 0sin 0v A ω?=-> 所以

12

?=-π,

又有 0.40

= 5s 0.08T u λ

=

=

故波动表达式为

0.04c o s [2()

]50.42

t x y =--π

π (SI) (2)P 处质点的振动方程为 ]2)4.02.05(2cos[04.0π--π=t

y P )2

34.0cos(04.0π

-π=t (SI)

4.一平面简谐波,频率为31.010Hz ?,波速为31.010m/s ?,振幅为41.010m ?,在截面面积为424.010m -?的管内介质中传播,若介质的密度为238.010kg m -??,则该波的能量密度__________________;该波在60 s 内垂直通过截面的总能量为_________________。 答案:521.5810W m -??;33.7910 J ?。 解: (1) 2522222m W 1058.122

1

-??===

νρμπωρμA A I (2)

33.7910 J w P t IS t =??=?=?

5.如图所示,两列相干波在P 点相遇。一列波在B 点引起的振动是 310310cos2y t -=?π;另一列波在C 点引起的振动是3201310cos(2)2

y t -=?π+π;令0.45 m BP =,0.30 m CP =,两波的传播速度= 0.20 m/s u 。若不考虑传播途中振幅的减小,则P 点的合振动的振动方程为 ____________________________________。

答案: 31

610cos(2)2y t -=?-ππ(SI)。

解:第一列波在P 点引起的振动的振动方程为

(m)

-

311

310cos(2)2

y t -=?-ππ

第二列波在P 点引起的振动的振动方程为

321

310cos(2)2

y t -=?-ππ

所以,P 点的合振动的振动方程

3121

610cos(2)2

y y y t -=+=?-ππ

三、计算题

1.平面简谐波沿x 轴正方向传播,振幅为2cm ,频率为50Hz ,波速为 200 m/s .在0t =时,0x =处的质点正在平衡位置向y 轴正方向运动,求4m x =处媒质质点振动的表达式及该点在2s t =时的振动速度。

答案:(1)21

210cos(100)2

y t -=?-ππ;(2) 6.28 m/s v =。

解:设0x =处质点振动的表达式为 0c o s ()y A t ω?=+, 已知 0t =时,0 = 0y ,且 0 > 0v ,所以1

2

?=-π,因此得

0cos(2)y A t ν?=+π21

210cos(100)2

t -=?-ππ

由波的传播概念,可得该平面简谐波的表达式为

cos(22)x y A t u ν?ν=+-ππ211

210cos(100)22

t x -=?--πππ

4m x =处的质点在t 时刻的位移

21

210cos(100)2

y t -=?-ππ

该质点在2s t =时的振动速度为

21

210100sin(200)2= 6.28 m/s 2

v π-=-??-=πππ

2.一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示.

(1)求P 处质点的振动方程; (2)求此波的波动表达式;

(3)若图中 λ2

1=d ,求坐标原点O 处质点的振动方程。

答案:(1)1

cos()2

P y A t =π+π;

(2)

])4(2cos[π+-+π=λ

d

x t A y ;(3)

)2

1cos(0t A y π=。

t (s)

-A

1y P (m)

