文档库 最新最全的文档下载
当前位置:文档库 › 三氧化二铝材料在氧化铝陶瓷电路板中的作用

三氧化二铝材料在氧化铝陶瓷电路板中的作用

三氧化二铝材料在氧化铝陶瓷电路板中的作用
三氧化二铝材料在氧化铝陶瓷电路板中的作用

三氧化二铝材料在氧化铝陶瓷电路板中的作用

市场上对陶瓷板的需求还是很高的,是因为陶瓷PCB板本身材料的性能决定的。陶瓷电路板之所以绝缘性好,熔点高,抗腐蚀是因为氧化三二陶瓷基材的缘故。今天就讲一下三氧化二铝材料在氧化铝陶瓷电路板中的作用。

纳米材料三氧化二铝在陶瓷板的应用

传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成

形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳米材料的延展性的高性能陶瓷。

纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。晶瑞新材料在纳米材料领域有这丰富的经验,其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。

【纳米材料三氧化二铝在陶瓷板的应用】

传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳米材料的延展性的高性能陶瓷。

氧化铝陶瓷(alumina ceramics)是一种以α-Al2O3(VK-L30)为主晶相的陶瓷材料,由于α-Al2O3具有熔点高,硬度大,耐化学腐蚀,优良的介电性,是氧化铝各种形态中最稳定的晶型,也是自然界中惟一存在的氧化铝的晶型。

用α-Al2O3(VK-L30)为原料制备的氧化铝陶瓷结构件材料,其机械性能、高温性能、介电性能及耐化学腐蚀性能都是非常优异的。

关于氧化铝的添加量

加入0.5~1%的纳米三氧化二铝(VK-L30),可以使Al2O3瓷的烧结温度降低150~200℃,大大节约能源,并且纳米三氧化二铝不属于外来杂质,大大提高了产品质量。

【关于纳米三氧化二铝烧结陶瓷的性能】

(1)机械强度高。Al2O3瓷烧结产品的抗弯强度可达250MPa,热压产品可达500MPa。Al2O3成分愈纯,强度愈高。强度在高温下可维持到900℃。利用其机械强度,可以制成装置瓷和其他机械构件。添加纳米氧化铝烧结的陶瓷强度提高,不容易断裂。

(2)电阻率高,电绝缘性能好。常温电阻率1015Ω·cm,绝缘强度15kV/mm。利用其绝缘性和强度,可以制成基板、管座、火花塞、电路管壳等。

(3)硬度高。莫氏硬度为9,加上优良的抗磨损性,广泛用以制造磨轮、磨料、拉丝模、挤压模、轴承等。

(4)熔点高,抗腐蚀。熔点2050℃,能较好地抗Be、Sr、Ni、Al、V、Ta、Mn、Fe、Co 等熔融金属的侵蚀。对NaOH、玻璃、炉渣的侵蚀也有很高的抵抗能力。因此可用作耐火材料、炉管、玻璃拉丝坩埚、空心球、热电偶保护套等。

(5)化学稳定性优良。许多复合的硫化物、磷化物、氯化物、氧化物等以及硫酸、盐酸、硝酸、氢氟酸均不与Al2O3作用。因此Al2O3可以制成坩埚、人体关节、人工骨、羟基磷灰石涂层多晶氧化铝陶瓷人工牙齿等。

(6)光学特性。可以制成透光材料(透光Al2O3瓷),用以制造钠蒸汽灯管、微波整流罩、红外窗口、激光振荡元件等。

(7)离子导电性。用作太阳能电池材料和蓄电池材料。

可见陶瓷pcb板很多性能是普通的板子不能比的,陶瓷pcb一般在LED大功率灯珠等大电流散热方面用的比较多。金瑞欣特种电路是专业陶瓷电路板厂家,专业提高pcb打样和中小批量生产,更多陶瓷电路板的工艺需求可以咨询金瑞欣特种电路官网。

氧化铝陶瓷的制备与应用

论文题目:氧化铝陶瓷的制备与应用 学院:材料科学与工程学院 专业班级:材料化学2班 学号:20090488 姓名:王杰 日期:2011-10-19

氧化铝陶瓷的制备与应用 摘要:氧化铝陶瓷是用途最广泛的陶瓷材料中的一种,它可用作机器及设备制造中的耐腐蚀材料、化工专业中的抗腐蚀材料、电工及电子技术中的绝缘材料、热工技术中的耐高温材料以及航空、国防等领域中的某些特种材料。 Abstract: the alumina ceramics is the most widely use of one of the ceramic material, it can be used as the machine and equipment manufacture of corrosion resistant material, chemical corrosion materials in the professional, electrical and electronic technology of thermal insulation materials, high temperature resistant materials and technologies in the aerospace, defense, etc to some of the special material. 关键词:氧化铝陶瓷耐磨性机械强度耐化学腐蚀 Keywords: alumina ceramics Wear resistance Mechanical strength Chemical corrosion-resistant 氧化铝陶瓷是一种用途广泛的陶瓷。因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。[1] 1.硬度大经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2.耐磨性能极好经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。

