文档库 最新最全的文档下载
当前位置:文档库 › 高中平面几何讲义

高中平面几何讲义

高中平面几何讲义
高中平面几何讲义

高中平面几何

(上海教育出版社叶中豪)

知识要点

三角形的特殊点

重心,外心,垂心,内心,旁心,类似重心,九点圆心,Spieker点,Gergonne点,Nagel点,等力点,Fermat点, Napoleon 点, Brocard点,垂聚点,切聚点,X点,Tarry点,Steiner点,Soddy点,Kiepert双曲线

特殊直线、圆

Euler线,Lemoine线,极轴,Brocard轴,九点圆,Spieker圆,Brocard圆,Neuberg圆,McCay圆,

Apollonius圆,Schoute圆系,第一Lemoine圆,第二Lemoine圆,Taylor圆,Fuhrmann圆

特殊三角形

中点三角形,垂三角形,切点三角形,切线三角形,旁心三角形,弧中点三角形,反弧中点三角形,

第一Brocard三角形,第二Brocard三角形,D-三角形,协共轭中线三角形

相关直线及相关三角形

Simson线,垂足三角形,Ceva三角形,反垂足三角形,反Ceva三角形

重心坐标和三线坐标

四边形和四点形

质点重心,边框重心,面积重心,Newton线,四点形的核心,四点形的九点曲线

完全四边形

Miquel点,Newton线,垂心线,外心圆,Gauss-Bodenmiller定理

重要轨迹

平方差,平方和,Apollonius圆

三角形和四边形中的共轭关系

等角共轭点,等角共轭线,等截共轭点,等截共轭线

几何变换及相似理论

平移,旋转(中心对称),对称,相似和位似,相似不动点,逆相似轴,两圆外位似中心及内位似中心

Miquel定理

内接三角形,外接三角形,Miquel点

根轴

圆幂,根轴,共轴圆系,极限点

反演

反演,分式线性变换(正定向和反定向)

配极

极点与极线,共轭点对,三线极线及三线极点,垂极点

射影几何

点列的交比,线束的交比,射影几何基本定理,调和点列与调和线束,完全四边形及完全四点形的调和性, Pappus定理,Desargues 定理,Pascal定理,Brianchon定理

著名定理

三大作图问题,勾股定理,黄金分割,鞋匠的刀,P’tolemy定理,Menelaus定理,Ceva定理,Stewart定理,Euler线,Fermat- Torricelli问题,Fagnano- Schwarz问题,Newton线,Miquel定理,Simson线, Steiner定理,九点圆,Feuerbach定理,Napoleon 定理,蝴蝶定理,Morley定理,Mannheim定理

例题和习题

1.以△ABC的AB、AC两边向形外作正方形ABEP和ACFQ,AD是BC边上的高。求证:直线AD、BF、CE三线共点。

2.以△ABC的AB、AC两边为直角边,向两侧作等腰直角三角形ABD和ACE,使∠ABD =∠ACE=90°。求证线段DE的中点的位置与顶点A的位置无关。

3.已知梯形ABCD中,AD∥BC。分别以两腰AB、CD为边向外侧作正方形ABGE和正方形DCHF。连接EF,设线段EF的中点为M。求证:MA=MD。

4.△ABC中,AM是中线,H是垂心,N是AH中点,过A作外接圆切线,交对边于D点。

求证:ND⊥AM。(06061602.gsp)

5.△ABC中,D是BC边上一点,设O、O1、O2分别是△ABC、△ABD、△ACD的外心,求证:A、O、O1、O2四点共圆。(Salmon定理)

6.△ABC中,D是BC边上一点,设O、O1、O2分别是△ABC、△ABD、△ACD的外心,O′是A、O、O1、O2四点所共圆(Salmon圆)的圆心。求证:

(1)O′D⊥BC的充要条件是:AD恰好经过△ABC的九点圆心!