O

P

d

解:(1)由振动曲线可知,P 处质点振动方程为

21

cos[(

)]cos()42

P y A t A t π=+π=π+π (2)波动表达式为 ])4(2c o s [π+-+π=λ

d x t A y (3)O 处质点的振动方程 )2

1cos(0t A y π=

3.一平面简谐波沿Ox 轴正方向传播,波的表达式为 cos2()x

y A t νλ

=-π,而另一平面

简谐波沿Ox 轴负方向传播,波的表达式为 2cos2()x

y A t νλ

=+π

求:(1)4

x λ

=

处介质质点的合振动方程;(2)4

x λ

=

处介质质点的速度表达式。

答案:(1))2

1

2cos(ππ+=t A y ν;(2)2cos(2)v A t νν=+πππ。 解:(1)在4

x λ

=

)2

1

2cos(1π-

π=t A y ν,)212cos(22π+π=t A y ν

因1y 与2y 反相,所以合振动振幅为二者之差: A A A A s =-=2,且合振动的初相?与

振幅较大者(即2y )的初相相同,为π2

1

。所以,

合振动方程 )2

1

2cos(ππ+=t A y ν

(2)4

x λ

=

处质点的速度

d 1

2sin(2 )2cos(2)d 2

y v A t A t t νννν=

=-+=+ππππππ

4.设入射波的表达式为 )(

2cos 1T

t

x

A y +

π=λ

,在0x =处发生反射,反射点为一固定端。设反射时无能量损失,求

(1)反射波的表达式;(2)合成的驻波的表达式;(3)波腹和波节的位置。 答案:(1)2cos[2(

)]cos2()x

t x t

y A A T T λλ=-+=--πππ; (2)22222cos()cos()2sin sin

22x t

y A x t A T T λλ=+-=-ππππππ; (3)波腹:11() 1,2,3,22x n n λ=-= ;波节:1

1,2,3,2

x n n λ== 。

解:(1)反射点是固定端,所以反射有相位π的突变,且反射波振幅为A ,因此反 射波的表达式为

2cos[2()]cos2()x t x t

y A A T T

λλ=-+=--πππ

(2)驻波的表达式是 1222222cos()cos()2sin sin

22x t

y y y A x t A T T λλ=+=+-=-ππππππ (3)波腹位置满足: π=π+

πn x 2

1

/2λ,即 11

() 1,2,3,22

x n n λ=-=

波节位置满足

π+π=π+

π2

1

21/2n x λ,即 1

1,2,3,2

x n n λ==

5.在大教室中,教师手拿振动的音叉站立不动,学生听到音叉振动声音的频率

01020Hz ν=;若教师以速度0.5m/s v =匀速向黑板走去,则教师身后的学生将会听到拍

音,试计算拍频(设声波在空气中的速度为340m/s V =)。 答案:3Hz ν?=。

解:因声源远离学生,所以由音叉直接传来至学生处的声波频率

0340

10201018.5Hz 3400.5

V V v νν'=

=?=++ 黑板接收到的音波频率(声源朝向黑板运动)

034010201021.5Hz 3400.5

V V v νν''=

=?=+- 黑板固定不动,所以黑板反射的声波频率ν'''等于黑板接收到的声波频率ν''

Hz 5.1021=''='''νν

故,学生听到的拍的频率为

3Hz ννν''''?=-=

大学物理刚体部分知识点总结

一、刚体的简单运动知识点总结 1、刚体运动的最简单形式为平行移动与绕定轴转动。 2、刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能就是直线,也可能就是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度与加速度大小、方向都相同。 3、刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度与转向,就是代数量, 。角速度也可以用矢量表示, 。 ?角加速度表示角速度对时间的变化率,就是代数量, ,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度也可以用矢量表示, 。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

二. 转动定律转动惯量 转动定律 力矩相同,若转动惯量不同,产生的角加速度不同 与牛顿定律比较: 转动惯量 刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总与。 定义式质量不连续分布 质量连续分布 物理意义 转动惯量就是描述刚体在转动中的惯性大小的物理量。 它与刚体的形状、质量分布以及转轴的位置有关。 计算转动惯量的三个要素:

(1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量 平行轴定理与转动惯量的可加性 1) 平行轴定理 设刚体相对于通过质心轴线的转动惯量为Ic,相对于与之平行的另一轴的转动惯量为I,则可以证明I 与Ic 之间有下列关系 2c I I md =+ 2)转动惯量的可加性 对同一转轴而言,物体各部分转动惯量之与 等于整个物体的转动惯量。 三 角动量 角动量守恒定律 2 c I I md =+

大学物理试题库刚体力学 Word 文档

第三章 刚体力学 一、刚体运动学(定轴转动)---角位移、角速度、角加速度、线量与角量的关系 1、刚体做定轴转动,下列表述错误的是:【 】 A ;各质元具有相同的角速度; B :各质元具有相同的角加速度; C :各质元具有相同的线速度; D :各质元具有相同的角位移。 2、半径为0.2m 的飞轮,从静止开始以20rad/s 2的角加速度做定轴转动,则t=2s 时,飞轮边缘上一点的切向加速度τa =____________,法向加速度n a =____________,飞轮转过的角位移为_________________。 3、刚体任何复杂的运动均可分解为_______________和 ______________两种运动形式。 二、转动惯量 1、刚体的转动惯量与______________ 和___________________有关。 2、长度为L ,质量为M 的均匀木棒,饶其一端A 点转动时的转动惯量J A =_____________,绕其中心O 点转动时的转动惯量J O =_____________________。 3、半径为R 、质量为M 的均匀圆盘绕其中心轴(垂直于盘面)转动的转动惯量J=___________。 4、两个匀质圆盘A 和B 的密度分别是A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J 则:【 】 (A )B A J J >; (B )B A J J < (C )B A J J = (D )不能确定 三、刚体动力学----转动定理、动能定理、角动量定理、角动量守恒 1、一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转 动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后, 杆球这一刚体系统绕O 轴转动.系统绕O 轴的转动惯量J = ___________.释放后,当杆转到水平位置时,刚体受到的合外力矩M =____ __;角加速度β= ____ __. 2、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N ·m ,轮子对固定轴的转动惯量为J =15 kg ·m 2.在t =10 s 内,轮子的角速度由ω =0增大到ω=10 rad/s ,则M r =_______. 3、【 】银河系有一可视为物的天体,由于引力凝聚,体积不断收缩。设它经过一万年体积收缩了1%,而质量保持不变。则它的自转周期将______;其转动动能将______ (A )减小,增大; (B)不变,增大; (C) 增大,减小; (D) 减小,减小 4、【 】一子弹水平射入一竖直悬挂的木棒后一同上摆。在上摆的过程中,一子弹和木棒为系统(不包括地球),则总角动量、总动量及总机械能是否守恒?结论是: (A )三者均不守恒; (B )三者均守恒;