陶瓷基复合材料加工工艺

第十四章陶瓷基复合材料加工工艺 第一节增强体的制备 陶瓷基复合材料的增强体(强韧化组元),主要有陶瓷纤维、陶瓷晶须与片状晶体、硬质陶瓷颗粒和可相变的氧化锆等。 一、增强纤维 可以用作陶瓷复合材料增强体的纤维,有金属纤维、陶瓷纤维和碳纤维。 1.金属纤维 Ta、Mo、W、Ni、Nb等高熔点纤维及不锈钢纤维,原则上都可以用作陶瓷基体的增强体。金属纤维一般由拉丝制成,直径在10~600μm的范围内,有比较大的选择范围。其特点是密度大、热膨胀系数大、容易氧化,可能对复合材料制作工艺和性能不利,而其延展性大和导电率高的特点,在某些情况下是有益的。 2.陶瓷纤维 陶瓷纤维包括含有金属芯的陶瓷纤维和全陶瓷的纤维。 在W金属丝或碳素丝上,用化学沉降的方法可以形成连续的陶瓷纤维。芯的直径大约在30—50μm,沉降后的纤维直径大约在100~200μm。陶瓷层组分可以是SiC或Si3N4。近年来,用有机硅前驱体分解的方法,可以拉制出许多种陶瓷纤维。其方法是将硅基有机物前驱体,在熔融状态下拉制出直径在数十微米的纤维,然后进行聚合以及高温分解,形成陶瓷纤维。这种纤维有碳化硅纤维、氮化硅纤维、碳化钛纤维、氧化铝纤维等。其中,比较有名的是日本宇部兴产株式会社生产的以Nicalon和Tynano命名的碳化硅纤维。它们都是用聚碳硅烷纺丝而成。在组成上是碳化硅微晶和SiO2、C的集合物。在高于1400℃的高温下,其中的SiC微细晶粒会发生再结晶而长大,C会与O发生反应,生成CO气体而逸出。非晶态的SiO2也会结晶化而生成石英微细晶粒。这些现象都使现存的碳化硅陶瓷纤维只能在1400℃以下温度下使用。Tynano 型SiC纤维,是含有一定Ti元素的纤维,耐热温度据称比Nicalon高近50℃。Al2O3纤维在高温下容易发生晶粒长大而难用于高温。 3.碳纤维 碳纤维的用量正在不断增加,尤其是在高分子基复合材料中的用量增长很快。碳纤维分为有机高分子系(PAN系:聚丙烯腈系)和沥青系两大类。有机高分子系较易实现高强度化和高韧性化,最高强度可达7GPa,延伸率可达2.0%以上。另一方面,沥青系碳纤维富有高弹性,

氧化铝陶瓷

氧化铝陶瓷的制备.性能.用途及发展材料科学与技术是当代文明的三大支柱之一和全球新技术革命的三个标志之一,在当今高科技的发展中起着基础和先导作用。对新材料的研究是社会发展的需要。 随着陶瓷制造工艺的不断进步,特别是对陶瓷烧结过程、显微结构的深入研究,人们已制造出玻璃相含量非常低甚至几乎不含玻璃相而由许多微小晶粒结合成的结晶态陶瓷。由于微晶氧化铝陶瓷具有稳定的理化性能和十分优异的电性能,近年来在各个领域得到了较为广泛的应用,成为先进陶瓷材料中异军突起的一种重要陶瓷材料。 在陶瓷材料中,氧化铝陶瓷是使用最为广泛的材料之一。氧化铝陶瓷具有机械强度高,绝缘电阻大,硬度高,耐磨、耐腐蚀及耐高温等一系列优良性能,其广泛应用于陶瓷、纺织、石油、化工、建筑及电子等各个行业,是目前氧化物陶瓷中用途最广、产销量最大的陶瓷新材料。 通常氧化铝陶瓷分为2大类,一类是高铝瓷,另一类是刚玉瓷. 氧化铝陶瓷的制备.性能.用途及发展如下: 一、材料制备 氧化铝陶瓷制品成型方法常采用的有:干压、注浆、挤出、等静压(干法、湿法)、注凝、流延、热压铸、离心注浆等。不同的产品,因其形状、尺寸、造型复杂与精度各异,需要采用合理的成型方法。1.原料来源: 氧化铝在地壳中含量非常丰富,在岩石中平均含量为15.34%,是自然

界中仅次于SiO2存量的氧化物。一般应用于陶瓷工业的氧化铝主要有2大类,一类是工业氧化铝,另一类是电熔刚玉。 2.制备工艺: 原料配料→研磨加工→制粉(制浆、制泥)→成型(半干压、滚制、等静压、注浆、离心注浆、热压铸、挤出)干燥→制粉→热压烧结→烧成→检选(冷加工)→包装入库→出厂 3.工艺条件对氧化铝烧结性能 氧化铝陶瓷制备环节中的各工艺条件都对它的烧结和显微结构有极大影响。这些制备环节包括:粉体的制备过程、粒径与粒度分布、成型方法、生坯密度、烧结温度、升温速率、保温时间、烧成气氛等。 4.氧化铝陶瓷工业 (1).工业氧化铝 工业氧化铝一般是以含铝量高的天然矿物铝土矿(主要矿物组成为铝的氢氧化物,如一水硬铝石(xAl2O3·H2O)、一水软铝石、三水铝石等氧化铝的水化物组成)和高岭土为原料,通过化学法(主要是碱法,多采用拜尔法——碱石灰法)处理,除去硅、铁、钛等杂质制备出氢氧化铝,再经煅烧而制得,其矿物成分绝大部分是x-Ai2O3。工业氧化铝是白色松散的结晶粉末,颗粒是由许多粒径<0.1μm的x-Ai2O3晶体组成的多孔球形聚集体,其孔隙率约为30%,平均粒径40~70μm。 工业氧化铝的3项主要杂质成分中,Na2O及Fe2O3将降低氧化铝瓷件的电性能,Na2O的含量应<0.5%~0.6%,Fe2O3含量应<0.04%。另外,在电真空瓷件中,工业氧化铝不得含有氯化物、氟化物等,因为它们能