B C

(2)记△ABC的九点圆心为N i 。作O′E⊥BC,垂足为E。则N i E∥AD!(06051705.gsp) (06052901.gsp)

B C

7.四边形ABCD中,P点满足∠PAB=∠CAD,∠PCB=∠ACD,O1、O2分别是△ABC、△ADC的外心。求证:△PO1B∽△PO2D。(06060301.gsp)

D

8.设I是圆外切四边形ABCD的内心,求证:△IAB,△IBC,△ICD,△IDA的垂心共线。9.已知凸四边形ABCD满足:AB+AD=BC+CD,延长BA,CD交于E点,延长BC,AD交于F点。求证:EB+ED=FB+FD(或EA+EC=FA+FC)。(05123102.gsp)

E

10.(06.8.9)设A、B、C、D是椭圆

22

22

1

x y

a b

+=上四点。若直线AB、CD的斜率之积2

2

AB CD b

k k

a

=,

则直线AC、BC或直线AD、BC的斜率之积也必等于

2

2

b

a

(注:这时经过A、B、C、D四点的任意二次曲线的离心率必不小于椭圆

22

22

1

x y

a b

+=的离心率──

c

a

。)

(06080901.gsp)(06081201.gsp)

1.在△ABC中,D是BC边上一点,设O1、O2分别是△ABD、△ACD的外心,O′是经过A、O1、O2三点的圆之圆心。求证:O′D⊥BC的充要条件是:AD恰好经过△ABC的九点圆心。

B C

【证明】取△ABC的外心O,则熟知A、O、O1、O2四点共圆(Salmon圆)。易知△AO1O2∽△ABC,且O1O2是AD的垂直平分线。作顶点A关于BC边的对称点A′,易看出△AO′D∽△AOA′。设BC边高的垂足为G,再取AO连线的中点L,则LG是△AOA′的中位线,进而知△AO′D∽△ALG。得∠O′DA=∠LGA。……………①

再作外心O关于BC的对称点O′,由AH=2OM=OO′知A O′经过九点圆心Ni。(注:△AHNi≌△O′ONi)

由LM∥A O′知∠ADC=∠LMG;在直角梯形AOMG中,得∠LMG=∠LGM。

故∠ADC=∠LGM。……………②

而∠LGM+∠LGA=90°。

将①、②代入得∠O′DA+∠ADC=90°。

∴O′D⊥BC。

2.在△ABC中,D是BC边上一点,设O1、O2分别是△ABD、△ACD的外心,O′是经过A、O1、O2三点的圆之圆心。记△ABC的九点圆心为N i。作O′E⊥BC,垂足为E。则N i E ∥AD。

(叶中豪提供)

B C

【证明】作LK⊥AH。由AH=2OM,Ni F=(OM+HG)/2易知AK =Ni F。……………①

又因O′L在BC上的射影是EF,而AL在AG上的射影是AK,且两者夹角相等(都等于1

2

B C

∠-∠),

故O L AL

EF AK

'

=。……………②

由①、②知Rt△AO′L∽Rt△Ni EF。得∠AO′L=∠Ni EF。……………③

B C

而由下图,又易知∠AO′L=∠ADC。……………④

由③、④得∠Ni EC=∠ADC,

∴Ni E∥AD。

B C

3.△ABC中,AH是BC边上的高,D是直线BC上任一点。O、O1、O2分别是△ABC、△ABD、△ACD的外心,N、N1、N2分别是△ABC、△ABD、△ACD的九点圆心。设O′是A、O、O1、O2所共圆(Salmon圆)的圆心,作O′E⊥BC,垂足为E。则H、E、N、N1、N2五点共圆。

(闵飞提供)

【证明】

引理△ABC中,记外心O关于BC边的对称点为O′,则九点圆心Ni是A O′的中点。(证略)