大学物理06刚体力学

刚体力学 1、(0981A15) 一刚体以每分钟60转绕z 轴做匀速转动(ω? 沿z 轴正方向).设某时刻刚体上一点 P 的位置矢量为k j i r ??? ? 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i ???? 157.0 125.6 94.2++=v (B) j i ??? 8.18 1.25+-=v (C) j i ??? 8.18 1.25--=v (D) k ?? 4.31=v [ ] 2、(5028B30) 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、 B 两滑轮的角加速度分别为A 和B ,不计滑轮轴的摩擦,则 有 (A) A =B . (B) A >B . (C) A < B . (D) 开始时 A = B ,以后 A < B . [ ] 3、(0148B25) 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 4、(0153A15) 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度 按图 示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度 (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ] 5、(0165A15) 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小. A M B F O F F ω O A

大学物理刚体力学基础习题思考题及答案

习题5 5-1.如图,一轻绳跨过两个质量为 m 、半径为r 的均匀圆盘状定滑轮,绳的两端 分别挂着质量为2m 和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定 滑轮的转动惯量均为 mr 2 / 2,将由两个定滑轮以及质量为 2m 和m 的重物组成 的系统从静止释放,求重物的加速度和两滑轮之间绳的力。 解:受力分析如图,可建立方程: 广 2mg T 2 2ma ① T1 mg ma ② J (T 2 T)r J ③ (T T 1)r J ④ 虹 a r , J mr 2/2 ⑤ 联立,解得:a 1g, T 4 上,设开始时杆以角速度 °绕过中心O 且垂直与桌面的轴转动,试求: (1)作 用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 解:(1)设杆的线密度为: d f dmg gd x, 微元摩擦力矩:d M g xd x , (2)根据转动定律 M J J 马, t 有: 0 Mdt Jd dt 1 . -mglt 1 [2 —m l 0, . . t _oL 4 12 3 g 或利用: M t J J 0,考虑到 0, J 1 | 2 一 ml , 12 有:t ol 。 11 a mg 5-2.如图所示,一均匀细杆长为 l ,质量为m ,平放在摩擦系数为 的水平桌面 一小质元dm dx,有微元摩擦力: 考虑对称性, l_ M 2 2 有摩擦力 矩: gxdx 1

5-3.如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子的质量 可以忽略,它与定滑轮之间无滑动。假设定滑轮质量为M、半径为 R,其转动惯量为MR2/2,试求该物体由静止开始下落的过程中, 下落速度与时间的关系。 解:受力分析如图,可建立方程: r mg T ma ① * TR J ② —, 1 ~2 — k a R , J — mR —-③ 2 2mg Mmg 联立,解得:a ------------ — , T ----------- —, 考虑到a四,.?. v dv 「旦—dt,有:v dt 0 0 M 2m M 2m 5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为M /4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M /4的重物,如图。已知滑轮对O 轴的转动惯量J MR2 /4 ,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度? 解一: 分别对人、滑轮与重物列出动力学方程 Mg T1Ma A人 T2M 4g M 心 a B物 4 T1R T2R J滑轮 由约束方程:a A a B R 和J MR2/4,解上述方程组 得到a —. 2 解二: 选人、滑轮与重物为系统,设 U为人相对绳的速度,V为重

大学物理-力学考题

一、填空题(运动学) 1、一质点在平面内运动, 其1c r = ,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 运动。 2.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段 时间内所经过的路程为4 2 2t t S ππ+ = ,式中S 以m 计,t 以s 计,则在t 时刻质点的角速度为 , 角加速度为 。 3.一质点沿直线运动,其坐标x 与时间t 有如下关系:x=A e -β t ( A. β皆为常数)。则任意时刻t 质点的加速度a = 。 4.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点的运动方程为=x 。 5、一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为______________。 6.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为2t t s ππ+=式中S 以m 计,t 以s 计,则t=2s 时,质点的法向加速度大小n a = 2/s m ,切向加速度大小τa = 2/s m 。 7. 一质点沿半径为0.10 m 的圆周运动,其角位移θ 可用下式表示3 2t +=θ (SI). (1) 当 2s =t 时,切向加速度t a = ______________; (2) 当的切向加速度大小恰为法向加速度 大小的一半时,θ= ______________。 (rad s m 33.3,/2.12) 8.一质点由坐标原点出发,从静止开始沿直线运动,其加速度a 与时间t 有如下关系:a=2+ t ,则任意时刻t 质点的位置为=x 。 (动力学) 1、一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I ;质点在第 s 2末的速度大小为 。