氧化铝陶瓷切削刀具的介绍

氧化铝陶瓷切削刀具的介绍 2010/8/4/9:1来源:《磨料磨具》杂志 氧化铝(刚玉)在磨料和磨具上的应用已有很长的历史,国际每年使用数量也是很大的,如2008年据海关统计中国出口刚玉磨料和磨具82.0512万吨(约50440.4万美元),进口6.5555万吨(约5623.5万美元)。而氧化铝(刚玉)陶瓷刀具是其发展的精尖制品,是近代氧化铝陶瓷的典范,其附加值很高。Al2O3(刚玉)粉料4~5元/公斤,而氧化铝基刀具价达2000~3000元/公斤。2007年西方国家陶瓷刀具的销售额估计达45亿美元以上,而氧化铝基陶瓷刀具约占一半。其中以日本产量最大,其次为美国、德国、英国等,而俄罗斯也有一定规模的产量。但国内对这种原料资源广、价廉,能生产高附加值的工具却发展不大,可能与中国钨资源丰富而偏重钨基硬质合金刀具有关。 氧化铝原料对碳化钨和氮化物原料而言是最廉价的,而氧化铝刀具价高。氧化铝刀具的比重约为硬质合金(碳化钨基)的三分之一,以体积价格计算,氧化铝刀具比硬质合金刀具要便宜、这也是促使国际氧化铝刀具发展的因素之一。 一、氧化铝的性能 现代新陶瓷材料包含氧化物、碳化物、氮化物、硼化物、硅化物,以及它们之间的复合化合物。从用途分有工程结构陶瓷、功能陶瓷、刀具陶瓷等。刀具陶瓷是用来车削或铣削加工金属及合金的工具。除碳化物以外作刀具陶瓷的即是氧化物、氮化物。在氧化物中最适合的就是氧化铝(刚玉-α-Al2O3)材料。 纯Al2O3在低温下存在十多种晶型,但主要的有三种:即α- Al2O3、β- Al2O3、γ- Al2O3,所有的晶型在温度超过1600℃以上,都会转变成高温稳定的α- Al2O3(刚玉),这个转变是不可逆的。一般Al2O3硬度是很低的,只有刚玉型α- Al2O3的硬度(莫氏硬度为9)才是很高的,刚玉才能作切削工具和耐磨件。 α-Al2O3属六方晶系,刚玉(单位晶胞是尖的菱面体)结构,a=4.76?,c=12.99?。密度3.96~4.01g/cm3,硬度(HV)3000kg/mm2,杨氏模量42kg/mm2,热导率0.07卡/(厘米·秒·℃),热膨胀系数8.5×10ˉ6℃。 氧化铝的化学稳定性是很强的,与很多材料的反应都很弱。 二、氧化铝陶瓷刀具 目前切削钢材、铸铁、合金钢材及不锈钢材等普遍采用碳化物基的硬质合金(WC -Co、WC-TiC-Co)。对于某些特殊材料也采用硬度最高的金刚石及立方氮化硼(CBN),但它们的强度比硬质合金较低,且金刚石工具不利于切削钢铁材料,因为碳质元素的金刚石易与铁元素反应生成碳化铁,而使金刚石损耗,但金刚石刀具对加工铝硅合金有独特的优点。而CBN对铁基等很多材料都不起反应,对加工冷硬铸铁、司太立合金、耐热镍基合金等具有较好的性能。 氧化铝与其他刀具材料不同的特性是:氧化铝化学性能稳定,抗氧化性特别好,它的切削刃即使处于红热状态下也能长时间切削,则氧化铝陶瓷刀具特别适于高速切削和加热切削。由于氧化铝对大部份金属的润湿性差,所以很难与金属粘结(如与钢的粘结温度:氧化铝为1528℃以上、碳化钨为1316℃),在切削时表现为摩擦系数低、切削力小、不易产生积屑瘤和粘结磨损,因此加工件容易得到很高的光洁面。氧化铝是所有刀具材料中最不活泼的,则在切削时可减少刀具的扩散磨损,Al2O3在铁中的溶解率,比WC要低4~5倍,因而氧化铝陶瓷刀具切削钢材时的磨损率,比WC基硬质合金刀具可小一个数量级至几十倍。利用氧化铝陶瓷刀具高耐磨性和适于高速切削的特点可加工大件,如加工长度7320mm,炮口直径155mm,尾端直径310mm的钢炮管。氧化铝适合加工大多数金属材料,尤其适合切

氧化铝陶瓷介绍

氧化铝陶瓷介绍 来自:中国特种陶瓷网发布时间:2005-8-3 11:51:15 氧化铝陶瓷制作工艺简介 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一粉体制备: 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍: 1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长度与直径之比不大于4∶1的物件。成型方法有单轴向或双向。压机有液压式、机械式两种,可呈半自动或全自动成型方式。压机最大压力为200Mpa。产量每分钟可达15~50件。由于液压式压机冲程压力均匀,故在粉料充填有差异时压制件高度不同。而机械式压机施加压力大小因粉体充填多少而变化,易导致烧结后尺寸收缩产生差异,影响产品质量。因此干压过程中粉体颗粒均匀分布对模具充填非常重要。充填量准确与否对制造的氧化铝陶瓷零件尺寸精度控制影响很大。粉体颗粒以大于60μm、介于60~200目之间可获最大自由流动效果,取得最好