如下图,作A、O、O1、O2诸点关于BC边的对称点,这些对称点仍构成共圆四边形。再以A点为位似中心,作1/2的位似变换,即可知所得到点H、N、N1、N2一定共圆。(且顺便得知所共圆的大小恰是Salmon圆的一半!)再在Salmon圆上取A″,使AA″∥BC。因此O′E所在直线是AA″的中垂线。作A″关于BC边的对称

点A″′。易知AA″′的中点恰是E,于是E也在上述位似后的圆上。

5.四边形ABCD中,P点满足∠PAB=∠CAD,∠PCB=∠ACD,O1、O2分别是△ABC、△ADC的外心。求证:△PO1B∽△PO2D。

(叶中豪提供)

D

C

【证法1】(田廷彦提供)

B

如上图,延长CP 交△ABC 的外接圆于Q 。连接QA 、QB 、QO 1、AO 2。

在等腰△O 1BQ 和等腰△O 2AD 中,由于∠BO 1Q =2∠BCQ =2∠ACD =∠AO 2D ,故△O 1BQ ∽△O 2AD 。………①

又在△PAQ 中,由正弦定理

()()()()21

12

sin sin sin sin sin sin sin sin sin 180/sin sin sin /PAB BAQ DAC BCQ DAC DCA PQ PAQ PA PQA CBA CBA CBA CDA AC R R CDA CBA

CBA AC R R ∠+∠∠+∠∠+∠∠====∠∠∠∠-∠∠=

=

==

∠∠其中R 1、R 2分

别是△BAC 和△DAC 的外接圆半径。

而12sin BQ R BCQ =∠,

22sin DA R ACD =∠,

1

2

R BQ DA R =

由此

PQ BQ

PA DA

, 又∠BQP =∠BAC =∠PAD , ∴ △PQB ∽△PAD 。………②

由①、②,即可知O 1、O 2是相似三角形PQB 和PAD 中的对应点,从而得△PBO 1∽△PDO 2。证毕。 【证法2】(柳智宇提供)

柳智宇证法

D

如下图,延长AP 、CP 分别交△ACD 的外接圆于C ′、A ′。

首先证明△DA ′C ′∽△BAC ,而O 1、O 2分别是这两个三角形的外心。然后说明P 是这对相似三角形中的自对应点,从而△PBO 1∽△PDO 2(具体过程略)。

【证法3】(邓煜提供)

见下图,在AB 上取点Q ,使得△APQ ∽△ADC (具体过程略)。

C

邓煜证法

重心坐标

{}123::μμμ

其余三点的坐标分别为:

{}123::μμμ-,{}123::μμμ-,{}123::μμμ-。

直线d ,d 1,d 2,d 3的坐标分别为:

123111::μμμ??????,123111::μμμ??-????,123111::μμμ??-????,12

3111::μμμ??

-????。 易算出Newton 线d 0的坐标为:2

2

21

2311

1:

:

μμμ??

?

???

高中数学几何知识点总结

高中数学几何知识点总结 高中数学几何知识点总结:平面 1. 经过不在同一条直线上的三点确定一个面. 注:两两相交且不过同一点的四条直线必在同一平面内. 2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交) 3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行) [注]:三条直线可以确定三个平面,三条直线的公共点有0或1个. 4. 三个平面最多可把空间分成 8 部分.(X、Y、Z三个方向) 高中数学几何知识点总结:空间的直线与平面 ⒈平面的基本性质⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法. ⒉空间两条直线的位置关系:相交直线、平行直线、异面直线. ⑴公理四(平行线的传递性).等角定理. ⑵异面直线的判定:判定定理、反证法. ⑶异面直线所成的角:定义(求法)、范围.

