文档库 最新最全的文档下载
当前位置:文档库 › 操作系统精髓与设计原理-第4章 线程_对称多处理和微内核

操作系统精髓与设计原理-第4章 线程_对称多处理和微内核

操作系统精髓与设计原理-第4章 线程_对称多处理和微内核
操作系统精髓与设计原理-第4章 线程_对称多处理和微内核

第四章线程、对称多处理和微内核

复习题:

4.1表3.5列出了在一个没有线程的操作系统中进程控制块的基本元素。对于多线程系统,

这些元素中那些可能属于线程控制块,那些可能属于进程控制块?

答:这对于不同的系统来说通常是不同的,但一般来说,进程是资源的所有者,而每个线程都有它自己的执行状态。关于表3.5中的每一项的一些结论如下:进程标识:进程必须被标识,而进程中的每一个线程也必须有自己的ID。处理器状态信息:这些信息通常只与进程有关。进程控制信息:调度和状态信息主要处于线程级;数据结构在两级都可出现;进程间通信和线程间通信都可以得到支持;特权在两级都可以存在;存储管理通常在进程级;资源信息通常也在进程级。

4.2请列出线程间的模式切换比进程间的模式切换开销更低的原因。

答:包含的状态信息更少。

4.3在进程概念中体现出的两个独立且无关的特点是什么?

答:资源所有权和调度/执行。

4.4给出在单用户多处理系统中使用线程的四个例子。

答:前台和后台操作,异步处理,加速执行和模块化程序结构。

4.5哪些资源通常被一个进程中的所有线程共享?

答:例如地址空间,文件资源,执行特权等。

4.6列出用户级线程优于内核级线程的三个优点。

答:1.由于所有线程管理数据结构都在一个进程的用户地址空间中,线程切换不需要内核模式的特权,因此,进程不需要为了线程管理而切换到内核模式,这节省了在两种模式间进行切换(从用户模式到内核模式;从内核模式返回用户模式)的开销。2.调用可以是应用程序专用的。一个应用程序可能倾向于简单的轮询调度算法,而另一个应用程序可能倾向于基于优先级的调度算法。调度算法可以去适应应用程序,而不会扰乱底层的操作系统调度器。3.用户级线程可以在任何操作系统中运行,不需要对底层内核进行修改以支持用户级线程。线程库是一组供所有应用程序共享的应用级软件包。

4.7列出用户级线程相对于内核级线程的两个缺点。

答:1.在典型的操作系统中,许多系统调用都会引起阻塞。因此,当用户级线程执行一个系统调用时,不仅这个线程会被阻塞,进程中的所有线程都会被阻塞。2.在纯粹的用户级进程策略中,一个多线程应用程序不能利用多处理技术。内核一次只把一个进程分配给一个处理器,因此一次进程中只能有一个线程可以执行。

4.8定义jacketing。

答:Jacketing通过调用一个应用级的I/O例程来检查I/O设备的状态,从而将一个产生阻塞的系统调用转化为一个不产生阻塞的系统调用。

4.9简单定义图4.8中列出的各种结构。

答:SIMD:一个机器指令控制许多处理部件步伐一致地同时执行。每个处理部件都有一个相关的数据存储空间,因此,每条指令由不同的处理器在不同的数据集合上执行。

MIMD:一组处理器同时在不同的数据集上执行不同的指令序列。主/从:操作系统内核总是在某个特定的处理器上运行,其他处理器只用于执行用户程序,还可能执行一些操作系统实用程序。SMP:内核可以在任何处理器上执行,并且通常是每个处理器从可用的进程或线程池中进行各自的调度工作。集群:每个处理器都有一个专用存储器,而且每个处理部件都是一个独立的计算机。