陶瓷刀具的种类和性能

陶瓷刀具的种类和性能 陶瓷作为非金属刀具材料,因其能实现高硬度材料的切削和高速切削,所以作为工业的牙齿在金属切削领域中广泛应用,本文根据陶瓷刀具(含立方氮化硼刀具)的种类和性能,浅谈它们的使用区别及其适合加工材质。 一,陶瓷刀具的种类及发展脉络 陶瓷刀具的种类及发展:陶瓷刀具最明显的发展线条是刀片的韧性依次增强:氧化铝陶瓷刀具—-复合氧化铝陶瓷刀具--氮化硅陶瓷刀具--立方氮化硼刀具。 在金属切削领域,氧化铝陶瓷刀具和氮化硅陶瓷刀具合称为陶瓷刀具;在无机非金属材料学中,立方氮化硼材料归于陶瓷材料大类,立方氮化硼材料刀具的问世,是陶瓷刀具的革命。我国河南超硬材料研究所作为国内最早研究聚晶立方氮化硼材料刀具的研究所之一,最近推出纯氮化硼烧结体陶瓷刀具,其韧性和耐磨性能显着增加。 二,陶瓷刀具的性能及其在金属切削中的应用 陶瓷刀具比硬质合金刀片相比,可承受2000℃的高温,而硬质合金在800℃时则变软;所以陶瓷刀具更具有高温化学稳定性,可高速切削,但其缺 点是氧化铝陶瓷刀具的强度和韧性很低,容易破碎。因陶瓷刀具耐高温,对高温高速切削更有利,由于陶瓷热导率低,高温只在刀尖,高速切削所产生的热量都随切屑带走,所以大部分研究者认为:氧化铝陶瓷刀具能够,且最好高于硬质合 金切削的10倍线速度下进行切削,才能真正体现陶瓷刀具的优点。 为了减低陶瓷刀具对破碎的敏感性,在企图改善其韧性、提高耐冲击性能时,加入了氧化锆或加入碳化钛与氮化钛的混合物。尽管加入了这些添加剂,但是陶瓷刀具的韧性比硬质合金刀片还是低得多。 另一个提高氧化铝陶瓷刀具韧性的方法是在材料中加入结晶纹理或碳化硅晶须,通过这些特殊的平均起来仅有1纳米直径,20微米长很结实的晶须,相 当程度地增加了陶瓷的韧性、强度和抗热冲击性能。单受其抗冲击韧性限制,一直精车加工领域中使用。 和氧化铝陶瓷刀具一样,氮化硅陶瓷刀具比硬质合金刀片有更高的热硬性。它耐高温与机械冲击的性能也比较好,与氧化铝陶瓷刀具相比它的缺点是在加工

氧化铝陶瓷基复合材料概述

概述了氧化铝陶瓷基复合材料,并且对其一般的生产工艺金属间、氧化铝陶瓷基复合材料以及其应用领域作了介绍, 前言 氧化铝(Al2O3) 陶瓷材料具有耐高温、硬度大、强度高、耐腐蚀、电绝缘、气密性好等优良性能, 是目前氧化物陶瓷中用途最广、产量最大的陶瓷新材料。但是与其他陶瓷材料一样,该陶瓷具有脆性这一固有的致命弱点,使得目前Al2O3 陶瓷材料的使用范围及其寿命受到了相当大的限制。近年来, 在氧化铝陶瓷中引入金属铝塑性相的Al/Al2O3 陶瓷基复合材料是一个非常活跃的研究领域。 概述 金属间化合物的结构与组成它的两组元不同, 具有序的超点阵结构, 各组元原子占据点阵的固定位置, 最大程度地形成异类原子之间结合。由于其原子的长程有序排列以及金属键和共价健的共存性, 有可能同时兼顾金属的较好塑性和陶瓷的高温强度。在力学性能上, 有序金属间化合物填补了陶瓷和金属之间的材料空白区域。有序金属间化合物中, Ti - Al、Ni - Al、Fe - Al 和Nb-Al系等几个系列的多种铝化物更是特别受到重视。这些铝化物具有优异的抗氧化性、抗硫化腐蚀性和较高的高温强度, 密度较小, 比强度较高。 由于在空气中铝粉极易氧化而在表面形成Al2O3 钝化膜,使Al 粉和Al2O3 颗粒之间表现出很差的润湿性,导致烧结法制备Al/Al2O3 陶瓷材料烧结困难, 影响复合材料的机械性能[5]。挤压铸造和气压浸渍工艺浸渍速度快, 但是预制体中的细小空隙很难进一步填充[ 6], 而后发展的无压渗透工艺操作复杂,助渗剂的选择随意, 且作用机理复杂, 反而增加了工艺控制难度[7]。20世纪80年代初, 美国Lanxide公司提出了一种制备陶瓷基复合材料的新工艺定向金属氧化技术( DirectedMetal Ox-idation, 简称DMOX)。该工艺是在高温下利用一定阻生剂限制金属熔体在其他5个方向的生长, 使金属熔体与氧化剂反应并只单向生长即定向氧化。采用该方法制备的Al/ Al2O3 陶瓷材料在显微结构上表现为由立体连通的-Al2O3 基体与三维网状连通的残余金属和不连续的金属组成, 由于Al2O3 晶间纯净, 骨架强度高于烧结、浸渍等工艺制得的同类材料的强度[ 9]同时, 三维连通的金属铝具有良好的塑性, 从而使该复合材料具有更为良好的综合机械性能。