⒊直线和平面平行直线和平面的位置关系、直线和平面平行的判定与性质. ⒋直线和平面垂直 ⑴直线和平面垂直:定义、判定定理. ⑵三垂线定理及逆定理. 5.平面和平面平行 两个平面的位置关系、两个平面平行的判定与性质. 6.平面和平面垂直 互相垂直的平面及其判定定理、性质定理. (二)直线与平面的平行和垂直的证明思路(见附图) (三)夹角与距离 7.直线和平面所成的角与二面角 ⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平 面所成的角、直线和平面所成的角. ⑵二面角:①定义、范围、二面角的平面角、直二面角. ②互相垂直的平面及其判定定理、性质定理. 8.距离 ⑴点到平面的距离. ⑵直线到与它平行平面的距离. ⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高中数学立体几何知识点整理

三、立体几何初步 1、柱、锥、台、球的结构特征 (1)棱柱: 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到 截面距离与高的比的平方。 (3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图 是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变; ②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c 为底面周长,h 为高,' h 为斜高,l 为母线) ch S =直棱柱侧面积rh S π2=圆柱侧'2 1ch S =正棱锥侧面积rl S π=圆锥侧面积 ')(2 121h c c S +=正棱台侧面积l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式 V Sh =柱2V Sh r h π==圆柱13V Sh =锥h r V 231π=圆锥 '1()3 V S S h =台'2211()()33V S S h r rR R h π==++圆台 (4)球体的表面积和体积公式:V 球=343 R π ; S 球面=24R π 4、空间点、直线、平面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 应用: 判断直线是否在平面内 用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈?? 公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

高中平面几何讲义(上) 叶中豪

高中平面几何(上) 知识要点 几何问题的联系和转化 比例线段与相似图形 共点线与共线点(梅涅劳斯定理和塞瓦定理) 三角形的“五心” 四点共圆及其判定 正弦定理和余弦定理 几何变换及相似理论 完全四边形与Miquel点 位似及其应用 例题和习题 1.已知H是△ABC的垂心,M、N分别是BC和AH的中点,直线MN交以AH 为直径的圆于点S、T。求证:AT、AS平分∠BAC及其外角。(10040601-2.gsp) 2.已知:ABCD是正方形,AE=AD,BF=BC,且∠EAD+∠FBC=90°,联结BE、EF,分别交AD于P、Q。求证:PQ=QD。(08012304.gsp)

3.已知梯形ABCD中,AD∥BC,E、F分别为AB、CD上的点,满足∠AED=∠BEC,∠AFD=∠BFC,对角线AC、BD交于O。求证:OE=OF。(07112501.gsp) 4.已知四边形ABCD中,∠B=90°对角线AC=BD,P是对边BC、AD中垂线的交点,Q是对边AB、CD中垂线的交点。求证:B、P、Q三点共线。(10041302.gsp) 5.如图,矩形ABCD中,EF∥AB,EF与对角线BD交于G点。过E作ET⊥DF,

垂足为T;过F作FS⊥BE,垂足为S。求证:S、G、T三点共线。 6.如图,设N是△ABC的弧BAC的中点,M是BC边中点,I是△ABC的内心。求证:∠ANI=2∠IMC。(09021701.gsp) 7.已知O是△ABC的外心,D、E、F分别是各边中点,R、r 为外接圆和内切圆的半径。求证:OD+OE+OF=R+r。(10040601-9.gsp) 8.已知:P是△ABC内任一点,EH∥BC,FI∥AB,GD∥AC,且三线共点于P,

高一数学竞赛讲义:平面几何

平面几何习题 2016.4.18 例1、(2005)13.已知点 M 是 ABC ? 的中线 AD 上的一点, 直线 BM 交边 AC 于点N , 且 AB 是 NBC ? 的外接圆的切线, 设 BC BN λ=, 试求 BM MN (用 λ 表示). 例2、(2006)15. △ABC 中,AB