大学物理第3章 刚体力学习题解答

第3章 刚体力学习题解答 3、13 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度与角加速度。 解:23212643ct bt ct bt a dt d dt d -== -+== ωθβω 3、14桑塔纳汽车时速为166km/h,车轮滚动半径为0、26m,发动机转速与驱动轮转速比为0、909, 问发动机转速为每分多少转? 解:设车轮半径为R=0、26m,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。显然,汽车前进的速度就就是驱动轮边缘的线速度, 909.0/2212Rn Rn v ππ==,所以: min /1054.1/1024.93426.014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3、15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1与r 2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,则半径为r,厚为dr 的薄圆筒的质量dm 为: 2..dm h r dr ρπ= 对其轴线的转动惯量dI z 为 232..z dI r dm h r dr ρπ== 2 1 222211 2..()2 r z r I h r r dr m r r ρπ== -? 3、17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 , 求对过细杆二端 轴的转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+与问题的对称性知:圆形细杆对过 轴的转动惯量为 1 2 mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为:21 4 AA I mR '=

大学物理习题及解答(刚体力学)

1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。先使小球以速度0v 。绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。(2)由r D 缩到r 1过程中,力F 所作的功。 解 (1)绳子作用在 小球上的力始终通过中 心O ,是有心力,以小球 为研究对象,此力对O 的 力矩在小球运动过程中 始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即 1 0L L = 小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 1 00r r v v = (2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ??????-=-=-=1)(21 2 1)(21 2 1212102020210202021r r mv mv r r mv mv mv W

2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。 物体置于倾角为θ的光滑斜面上。 开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下 滑,求物体下滑距离l 时, 物体速度的大小。 解 把物体、滑轮、弹簧、 轻绳和地球为研究系统。在 物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。 设物体下滑l 时,速度为v ,此时滑轮的角速度为ω 则 θωsin 2121210222mgl mv J kl -++= (1) 又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22 sin 2θ

大学物理刚体部分知识点总结

一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度 也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

二.转动定律转动惯量 转动定律 力矩相同,若转动惯量不同,产生的角加速度不同 与牛顿定律比较: 转动惯量 刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。 定义式质量不连续分布 质量连续分布 物理意义 转动惯量是描述刚体在转动中的惯性大小的物理量。 它与刚体的形状、质量分布以及转轴的位置有关。

计算转动惯量的三个要素: (1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量 平行轴定理和转动惯量的可加性 1) 平行轴定理 设刚体相对于通过质心轴线的转动惯量为Ic ,相对于与之平行的另一轴的转动惯量为I ,则可以证明I 与Ic 之间有下列关系 2c I I md =+ 2)转动惯量的可加性 对同一转轴而言,物体各部分转动惯量之和 等于整个物体的转动惯量。 2 c I I m d =+

精选-《大学物理学》第二章 刚体力学基础 自学练习题

第二章 刚体力学基础 自学练习题 一、选择题 4-1.有两个力作用在有固定转轴的刚体上: (1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( ) (A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。 【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】 4-2.关于力矩有以下几种说法: (1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零; (3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。 对上述说法,下述判断正确的是:( ) (A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。 【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】 3.一个力(35)F i j N =+v v v 作用于某点上,其作用点的矢径为m j i r )34(??? -=,则该力对 坐标原点的力矩为 ( ) (A )3kN m -?v ; (B )29kN m ?v ; (C )29kN m -?v ; (D )3kN m ?v 。 【提示:(43)(35)430209293 5 i j k M r F i j i j k k k =?=-?+=-=+=v v v v v v v v v v v v v 】 4-3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆 到竖直位置的过程中,下述说法正确的是:( ) (A )角速度从小到大,角加速度不变; (B )角速度从小到大,角加速度从小到大;