氧化铝陶瓷综述

***********(所属单位)材料科学进展课程设计 学号:******** 专业:******** 学生姓名:*** 任课教师:*** 2011年10月

***********(所属单位)材料科学进展 (小论文) 学号:******* 专业:******* 学生姓名:*** 任课教师:*** 2011年10月

氧化铝陶瓷综述 ***(姓名) *********(所属单位) 摘要:本文简述了氧化铝陶瓷的功能及在各行业的应用,详细论述了氧化铝陶瓷的制备、成型及烧结方法。 关键词:氧化铝陶瓷制备成型烧结应用 以氧化铝(Al2O3)为主要成分的陶瓷称为氧化铝陶瓷。它属于无机非金属材料,具有特殊用途,新的性能,故也称特种陶瓷、高性能陶瓷。氧化铝陶瓷是氧化物陶瓷中应用最广、用途最宽、产销量最大的陶瓷新材料。 1氧化铝的同质多晶变体及其性能简介 根据研究报道,Al2O3有12种同质多晶变体[1],但应用较多的主要有3种,即α-Al2O3、β-Al2O3和γ-Al2O3,这3种晶体的结构不同,故它们的性质具有 很大的差异[2]。 (1)α-Al2O3是三方晶系,单位晶包是一个尖的菱面体,密度为 3.96~4.01g/cm3,其结构最紧密、化学活性低、高温稳定性好、电学性能优良并且机械性能也最佳,在一定条件下可以由其它的两种晶体转换而来。 (2)β-Al2O3是一种Al2O3含量很高的多铝酸盐矿物,密度为 3.30~3.63g/cm3,它的化学组成中含有一定量的碱土金属氧化物和碱金属氧化物,并且还可以呈现离子型导电。 (3)γ-Al2O3是尖晶石型立方结构,在950~1200℃范围内转化为α-Al2O3,密度为3.42~3.47g/cm3。它的氧原子呈立方紧密堆积,铝原子填充在间隙中,这就决定了它在高温下不稳定、力学和电学性能差的缺陷,在科学应用中很少单独制成材料使用。但它有较高的比表面积和较强的化学活性,经过技术改进可以作为吸附材料使用。 由于β-Al2O3和γ-Al2O3在高温(950~1200℃)下易转化为α-Al2O3,而陶瓷的制备又须经高温烧结,所以氧化铝陶瓷是一种以α-Al2O3为主晶相的陶瓷材料。 2氧化铝陶瓷的功能简介 氧化铝陶瓷具有热稳定和化学稳定性,电绝缘性、压电性、耐腐蚀性、化学吸附性、生物适应性、吸声性和透光性等多种有实用价值的性能和功能,见表1。

对气压烧结碳化硅晶须增韧氧化铝基陶瓷刀具材料的研究

文章编号:1000-2278(2001)03-0152-05 对气压烧结碳化硅晶须增韧氧化铝基陶瓷刀具材料的研究 金 健 (重庆渝伦高技术陶瓷有限公司) 摘 要 本文介绍了用气压烧结S iC W 增韧Al 2O 3基陶瓷刀具的工艺,对气压烧结机理进行了分析,指出了气压法烧结S iC W 增韧Al 2O 3 基陶瓷刀具材料在产业化生产中的优势与不足。关键词 晶须增韧,复合陶瓷材料,气压烧结中图法分类号:T Q174.75+8 文献标识码:A RESEARCH ON GAS PRESSURE SINTERING OF SiC W REINFORCE D Al 2O 3CERAMIC INSERTS Jin Jian (Chongqing Y u Lun High T echnology Ceramic MFG.C o.Ltd ) Abstract The process of gas pressure sintering (G PS )to produce SiC W reinforced Al 2O 3ceramic inserts is introduced.The mecha 2nism of G PS is analyzed.The advantage and disadvantage of G PS in production of SiC W reinforced Al 2O 3ceramic inserts are discussed. K eyw ords whisker reinforced ,ceramic com posites ,gas pressure sintering 1 前 言 尽管晶须增韧陶瓷刀具已进入商品化生产阶段,但国内外主要采用热压烧结后经切割加工的方法来制备,其制造成本较高,且难以达到产业化的规模。我公司用气压法烧结的SiC W 增韧Al 2O 3基陶瓷刀具材料,其力学性能指标已达到或接近热压法生产的同类制品水平,在切削钛合金等难加工材料方面,已显示出比普通Al 2O 3-T iC N 、Si 3N 4基陶瓷刀具更为优越的切削加 工性能。目前国内外尚未见有类似的研究报道。 2 实验研究 2.1 原材料 Y 2O 3和T i (C N )粉:从德国H.C.Starck 公司购进, 粉末平均粒径<0.5 μm ;最大粒径<1μm 。Al 2O 3粉:从美国C ondea Uista 公司购进,α-Al 2O 3>99%,粉末平均粒径<0.5μm ,0.7μm 以上<5%,比表面积:12-15m 2/g 。 收稿日期:2001-08-20作者简介:金 健,重庆渝伦高技术陶瓷有限公司,400041 第22卷第3期2001年9月 陶瓷学报JOURNA L OF CERAMICS V ol.22,N o.3Sep.2001