4.10列出SMP操作系统的主要设计问题。

答:同时的并发进程或线程,调度,同步,存储器管理,可靠性和容错。

4.11给出在典型的单体结构操作系统中可以找到且可能是微内核操作系统外部子系统中的

服务和功能。

答:设备驱动程序,文件系统,虚存管理程序,窗口系统和安全服务。

4.12列出并简单解释微内核设计相对于整体式设计的七个优点。

答:一致接口:进程不需要区分是内核级服务还是用户级服务,因为所有服务都是通过消息传递提供的。可扩展性:允许增加新的服务以及在同一个功能区域中提供多个服务。

灵活性:不仅可以在操作系统中增加新功能,还可以删减现有的功能,以产生一个更小、更有效的实现。可移植性:所有或者至少大部分处理器专用代码都在微内核中。因此,当把系统移植到一个处理器上时只需要很少的变化,而且易于进行逻辑上的归类。可靠性:小的微内核可以被严格地测试,它使用少量的应用程序编程接口(API),这就为内核外部的操作系统服务产生高质量的代码提供了机会。分布式系统支持:微内核通信中消息的方向性决定了它对分布式系统的支持。面向对象操作系统环境:在微内核设计和操作系统模块化扩展的开发中都可以借助面向对象方法的原理。

4.13解释微内核操作系统可能存在的性能缺点。

答:通过微内核构造和发送信息、接受应答并解码所花费的时间比一次系统调用的时间要多。

4.14列出即使在最小的微内核操作系统中也可以找到的三个功能。

答:低级存储器管理,进程间通信(IPC)以及I/O和中断管理。

4.15在微内核操作系统中,进程或线程间通信的基本形式是什么?

答:消息。

习题:

4.1.一个进程中的多个线程有以下两个优点:(1)在一个已有进程中创建一个新线程比创建

一个新进程所需的工作量少;(2)在同一个进程中的线程间的通信比较简单。请问同一个进程中的两个线程间的模式切换与不同进程中的两个线程间的模式切换相比,所需的工作量是否要少?

答:是的,因为两个进程间的模式切换要储存更多的状态信息。

4.2.在比较用户级线程和内核级线程时曾指出用户级线程的一个缺点,即当一个用户级线程

执行系统调用时,不仅这个线程被阻塞,而且进程中的所有线程都被阻塞。请问这是为什么?

答:因为对于用户级线程来说,一个进程的线程结构对操作系统是不可见的,而操作系统的调度是以进程为单位的。

4.3.在OS/2中,其他操作系统中通用的进程概念被分成了三个独立类型的实体:会话、进

程和线程。一个会话是一组与用户接口(键盘、显示器、鼠标)相关联的一个或多个进程。会话代表了一个交互式的用户应用程序,如字处理程序或电子表格,这个概念使得PC用户可以打开一个以上的应用程序,在屏幕上显示一个或更多个窗口。操作系统必须知道哪个窗口,即哪个会话是活跃的,从而把键盘和鼠标的输入传递个相应的会话。在任何时刻,只有一个会话在前台模式,其他的会话都在后台模式,键盘和鼠标的所有输入都发送给前台会话的一个进程。当一个会话在前台模式时,执行视频输出的进程直接把它发送到硬件视频缓冲区。当一个会话在后台时,如果该会话的任何一个进程的任何一个线程正在执行并产生屏幕输出,则这个输出被送到逻辑视频缓冲区;当这个会话返回前台时,屏幕被更新,为新的前台会话反映出逻辑视频缓冲区中的当前内容。

有一种方法可以把OS/2中与进程相关的概念的数目从3个减少到2个。删去会话,

把用户接口(键盘、显示器、鼠标)和进程关联起来。这样,在某一时刻,只有一个进程处于前台模式。为了进一步地进行构造,进程可以被划分成线程。

a.使用这种方法会丧失什么优点?

b.如果继续使用这种修改方法,应该在哪里分配资源(存储器、文件等):在进程级

还是线程级?