大学物理2-1第四章(刚体力学)习题集规范标准答案

习 题 四 4-1 一飞轮的半径为2m ,用一条一端系有重物的绳子绕在飞轮上,飞轮可绕水平轴转动,飞轮与绳子无相对滑动。当重物下落时可使飞轮旋转起来。若重物下落的距离由方程2at x =给出,其中2s m 0.2=a 。试求飞轮在t 时刻的角速度和角加速度。 [解] 设重物的加速度为t a ,t 时刻飞轮的角速度和角加速度分别为ω和β,则 a t x a 2d d 22t == 因为飞轮与绳子之间无相对滑动,所以 βR a =t 则 2t rad/s 0.22 0.222=?=== R a R a β 由题意知 t =0时刻飞轮的角速度00=ω 所以 rad 0.20t t t ==+=ββωω 4-2 一飞轮从静止开始加速,在6s 内其角速度均匀地增加到200min rad ,然后以这个速度匀速旋转一段时间,再予以制动,其角速度均匀减小。又过了5s 后,飞轮停止转动。若该飞轮总共转了100转,求共运转了多少时间? [解] 分三个阶段进行分析 10 加速阶段。由题意知 111t βω= 和 112 12θβω= 得 2 21 11211t ωβωθ== 20 匀速旋转阶段。 212t ωθ=

30 制动阶段。 331t βω= 332 1 2θβω= 2 23 13213t ωβωθ== 由题意知 100321=++θθθ 联立得到 πωωω21002 2 3 1211 1?=+ +t t t 所以 s 1832002560200 2660200210022=???-??- ?= ππππt 因此转动的总时间 s 19418356321=++=++=t t t t 4-3 历史上用旋转齿轮法测量光速的原理如下:用一束光通过匀速旋转的齿轮边缘的齿孔A ,到达远处的镜面反射后又回到齿轮上。设齿轮的半径为5cm ,边缘上的齿孔数为500个,齿轮的转速,使反射光恰好通过与A 相邻的齿孔B 。(1)若测得这时齿轮的角速度为600s r ,齿轮到反射镜的距离为500 m ,那么测得的光速是多大?(2)齿轮边缘上一点的线速度和加速度是多大? [解] (1) 齿轮由A 转到B 孔所需要的时间5 1031 26005002?= ?==ππωθt 所以光速 s m 10310315002285 ?=??== T L c (2) 齿轮边缘上一点的线速度 s m 1088.126001052 2?=???==-πωR v 齿轮边缘上一点的加速度 ()2 522 2s m 1010.71052600?=???==-πωR a 4-4 刚体上一点随刚体绕定轴转动。已知该点转过的距离s 与时间t 的关系为 2 0302 6t a t a s += τ。求证它的切向加速度每经过时间τ均匀增加0a 。

华理工大学大学物理习题之 刚体力学习题详解

习题三 一、选择题 1.一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为 90?,则v 0的大小为 [ ] (A ; (B (C ; (D ) 22 163M gl m 。 答案:A 解: 11122 , 1122 J J J J Mg l ωωωω=+?? ?=??? 22211, 243l ml J m J Ml ??=== ??? 0012/2v v l l ω==,0021/21 /22 v v l l ωω===,111121 ()2J J J J ωωωω-= = 21122J Mgl ω=, 2 112J J Mgl J ω?? ?= ??? , 22 114J Mgl J ω= 2 2 202244143 v ml l Mgl Ml ?? ???=?,Mgl M v m =?2 02163,2202 163M v gl m =,所以 3 40gl m M v = 2.圆柱体以80rad/s 的角速度绕其轴线转动,它对该轴的转动惯量为24kg m ?。在恒力矩作用下,10s 内其角速度降为40rad/s 。圆柱体损失的动能和所受力矩的大小为 [ ] (A )80J ,80N m ?; (B )800J ,40N m ?;(C )4000J ,32N m ?;(D )9600J ,16N m ?。 答案:D 解:800=ω,40=ω,10=t ,4J = 2201122k E J J ωω-?= - 2 2011()4(64001600)9600(J)22 k E J ωω?=-=??-= M 恒定,匀变速,所以有 0t ωωα=-,0t ωωα-=,08040 416N m 10M J J t ωωα--==?=?=? 3.一个转动惯量为J 的圆盘绕一固定轴转动,初角速度为0ω。设它所受阻力矩与转动角速度成正比M k ω=- (k 为正常数)。