A B C P 例4、(2010)13.如图,圆内接五边形ABCDE 中,AD 是外接圆的直径,BE AD ⊥, 垂足H . 过点H 作平行于CE 的直线,与直线AC 、DC 分别交于点F 、G . 证明: (1) 点A 、B 、F 、H 共圆; (2) 四边形BFCG 是矩形. 例5、(2011)13.如图,P 是ABC 内一点. (1)若P 是ABC 的内心,证明:1 902 BPC BAC ∠=+∠; (2)若1902BPC BAC ∠=+∠且1 902 APC ABC ∠=+∠,证明:P 是ABC 的内心. A B C D E F H G

M B D O A 例6、(2012) 13. 如图,半径为1的圆O 上有一定点M, A 为圆O 上动点, 在射线OM 上有一动点B,AB=1,OB>1. 线段AB 交圆O 于另一点C,D 为线段OB 的中点,求线段CD 长的取值范围 例7、(2013)12.如图,梯形ABCD 中,B 、D 关于对角线AC 对称的点分别是'B 、 'D ,A 、C 关于对角线BD 对称的点分别是'A 、'C .证明:四边形'''' A B C D 是梯形.

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各 个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 棱柱 四棱柱 平行六面体直平行六面体 长方体正四棱柱 正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形

1.3 棱柱的面积和体积公式 ch S =直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 A B C D P O H

高中数学常用平面几何名定理

高中数学常用平面几何名定理 定理1 Ptolemy定理托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 定理2 Ceva定理 定理3 Menelaus定理 定理4 蝴蝶定理定理 内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 定理5 张角定理 在△ABC中,D是BC上的一点。连结AD。张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 定理6 Simon line西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 定理7 Eular line: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 定理8 到三角形三定点值和最小的点——费马点 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC 的费尔马点。 定理9 三角形内到三边距离之积最大的点是三角形的重心 定理10到三角形三顶点距离的平方和最小的点是三角形的重心 在几何里,平面是无限延展的,是无大小的,是不可度量的,是无厚度的,通常画平行四边形来表示平面 0、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。 1、欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 2、九点圆: 任意三角形三边的中点.三条高线的垂足.垂心与各顶点连线的中点,这9点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

高中数学立体几何之面面平行的判定与性质讲义及练习电子教案

高中数学立体几何之面面平行的判定与性质讲义及练习

面面平行的判定与性质 一、基本内容 1.面面平行的判定 文字 图形 几何符号 简称 判定定理1 判定定理2 2.面面平行的性质 文字 图形 几何符号 简称 性质定理1 性质定理2 二、例题 1. 正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面. 2.在正方体1111ABCD A B C D 中,E 、F 、G 分别是AB 、AD 、11C D 的中点. 求证:平面1D EF ∥平面BDG . A 1 A B 1 C 1 C D 1 D G E F

F E D B A P C 3.如图,在四棱锥ABCD P -中,底面ABCD 是正方形, PA ⊥平面ABCD , E 是PC 中点,F 为线段AC 上一点. (Ⅰ)求证:EF BD ⊥; (Ⅱ)试确定点F 在线段AC 上的位置,使EF //平面PBD . 4. 在四棱锥P ABCD 中,AB //CD ,AB AD ,4,22,2AB AD CD ,PA 平面 ABCD ,4PA . (Ⅰ)设平面PAB 平面PCD m =,求证:CD //m ; (Ⅱ)求证:BD ⊥平面PAC ; (Ⅲ)设点Q 为线段PB 上一点,且直线QC 与平面PAC 所 成角的正弦值为33,求PQ PB 的值. 5. 在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠?, EB ⊥平面ABCD , EF//AB ,2AB=,=1EF ,=13BC ,且M 是BD 的中点. (Ⅰ)求证://EM 平面ADF ; (Ⅱ)在EB 上是否存在一点P ,使得CPD ∠最大? 若存在,请求出CPD ∠的正切值;若不存在, 请说明理由. P D C B A C A F E B M D

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

平面几何四大定理

. 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。求证: FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行 线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于

DEG 截△ABM →1DB MD GM AG EA BE =? ?(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB ( GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 【评注】塞瓦定理 5. 已知△ABC 中,∠B=2∠C 。求证:AC 2=AB 2 +AB ·BC 。