答:

a.会话的使用非常适合个人计算机和工作站对交互式图形接口的需求。它为明确图形

输出和键盘/鼠标输入应该被关联到什么位置提供了一个统一的机制,减轻了操

作系统的工作负担。

b.应该和其他的进程/线程系统一样,在进程级分配地址空间和文件。

4.4.考虑这样一个环境,用户级线程和内核级线程呈一对一的映射关系,并且允许进程中的

一个或多个线程产生会引发阻塞的系统调用,而其他线程可以继续运行。解释为什么这个模型可以使多线程程序比在单处理器机器上的相应的单线程程序运行速度更快?

答:问题在于机器会花费相当多的时间等待I/O操作的完成。在一个多线程程序中,可能一个内核级线程会产生引发阻塞的系统调用,而其他内核级线程可以继续执行。

而在单处理器机器上,进程则必须阻塞知道所有的系统调用都可以继续运行。参考:[LEWI96]

4.5.如果一个进程退出时,该进程的某些线程仍在运行,请问他们会继续运行吗?

答:不会。当一个进程退出时,会带走它的所有东西——内核级线程,进程结构,存储空间——包括线程。参考:[LEWI96]

4.6.OS/390主机操作系统围绕着地址空间和任务的概念构造。粗略说来,一个地址空间对

应于一个应用程序,并且或多或少地对应于其他操作系统中的一个进程;在一个地址空间中,可以产生一组任务,并且它们可以并发执行,这大致对应于多线程的概念。

管理任务结构有两个主要的数据结构。地址空间控制块(ASCB)含有OS/390所需要的关于一个地址空间的信息,而不论该地址空间是否在执行。ASCB中的信息包括分派优先级、分配给该地址空间的实存和虚存、该地址空间中就绪的任务数以及是否每个都被换出。一个任务控制块(TCB)标识一个正在执行的用户程序,它含有在一个地址空间中管理该任务所需要的信息,包括处理器状态信息、指向该任务所涉及到的程序的指针和任务执行结构。ASCB是在系统存储器中保存的全局结构,而TCB是保存在各自的地址空间中的局部结构。请问把控制信息划分成全局和局部两部分有什么好处?

答:关于一个地址空间的尽可能多的信息可以随地址空间被换出,从而节约了主存。

4.7.一个多处理系统有8个处理器和20个附加磁带设备。现在有大量的作业提交给该系统,

完成每个作业最多需要4个磁带设备。假设每个作业开始运行时只需要3个磁带设备,并且在很长时间内都只需要这3个设备,而只是在最后很短的一段时间内需要第4个设备以完成操作。同时还假设这类作业源源不断。

a.假设操作系统中的调度器只有当4个磁带设备都可用时才开始一个作业。当作业开

始时,4个设备立即被分配给它,并且直到作业完成时才被释放。请问一次最多

可以同时执行几个作业?采用这种策略,最多有几个磁带设备可能是空闲的?最

少有几个?

b.给出另外一种策略,要求其可以提高磁带设备的利用率,并且同时可以避免系统死

锁。分析最多可以有几个作业同时执行,可能出现的空闲设备的范围是多少。

答:

a.采用一个保守的策略,一次最多同时执行20/4=5个作业。由于分配各一个任务的

磁带设备最多同时只有一个空闲,所以在同一时刻最多有5个磁带设备可能是空

闲的。在最好的情况下没有磁带设备空闲。

b.为了更好的利用磁设备,每个作业在最初只分配三个磁带设备。第四个只有的需要

的时候才分配。在这种策略中,最多可以有20/3=6个作业同时执行。最少的空闲

设备数量为0,最多有2个。参考:Advanced Computer Architectrue,K.Hwang,1993.

4.8.在描述Solaris用户级线程状态时,曾表明一个用户级线程可能让位于具有相同优先级

的另一个线程。请问,如果有一个可运行的、具有更高优先级的线程,让位函数是否还会导致让位于具有相同优先级或更高优先级的线程?