大学物理2-1第四章(刚体力学)习题答案复习进程

大学物理2-1第四章(刚体力学)习题答案

习 题 四 4-1 一飞轮的半径为2m ,用一条一端系有重物的绳子绕在飞轮上,飞轮可绕水平轴转动,飞轮与绳子无相对滑动。当重物下落时可使飞轮旋转起来。若重物下落的距离由方程2at x =给出,其中2s m 0.2=a 。试求飞轮在t 时刻的角速度和角加速度。 [解] 设重物的加速度为t a ,t 时刻飞轮的角速度和角加速度分别为ω和β,则 a t x a 2d d 22t == 因为飞轮与绳子之间无相对滑动,所以 βR a =t 则 2t rad/s 0.22 0.222=?=== R a R a β 由题意知 t =0时刻飞轮的角速度00=ω 所以 rad 0.20t t t ==+=ββωω 4-2 一飞轮从静止开始加速,在6s 内其角速度均匀地增加到200min rad ,然后以这个速度匀速旋转一段时间,再予以制动,其角速度均匀减小。又过了5s 后,飞轮停止转动。若该飞轮总共转了100转,求共运转了多少时间? [解] 分三个阶段进行分析 10 加速阶段。由题意知 111t βω= 和 112 12θβω= 得 2 21 11211t ωβωθ== 20 匀速旋转阶段。 212t ωθ= 30 制动阶段。331t βω= 332 1 2θβω= 2 23 13213t ωβωθ== 由题意知 100321=++θθθ 联立得到 πωωω21002 2 3 1211 1?=+ +t t t

所以 s 18360 2002560200 2660200210022=???-??- ?= ππππt 因此转动的总时间 s 19418356321=++=++=t t t t 4-3 历史上用旋转齿轮法测量光速的原理如下:用一束光通过匀速旋转的齿轮边缘的齿孔A ,到达远处的镜面反射后又回到齿轮上。设齿轮的半径为5cm ,边缘上的齿孔数为500个,齿轮的转速,使反射光恰好通过与A 相邻的齿孔B 。(1)若测得这时齿轮的角速度为600r ,齿轮到反射镜的距离为500 m ,那么测得的光速是多大?(2)齿轮边缘上一点的线速度和加速度是多大? [解] (1) 齿轮由A 转到B 孔所需要的时间5 1031 26005002?= ?== ππωθt 所以光速 s m 10310315002285 ?=??== T L c (2) 齿轮边缘上一点的线速度 m 1088.1260010522 ?=???==-πωR v 齿轮边缘上一点的加速度 ()2 522 2s m 1010.71052600?=???==-πωR a 4-4 刚体上一点随刚体绕定轴转动。已知该点转过的距离s 与时间t 的关系为 2 0302 6t a t a s += τ。求证它的切向加速度每经过时间τ均匀增加0a 。 [证明] 该点的切向加速度 00 22t d d d d a t a t s t v a +=== τ 所以 ()00000t τt a a t a a t a a a =??? ??+-??????++=-+τττ 因此,切向加速度每经过时间τ均匀增加0a 4-5 如图所示的一块均匀的长方形薄板,边长分别为a 、b 。中心O 取为原点,坐标系如图所示。设薄板的质量为M ,求证薄板对Ox 轴、Oy 轴和Oz 轴的转动惯量分别为 2Ox 12 1 Mb J =

华理工大学大学物理习题之刚体力学习题详解

习题三 一、选择题 1.一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为90?,则v 0的大小为 [ ] (A ; (B ; (C (D ) 22 163M gl m 。 答案:A 解: 11122 , 1122 J J J J Mg l ωωωω=+?? ?=??? 22211, 243l ml J m J Ml ??=== ??? 0012/2v v l l ω==,0021/21 /22 v v l l ωω===,111121 ()2J J J J ωωωω-= = 21122J Mgl ω=, 2 112J J Mgl J ω?? ?= ??? , 22 114J Mgl J ω= 2 2 202244143v ml l Mgl Ml ?? ???=?,Mgl M v m =?2 02163,2202 163M v gl m =,所以 3 40gl m M v = 2.圆柱体以80rad/s 的角速度绕其轴线转动,它对该轴的转动惯量为24kg m ?。在恒力矩作用下,10s 内其角速度降为40rad/s 。圆柱体损失的动能和所受力矩的大小为 [ ] (A )80J ,80N m ?; (B )800J ,40N m ?;(C )4000J ,32N m ?;(D )9600J ,16N m ?。 答案:D 解:800=ω,40=ω,10=t ,4J = 2201122k E J J ωω-?= - 2 2011()4(64001600)9600(J)22 k E J ωω?=-=??-= M 恒定,匀变速,所以有 0t ωωα=-,0t ωω α-= ,08040 416N m 10 M J J t ωω α--==? =? =? 3.一个转动惯量为J 的圆盘绕一固定轴转动,初角速度为0ω。设它所受阻力矩与转动角速度成正比M k ω=- (k 为正常数)。