氧化铝陶瓷

氧化铝陶瓷 氧化铝陶瓷(alumina ceramics)是一种以α- Al2O3为主晶的陶瓷材料。其Al2O3含量一般在75~99.99%之间。通常习惯以配料中Al2O3的含量来分类。Al2O3含量在75%左右的为“75瓷“,含量在85%左右的为“85瓷“,含量在95%左右的为“95瓷“,含量在99%左右的为“99瓷“。 工业Al2O3是由铝钒土(Al2O3·3H2O)和硬水铝石制备的,对于纯度要求不高的,一般通过化学方法来制备。电熔刚玉即是用上述原料加碳在电弧炉内于2000~2400C熔融制得,也称人造刚玉。 Al2O3有许多同质异晶体。根据研究报道过的变体有十多种,但主要有三种,即γ- Al2O3,β- Al2O3,α- Al2O3。Al2O3的晶体转化关系如下图,其结构不同,因此其性质也不同,在1300度以上的高温几乎完全转变为α- Al2O3。 γ- Al2O3,属尖晶石型(立方)结构,氧原子形呈立方密堆积,铝原子填充在间隙中。它的密度小。且高温下不稳定,机电性能差,在自然界中不存在。由于是松散结构,因此可利用它来制造多孔特殊用途材料。 β- Al2O3是一种Al2O3含量很高的多铝酸盐矿物。它的化学组成可以近似地用RO·6 Al2O3和R2O·11 Al2O3来表示(RO指碱土金属氧化物,R2O指碱金属氧化物),其结构由碱金属或碱土金属离子如[NaO]ˉ层和[Al11O12]+类型尖晶石单元交叠堆积而成,氧离

子排列成立方密堆积,Na+完全包含在垂直于C轴的松散堆积平面内,在这个平面内可以很快扩散,呈现离子型导电。 α- Al2O3,属三方晶系,单位晶胞是一个尖的菱面体,在自然办只存在α- Al2O3,如天然刚玉、红宝石、蓝宝石等矿物。α- Al2O3结构最紧密、活 性低、高温稳定。它是三种形态中最稳定的晶型,电学性质最好,具有优良的机电性能。 Al2O3中的化学键是离子键,离子键也称“电价键”,它是由金属原子失去外层电子形成正离子,非金属原子取得电子形成负离子,互相结合形成的。离子键是依靠正负离子间静电引力所产生的化学键,它没有方向性也没有饱和性。A Al2O3陶瓷属于氧化物晶体结构,氧化物结构的结合键以离子键为主,它的分子式通常以AmXn 表示。A(或者B)表示与氧结合的正离子,n为离子数,x表示氧离子,n表示它的数量。大多数氧化物中的氧离子半径大于正离子的半径。所以它们的结构是以大直径的氧离子密堆排列的骨架,组成六方或面心立方点阵,小直径的正离子嵌入骨架的间隙处。这种陶瓷材料具有高的硬度和熔点。 陶瓷体的相组成中,晶相相对含量波动范围很大,通常特种陶瓷中晶相体相对含量较高。晶相对陶瓷材料性质有很大的影响。表中列出了一般陶瓷到特种陶瓷中的刚玉相(α- Al2O3)含量的变化及表现出的性能差异。

陶瓷刀具的种类

陶瓷刀具的种类 氧化铝(Al2O3)基陶瓷纯氧化铝陶瓷 其中Al2O3的成份占99.9%以上,多呈白色,俗称白陶瓷。中国成都工具研究所生产的P1牌号属于这一类。它的耐磨性好,用于切削灰铸铁有较好效果,也可切削普通碳钢。但因其强度低,抗热振性及断裂韧性较差,切削时易崩刃,目前已被其它Al2O3复合陶瓷取代。 氧化铝—碳化物系复合陶瓷 它是在Al2O3基体中加入TiC、WC、MO2C、TaC、NbC、Cr3C2等成份经热压烧结而成,使用最多的是Al2O3-TiC复合陶瓷。随着TiC含量(30%~50%)的不同,其切削性能也有差异。这类陶瓷主要用于切削淬硬钢和各种耐磨铸铁。中国生产的牌号有M16、SG3、SG4和AG2等,后两种牌号还含有WC的成份。 氧化铝—碳化钛—金属系复合陶瓷 在Al2O3-TiC陶瓷中加入少量的粘结金属,如Ni和Mo等,可提高Al2O3 与TiC的连结强度,提高其使用性能,故可用于粗加工。这类陶瓷又称金属陶瓷。中国生产的牌号有AT6、LT35、LT55、M4、M5、M6、LD-1等。用其切削调质合金钢时切削速度可达一般硬质合金刀具的1~3倍,刀具寿命为硬质合金刀具的6~10倍。由于含有金属成份,所以能用电加工切割成任何形状。同时,用金刚石砂轮刃磨时,能获得较好的表面质量。LD-1是在Al2O3-TiC系陶瓷的基础上,通过添加少量的特殊微粉,利用多种增韧机制的协同作用而使断裂韧度有较大提高(可达6.0~6.6 MPa·m1/2,普通热压Al2O3-TiC陶瓷断裂韧度为4 MPa·m1/2),用其端铣淬硬钢时刀片抗破损性能比同类LT55牌号高出30%~110%。 Al2O3-SiC晶须增韧陶瓷 在Al2O3陶瓷基体中添加20%~30%的SiCw晶须(是直径小于0.6μm,长度为10~80μm的单晶,具有一定的纤维结构,抗拉强度为7GPa,抗拉弹性模量超过700GP)而成。SiCw晶须的作用犹如钢筋混凝土中的钢筋,能成为阻挡或改变裂纹发展方向的障碍物,使其韧性大幅度提高,断裂韧度可达9MPa·m1/2,可有效地用于断续切削及粗车、铣削和扩孔等工序,适于加工镍基合金、高硬度铸铁和淬硬钢等材料。中国生产的JX-1、AW9、SG5及美国WG300、Kyon250与瑞典Sandvik公司CC670等牌号均属于这一类。 Al2O3/(W,Ti)C梯度功能陶瓷 通过控制陶瓷材料的组成分布以形成合理的梯度,从而使刀具内部产生有利的残余应力分布来抵消切削的外载应力,具有表层热导率高、有利切削热的传出、