答:任何一个可能改变线程优先级或者使更高优先级的线程可运行的调用都会引起调度,它会依次抢占低优先级的活跃线程。所以,永远都不会存在一个可运行的、具有更高优先级的线程。参考:[LEVI96]

操作系统精髓与设计原理-第11章_IO管理和磁盘调度,第12章_文件管理

第十一章 I/O管理和磁盘调度 复习题 11.1列出并简单定义执行I/O的三种技术。 ·可编程I/O:处理器代表进程给I/O模块发送给一个I/O命令,该进程进入忙等待,等待操作的完成,然后才可以继续执行。 ·中断驱动I/O:处理器代表进程向I/O模块发送一个I/O命令,然后继续执行后续指令,当I/O模块完成工作后,处理器被该模块中断。如果该进程不需要等待I/O完成,则后续指令可以仍是该进程中的指令,否则,该进程在这个中断上被挂起,处理器执行其他工作。 ·直接存储器访问(DMA):一个DMA模块控制主存和I/O模块之间的数据交换。为传送一块数据,处理器给DMA模块发送请求,只有当整个数据块传送完成后,处理器才被中断。 11.2逻辑I/O和设备I/O有什么区别? ·逻辑I/O:逻辑I/O模块把设备当作一个逻辑资源来处理,它并不关心实际控制设备的细节。逻辑I/O模块代表用户进程管理的一般I/O功能,允许它们根据设备标识符以及诸如打开、关闭、读、写之类的简单命令与设备打交道。 ·设备I/O:请求的操作和数据(缓冲的数据、记录等)被转换成适当的I/O指令序列、通道命令和控制器命令。可以使用缓冲技术,以提高使用率。 11.3面向块的设备和面向流的设备有什么区别?请举例说明。 面向块的设备将信息保存在块中,块的大小通常是固定的,传输过程中一次传送一块。通常可以通过块号访问数据。磁盘和磁带都是面向块的设备。 面向流的设备以字节流的方式输入输出数据,其末使用块结构。终端、打印机通信端口、鼠标和其他指示设备以及大多数非辅存的其他设备,都属于面向流的设备。 11.4为什么希望用双缓冲区而不是单缓冲区来提高I/O的性能? 双缓冲允许两个操作并行处理,而不是依次处理。典型的,在一个进程往一个缓冲区中传送数据(从这个缓冲区中取数据)的同时,操作系统正在清空(或者填充)另一个缓冲区。 11.5在磁盘读或写时有哪些延迟因素? 寻道时间,旋转延迟,传送时间 11.6简单定义图11.7中描述的磁盘调度策略。 FIFO:按照先来先服务的顺序处理队列中的项目。 SSTF:选择使磁头臂从当前位置开始移动最少的磁盘I/O请求。 SCAN:磁头臂仅仅沿一个方向移动,并在途中满足所有未完成的请求,直到

操作系统课程设计

课程设计报告 2015~2016学年第一学期 操作系统综合实践课程设计 实习类别课程设计 学生姓名李旋 专业软件工程 学号130521105 指导教师崔广才、祝勇 学院计算机科学技术学院 二〇一六年一月

- 1 -

- 2 -

一、概述 一个目录文件是由目录项组成的。每个目录项包含16B,一个辅存磁盘块(512B)包含32个目录项。在目录项中,第1、2字节为相应文件的外存i节点号,是该文件的内部标识;后14B为文件名,是该文件的外部标识。所以,文件目录项记录了文件内、外部标识的对照关系。根据文件名可以找到辅存i节点号,由此便得到该文件的所有者、存取权、文件数据的地址健在等信息。UNIX 的存储介质以512B为单位划分为块,从0开始直到最大容量并顺序加以编号就成了一个文件卷,也叫文件系统。UNIX中的文件系统磁盘存储区分配图如下: 本次课程设计是要实现一个简单的模拟Linux文件系统。我们在内存中开辟一个虚拟磁盘空间(20MB)作为文件存储器,并将该虚拟文件系统保存到磁盘上(以一个文件的形式),以便下次可以再将它恢复到内存的虚拟磁盘空间中。文件存储空间的管理可采用位示图方法。 二、设计的基本概念和原理 2.1 设计任务 多用户、多级目录结构文件系统的设计与实现。可以实现下列几条命令login 用户登录 logout 退出当前用户 dir 列文件目录 creat 创建文件 delete 删除文件 open 打开文件 close 关闭文件 - 3 -