刚体力学基础-习题-解答

衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题 命题教师:郑永春 试题审核人:张郡亮 一、填空题(每空1分) 1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__ 12 ma 2 _,对通过三角形中心和一个顶点的轴的转动惯量为J B =__ 2 1ma 2 。 2、两个质量分布均匀的圆盘A 和B 的密度分别为ρA 和ρB (ρA >ρB ),且两圆盘的总质量和厚度均相同。设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B ,则有J A < J B 。 3、 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度?θ=__4.0rad 4、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =__2275 kg·m 2·s 1 _;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。 5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。 二、单项选择题(每小题2分) ( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是: A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零; B.这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; C.当这两个力的合力为零时,它们对轴的合力矩也一定是零; D.当这两个力对轴的合力矩为零时,它们的合力也一定是零。 ( C )2、一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体。物体所受重力为P ,滑轮的角加速度为α.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度α将 A.不变; B.变小; C.变大; D.如何变化无法判断。 ( C )3、关于刚体的转动惯量,下列说法中正确的是 A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量、质量的空间分布和轴的位置; D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关。 ( C )4、一人造地球卫星到地球中心O 的最大距离和最小距离分别是R A 和R B .设卫星对应的角动量分别是L A 、L B ,动能分别是E KA 、E KB ,则应有 A.L B > L A ,E KA = E KB ; B.L B < L A ,E KA = E KB ; C.L B = L A ,E KA < E KB ; D.L B = L A ,E KA > E KB . ( C )5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图1射来两个质量 相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内, O M m m 图1

清华大学《大学物理》刚体习题

清华大学《大学物理》题库 02_刚体习题 一、选择题 1.0148:几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动 (B) 转速必然不变 (C) 转速必然改变 (D) 转速可能不变,也可能改变 [ ] 2.0153:一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动。若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大 (B) 必然减少 (C) 不会改变 (D) 如何变化,不能确定 [ ] 3.0165:均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小 (B) 角速度从小到大,角加速度从小到大 (C) 角速度从大到小,角加速度从大到小 (D) 角速度从大到小,角加速度从小到大 [ ] 4.0289:关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关 (B )取决于刚体的质量和质量的空间分布,与轴的位置无关 (C )取决于刚体的质量、质量的空间分布和轴的位置 (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关 [ ] 5.0292:一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体。物体所受重力为P ,滑轮的角加速度为α。若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度α将 (A) 不变 (B) 变小 (C) 变大 (D) 如何变化无法判断 [ ] 6.0126:花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转 动惯量为J 0,角速度为0ω。然后她将两臂收回,使转动惯量减少为31 J 0。这时她转动的角速度变为: (A) 031ω (B) ()03/1ω (C) 03ω (D) 03ω [ ]

大学物理 刚体力学基础习题思考题及答案

习题5 5-1.如图,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为2/2 mr ,将由两个定滑轮以及质量为m 2和m 的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。 解:受力分析如图,可建立方程: ma T mg 222=-┄① ma mg T =-1┄② 2()T T r J β-=┄③ βJ r T T =-)(1┄④ βr a = ,2/2J mr =┄⑤ 联立,解得:g a 41=,mg T 8 11 = 。 5-2.如图所示,一均匀细杆长为l ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过中心O 且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 解:(1)设杆的线密度为:l m = λ,在杆上取一小质元dm d x λ=,有微元摩擦力: d f dmg gd x μμλ==, 微元摩擦力矩:d M g xd x μλ=, 考虑对称性,有摩擦力矩: 20 1 24 l M g xd x mgl μλμ==?; (2)根据转动定律d M J J dt ωβ==,有:000t Mdt Jd ωω-=??, 2011 412 mglt m l μω-=-,∴03l t g ωμ=。 或利用:0M t J J ωω-=-,考虑到0ω=,21 12 J ml =, 有:03l t g ωμ=。 T

5-3.如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。假设定滑轮质量为M 、半径为 R ,其转动惯量为2/2MR ,试求该物体由静止开始下落的过程中, 下落速度与时间的关系。 解:受力分析如图,可建立方程: m g T ma -=┄① βJ TR =┄② a R β= ,21 2 J mR = ┄③ 联立,解得:22mg a M m =+,2Mmg T M m =+, 考虑到dv a dt =,∴0022v t mg dv dt M m =+??,有:22mg t v M m = +。 5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为4/M ,均匀分布在其边缘上,绳子A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为4/M 的重物,如图。已知滑轮对O 轴的转动惯量4/2 MR J =,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度? 解一: 分别对人、滑轮与重物列出动力学方程 A Ma T Mg =-1人 B a M g M T 4 42=- 物 αJ R T R T =-21滑轮 由约束方程: αR a a B A ==和4/2 MR J =,解上述方程组 得到2 g a = . 解二: 选人、滑轮与重物为系统,设u 为人相对绳的速度,v 为重