氧化铝陶瓷刀具的研究与应用

高速加工技术论文 氧化铝陶瓷刀具的研究与应用 院系:燕山大学机械工程学院 班级:11硕研机制系 组长:明 组员: 指导老师: 时间:2011年12月01日

氧化铝陶瓷刀具的研究与应用 摘要:作为先进制造技术,高速切削技术能大幅度地提高加工品质和加工效率,并能降低加工成本。高速切削已经成为切削加工的主要发展方向。为真正实现切削加工的高速化,不仅要研究开发与高速切削相适应的材料,还要不断改进刀具结构,并对刀具的动平衡和可靠性进行分析。目前,国际上现已发展的陶瓷刀具主要是氧化铝基(Al2O3) 和氮化硅基( Si3N4) 两大系列。陶瓷刀具具有很高的硬度、耐磨性能及良好的高温性能,与金属的亲合力小,并且化学稳定性好。因此,陶瓷刀具可以加工传统刀具难以加工的高硬材料,实现以车代磨。 关键词:高速加工、氧化铝陶瓷刀具、高硬度、高耐磨性、抗高温 1、陶瓷刀具的材料及选择 陶瓷材料比硬质合金更适合于高速切削,陶瓷材料与金属亲合力小,热扩散磨损就很小。另外,陶瓷的高温硬度优于硬质合金,在1200 ℃~1400℃时仍能达到HRA80,相当于硬质合金400℃以下的硬度。 氧化铝陶瓷硬度高、耐磨性好,但韧性不足,抗热振能力差,易于发生刃口早期破损。通过加入ZrO2形成的相变增韧复合陶瓷Al2O3一ZrO2,和由具有高横向断裂强度的SiC晶须组成的晶须强化陶瓷Al2O3一SiC以及Al2O3一SiC+金属等Al2O3基陶瓷断裂韧性和强度有较大的提高,强了耐冲击和断续切削的能力,如Al2O3一ZrO2,能以1000m/mi的切削速度铣削硬度小于HRC38的钢件和HB300的铸铁件。 氮化硅(Si3N4)陶瓷具有较高的强度、韧性和抗热振能力,刀具耐用度显著提高,尤其提高了断续切削的可靠性。通过在Si3N4基体添加YO、Al2O3和TiC(N)等形成的氮化硅系陶瓷,具有良好的烧结工艺性并能保持优良的切削性能。近期开发的XE10是一种高强韧性的纤维状的高纯度高密度Si3N4陶瓷, 断裂韧性达7.0MPa2M1\2,热传导率比其它陶瓷高,2倍,抗热冲击性强,在铸铁的有冷却液高速断续切削中获得较高的刀具寿命。 2、陶瓷刀具的结构设计 2.1、合理的刀具几何参数 刀具合理的几何参数是指粗加工或半精加工时能保证刀具具有较高的生产率和刀具耐用度,精加工时在具有较高的刀具耐用度的基础上保证加工出符合预定尺寸精度和表面质量的工件的刀具几何参数。目前陶瓷刀具的一些新品种在强度和韧性方面有了较大的提高,但毕竟是脆性材料,抗弯强度较低而抗压强度高。为了充分发挥它的长处,应尽力使陶瓷刀具切削时工作在压应力区,并尽量减少振动,利于提高工艺系统的刚性,从实验得知:当前角 取- 6°~ - 8°,后角α0取5°~ l2°,主偏角K r取45°,刃倾角λs取0 ~ - l0°,圆角半径γε取0. 6 ~ 0. 9mm,b r取0. 4 ~ 0. 6mm时,陶瓷刀具的切削性能较为理想。 2.2、合理的切削用量

复合材料学-陶瓷基复合材料的发展现状和最新进展

陶瓷基复合材料的发展现状和最新进展The Development Status and Recent Research Progress of Ceramic-Matrix Composite Materials 学生姓名: 学生学号: 指导教师: 所在院系: 所学专业: 南京理工大学 中国·南京 2015年11月