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

高中数学立体几何知识点归纳总结

高中数学立体几何知识 点归纳总结 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-

高中数学立体几何知识点归纳总结一、立体几何知识点归纳 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 棱柱——有两个面互相平行,其余各面都是四边 形,并且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体叫做棱柱。 相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正 棱柱)的关系: ① ? ? ??????→ ?? ?????→? ? ?? ? 底面是正多形 棱垂直于底面 斜棱柱 棱柱正棱柱 直棱柱 其他棱柱

底面为平行四边形 侧棱垂直于底面 底面为矩形 底面为正方形 棱柱的性质: ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】 222211AC AB AD AA =++ ②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是 αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=; ③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=. 侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

高中平面几何讲义

高中平面几何 (上海教育出版社叶中豪) 知识要点 三角形的特殊点 重心,外心,垂心,内心,旁心,类似重心,九点圆心,Spieker点,Gergonne点,Nagel点,等力点,Fermat点, Napoleon点, Brocard点,聚点,切聚点,X点,Tarry点,Steiner点,Soddy点,Kiepert双曲线 特殊直线、圆 Euler线,Lemoine线,极轴,Brocard轴,九点圆,Spieker圆,Brocard圆,Neuberg圆,McCay圆, Apollonius圆,Schoute圆系,第一Lemoine圆,第二Lemoine圆,Taylor圆,Fuhrmann圆 特殊三角形 中点三角形,垂三角形,切点三角形,切线三角形,旁心三角形,弧中点三角形,反弧中点三角形, 第一Brocard三角形,第二Brocard三角形,D-三角形,协共轭中线三角形 相关直线及相关三角形 Simson线,垂足三角形,Ceva三角形,反垂足三角形,反Ceva三角形 重心坐标和三线坐标 四边形和四点形 质点重心,边框重心,面积重心,Newton线,四点形的核心,四点形的九点曲线 完全四边形 Miquel点,Newton线,垂心线,外心圆,Gauss-Bodenmiller定理 重要轨迹 平方差,平方和,Apollonius圆 三角形和四边形中的共轭关系 等角共轭点,等角共轭线,等截共轭点,等截共轭线 几何变换及相似理论 平移,旋转(中心对称),对称,相似和位似,相似不动点,逆相似轴,两圆外位似中心及内位似中心 Miquel定理 内接三角形,外接三角形,Miquel点 根轴 圆幂,根轴,共轴圆系,极限点 反演 反演,分式线性变换(正定向和反定向) 配极 极点与极线,共轭点对,三线极线及三线极点,垂极点 射影几何 点列的交比,线束的交比,射影几何基本定理,调和点列与调和线束,完全四边形及完全四点形的调和性, Pappus定理,Desargues定理,Pascal 理,Brianchon定理 著名定理 三大作图问题,勾股定理,黄金分割,鞋匠的刀,P’tolemy定理,Menelaus定理,Ceva定理,Stewart定理,Euler线,Fermat- Torricelli问题Fagnano- Schwarz问题,Newton线,Miquel定理,Simson线, Steiner定理,九点圆,Feuerbach定理,Napoleon定理,蝴蝶定理,Morley定理Mannheim定理 例题和习题

高中数学立体几何知识点总结

高中数学之立体几何 平面的基本性质 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 空间线面的位置关系 共面平行—没有公共点 (1)直线与直线相交—有且只有一个公共点 异面(既不平行,又不相交) 直线在平面内—有无数个公共点 (2)直线和平面直线不在平面内平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面相交—有一条公共直线(无数个公共点) 平行—没有公共点 异面直线的判定 证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 线面平行与垂直的判定 (1)两直线平行的判定 ①定义:在同一个平面内,且没有公共点的两条直线平行. ②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b. ③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c. ④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b ⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b. (2)两直线垂直的判定

相关文档
相关文档 最新文档