大学物理刚体力学基础习题思考题及答案.docx

` 习题 5 5-1.如图,一轻绳跨过两个质量为 m 、半径为 r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为 2m 和 m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定 滑轮的转动惯量均为 mr 2 / 2 ,将由两个定滑轮以及质量为 2m 和 m 的重物组成 的系统从静止释放,求重物的加速度和两滑轮之间绳的力。 解:受力分析如图,可建立方程: 2mg T 2 2ma ┄① T 1 mg ma ┄② (T 2 T )r J ┄③ (T T 1 )r J ┄④ a r , J mr 2 / 2 ┄⑤ T 联立,解得: a 1 g , T 11 mg 。 4 8 5-2.如图所示,一均匀细杆长为 l ,质量为 m ,平放在摩擦系数为 的水平桌面 上,设开始时杆以角速度 0 绕过中心 O 且垂直与桌面的轴转动,试求: ( 1)作 用于杆的摩擦力矩; ( 2)经过多长时间杆才会停止转动。 解:( 1)设杆的线密度为: m ,在杆上取 l 一小质元 dm d x ,有微元摩擦力: d f dmg gd x , 微元摩擦力矩: d M g xd x , 考虑对称性,有摩擦力矩: l 1 M 2 2 g xd x mgl ; 0 4 J d M J t Mdt ( 2)根据转动定律 ,有: Jd , dt 1 mglt 1 2 0 ,∴ t 0 l 4 m l 。 12 3 g 或利用: M t J J 0 ,考虑到 0 , J 1 ml 2 , 0 l 12 有: t 3 。 g

大学物理刚体部分知识点总结

大学物理刚体部分知识点总结 一、刚体的简单运动知识点总结 1、刚体运动的最简单形式为平行移动和绕定轴转动。 2、刚体平行移动。 刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3、刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α 与ω异号时,刚体作匀减速转动。角加速度也可以用矢量表示,。

?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。 速度、加速度的代数值为。 ?传动比。 二、转动定律转动惯量转动定律力矩相同,若转动惯量不同,产生的角加速度不同与牛顿定律比较:转动惯量刚体绕给定轴的转动惯量 J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。定义式质量不连续分布质量连续分布物理意义转动惯量是描述刚体在转动中的惯性大小的物理量。它与刚体的形状、质量分布以及转轴的位置有关。计算转动惯量的三个要素:(1)总质量; (2)质量分布; (3)转轴的位置(1) J 与刚体的总质量有关几种典型的匀质刚体的转动惯量刚体转轴位置转动惯量J细棒(质量为m,长为l)过中心与棒垂直细棒(质量为m,长为l)过一点与棒垂直细环(质量为m,半径为R)过中心对称轴与环面垂直细环(质量为m,半径为R)直径圆盘(质量为m,半径为R)过中心与盘面垂直圆盘(质量为m,半径为R)直径球体(质量为m,半径为R)过球心薄球壳(质量为m,半径为R)过球心平行轴定理和转动惯量的可加性1)平行轴定理ozDmicdrcirio设刚体相对于通过质心轴线的转动惯量为Ic,相对于与之平行的另一轴的转动惯量为I,则可以证明I与Ic之间有下列关系2)转动惯量的可加性对同一转轴而言,物体各部分转动惯量之和等于整个物体的转动惯量。三

大学物理第3章-刚体力学习题解答

第3章刚体力学习题解答 3.13某发动机飞轮在时间间隔t的角位移为 0 = at+ bt' -ct A(0 : radJ : 5)。求t时刻的角速度和角加速度。 解:co = ^ = a + 3bt- -4ct- P = ^ = 6ht-\2ct2 3.14桑塔纳汽车时速为166km/h,车轮滚动半径为0.26m,发动机转速与驱动轮转速比为0.909,问发动机转速为每分多少转? 解:设车轮半径为R=0.26m,发动机转速为n h驱动轮转速为n2,汽车速度为 v=166km/ho显然,汽车前进的速度就是驱动轮边缘的线速度, # = 2兀血2 =2兀&"0.909 ,所以: “=黠=?囁熠=9.24xl04 w//7 = 1.54x103rev/ min 3.15如题3-15图所示,质量为加的空心圆柱体,质量均匀分布,其外半径为门和厂2,求对通过其中心轴的转动惯量。 解:设圆柱体长为力,则半径为r,厚为dr的薄圆筒的质量dm为: dm = hp2mlr 对其轴线的转动惯量dl z?为 dl: = rdm = hplTV.r .dr 3.17如题3-17图所示,一半圆形细杆,半径为,质量为,求对 7二A 过细杆二端轴的转动惯量。 解:如图所示,圆形细杆对过O轴且垂直于圆形细杆所在平面的轴的转动惯量为mR2, 根据垂直轴定理/:=人+人和问题的对称性知:圆形细杆对过轴的转动惯量为|mR2, III 2 转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:I^=-mR2 3.18在质量为半径为R的匀质圆盘上挖出半径为r的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的 ____

相关文档
相关文档 最新文档