摘要综述了陶瓷基复合材料(CMC)在近年来的研究进展,就陶瓷的增强增韧机 理、复合材料的制备工艺作了较全面的介绍,综述了先驱体浸渍裂解(PIP)反应熔体浸渗(RMI)化学气相渗透(CVI)泥浆法(SI)等工艺的最新研究进展,并对CMC的应用和未来发展进行了展望。 关键词复合材料;陶瓷基;增强增韧;制备工艺;应用;未来发展 Abstract The studying situation of ceramic matrix composites(CMC) in the lately years is reviewed in this paper.The strengthening and toughening mechanism,selection of matrix and reinforced materials and preparation techniques are introduced comprehensively,and then progresses of several preparation processes such as PIP,RMI,CVI,and SI are discussed.Also,the application prospects of future development of CMC are looked forward. Keywords composites; ceramic matrix; strengthening and toughening; preparation technique;application; future development 1971年,Avesto首次提出陶瓷基复合材料的概念[1]。众所周知,陶瓷基复合材料不是传统意义上的陶瓷,陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。它的主要基体有玻璃陶瓷、氧化铝、氮化硅等,这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、高耐腐蚀性、低线胀系数、隔热性好及低密度等优异性能,而且资源也比较丰富,有广泛的应用前景[2]。但由于陶瓷材料本身脆性的弱点,作结构材料使用时缺乏足够的可靠性。因而,改善陶瓷材料的脆性已成为陶瓷材料领域亟待解决的问题之一。CMC就是通过颗粒弥散增韧和纤维及晶须增韧等来改善陶瓷材料的力学性能,特别是脆性。因而开发CMC已成为改善陶瓷脆性的主要手段,受到各国的高度重视和广泛研究。 1 CMC的增韧机理 目前看来,陶瓷的增韧机理虽然很多,且众说纷纭,但总体而言大致可有如下四种类型:①相变增韧(transformation toughening);②延性相增韧(toughening by ductile phases);③脆性纤维和晶须增韧(toughening by brittle fibers and whiskers);④微裂纹增韧(microcrack toug hening)。 相变增韧的机理是在应力场的作用下,由分散相的相变产生应力场,抵消外加应力,阻止裂纹扩展达到增韧目的。延性相增韧主要是指粒子强化和弥散强化,通过第2相粒子的加入,一方面对某些延性相粒子,它可以在外力作用下产生一定塑性变形或者沿着晶面滑移产生蠕变来缓解应力集中;另一方面由于第二相粒子与基体粒子之间弹性模量和线胀系数的差异,在烧结过程冷却阶段存在一定温差,因而在坯体内部产生径向张应力和切向压应力,这种应力与外应力发生相互作用,使裂纹前进方向发生偏转、绕道,从而提高材料的抗断能力,达到增韧目的[3]。 纤维和晶须增韧的机理如图1[4]所示,其作用原理有以下几步:(1)负荷传递:要求(E f / E m)>2(E为弹性模量,同时要求纤维与基体间有较强界面来帮助负荷从基体转移到纤维);(2)基体预应力:如果αf>αm,则压缩应力能够产生,界面压缩力增加了纤维/基

氧化铝陶瓷综述(原版)

目 录 摘 要 ................................................................................................................................ 1 正文: ................................................................................................................................ 1 1氧化铝的同质多晶变体及其性能简介 . (1) 1.1α-32O Al ................................................................................................................ 1 1.2β-32O Al ................................................................................................................. 1 1.3γ-32O Al ................................................................................................................. 1 2氧化铝陶瓷的分类及功能简介 . (2) 2.1分类 (2) 2.1.1氧化铝陶瓷按其中氧化铝含量不同分为高纯型和普通型两种。.......... 2 2.1.2氧化铝陶瓷根据主晶相不同可分为刚玉瓷、刚玉—莫来石瓷及莫来石瓷。................................................................................................................................. 2 2.2功能 ........................................................................................................................ 2 3氧化铝陶瓷的原料及其加工 .. (3) 3.1原料及其制备 ........................................................................................................ 3 3.232O Al 的预烧 .......................................................................................................... 4 3.332O Al 粉体的制备 .................................................................................................. 4 4氧化铝陶瓷的成型工艺 . (5) 4.1成型辅助剂 ............................................................................................................ 5 4.2成型方法 . (5) 4.2.1模压成型...................................................................................................... 5 4.2.2等静压成型.................................................................................................. 5 4.2.3注浆成型...................................................................................................... 5 4.2.4凝胶注模成型.............................................................................................. 5 4.2.5热压铸成型.. (6) 5烧结 (6) 5.1烧结方法 (6) 5.1.1常压烧结法.................................................................................................. 6 5.1.2热压烧结和热等静压烧结.. (6)

氧化铝与陶瓷

氧化铝陶瓷杵臼 摘要:本实用新型涉及一种氧化铝陶瓷杵臼,属于日用厨具,也属于陶瓷产品,有臼体,其氧化铝陶瓷臼体的外表面施以陶瓷釉层,陶瓷釉层外表面还可覆装饰层。既环保,又卫生,且强度高,还具有良好的可装饰性能,能够满足高档次的要求。 氧化铝陶瓷杵臼 摘要:本实用新型涉及一种氧化铝陶瓷杵臼,属于日用厨具,也属于陶瓷产品,有臼体,其氧化铝陶瓷臼体的外表面施以陶瓷釉层,陶瓷釉层外表面还可覆装饰层。既环保,又卫生,且强度高,还具有良好的可装饰性能,能够满足高档次的要求。 氧化铝陶瓷的粘结方法 摘要:本发明公开了一种粘结氧化铝陶瓷的方法,步骤如下:(1)制备中间相:原料组分及其重量百分比含量为SiC22~28wt%,Al2O372~78wt%,外加磷酸二氢铝9.5~10.5wt%,制成膏状;(2)将膏状中间相均匀涂覆在氧化铝陶瓷待粘结面上;(3)进行微波处理。本发明的有益效果是提供了一种工艺简单,接头强度大,耐热性好,粘结效率高的氧化铝陶瓷的粘结方法。并能够通过改变中间相的配方来调整粘结温度,节约了能源,也简化了对设备的要求。 高耐磨氧化铝陶瓷风帽 摘要:高耐磨氧化铝陶瓷风帽,属循环流化床沸腾炉的重要零部件,包括合金钢主风管、出风口,合金钢主风管顶部置有氧化铝陶瓷帽,本设备在高温工作状态下耐磨性好、排风孔不易结焦、使用寿命较合金钢铸造产品大大延长,且安装更换方便。 氧化铝陶瓷手柄厨具 摘要:本实用新型涉及一种氧化铝陶瓷手柄厨具,属于日用厨具,也属于陶瓷产品,厨具杆上安装有手柄,其手柄为氧化铝陶瓷手柄,氧化铝陶瓷手柄的表面上施有陶瓷釉,氧化铝陶瓷手柄的前端设有插孔,厨具杆插装在氧化铝陶瓷手柄的

相关文档