read 读文件 write 写文件 mkdir 创建目录 ch 改变文件目录 rd 删除目录树 format 格式化文件系统 Exit 退出文件系统 2.2设计要求 1) 多用户:usr1,usr2,usr3,……,usr8 (1-8个用户) 2) 多级目录:可有多级子目录; 3) 具有login (用户登录)4) 系统初始化(建文件卷、提供登录模块) 5) 文件的创建:create (用命令行来实现)6) 文件的打开:open 7) 文件的读:read8) 文件的写:write 9) 文件关闭:close10) 删除文件:delete 11) 创建目录(建立子目录):mkdir12) 改变当前目录:cd 13) 列出文件目录:dir14) 退出:logout 新增加的功能: 15) 删除目录树:rd 16) 格式化文件系统:format 2.3算法的总体思想 - 4 -

操作系统课程设计报告书

题目1 连续动态内存管理模拟实现 1.1 题目的主要研究内容及预期达到的目标 (1)针对操作系统中内存管理相关理论进行设计,编写程序并进行测试,该程序管理一块虚拟内存。重点分析三种连续动态内存分配算法,即首次适应算法、循环首次适应算法和最佳适应算法。 (2)实现内存分配和回收功能。 1.2 题目研究的工作基础或实验条件 (1)硬件环境:PC机 (2)软件环境:Windows XP,Visual C++ 6.0 1.3 设计思想 首次适应算法的实现:从空闲分区表的第一个表目起查找该表,把最先能够满足要求的空闲区分配给作业,这种方法的目的在于减少查找时间。为适应这种算法,空闲分区表中的空闲分区要按地址由低到高进行排序。该算法优先使用低址部分空闲区,在低址空间造成许多小的空闲区,在高址空间保留大的空闲区。 循环首次适应算法的实现:在分配内存空间时,不再每次从表头开始查找,而是从上次找到空闲区的下一个空闲开始查找,直到找到第一个能满足要求的的空闲区为止,并从中划出一块与请求大小相等的内存空间分配给作业。该算法能使内存中的空闲区分布得较均匀。 最佳适应算法的实现:从全部空闲区中找到能满足作业要求的、且最小的空闲分区,这种方法能使碎片尽量小。为适应此算法,空闲分区表中的空闲分区要按从小到大进行排序,从表头开始查找第一个满足要求的自由分配。 1.4 流程图 内存分配流程图,如图1-1所示。

图1-1 内存分配流程图内存回收流程图,如1-2所示。

图1-2 内存回收流程图 1.5 主要程序代码 (1)分配内存 void allocate(char z,float l) { int i,k; float ad; k=-1; for(i=0;i= l && free_table[i].flag == 1) if(k==-1 || free_table[i].length

计算机操作系统原理课程设计

上海电力学院 课程设计报告 课程名称:操作系统原理 题目名称:采用可变分区存储管理,模拟主存空间的分配和回收 姓名: xxx 学号: xxx 班级: 2013054 同组姓名: xxx 课程设计时间: 2015.7.6~2015.7.10 评语: 成绩:

课程设计题目 一、设计内容及要求 可变分区存储管理模拟 设计内容:编写程序模拟实现可变分区存储管理。 具体要求: 编写程序模拟实现可变分区存储管理,实现存储管理的基本功能,包括内存的分配、内存的回收、地址变换等。 输入:1、输入新进程名称及使用内存的大小(可创建多个进程); 2、撤销某个指定的进程; 3、某个进程的逻辑地址; 输出:显示每次创建进程或者撤销进程后内存使用的状况,包括每一个进程占据的内存的位置和大小; 计算并输出给定逻辑地址对应的物理地址。 必须分别使用以下分配算法完成模拟: 1、首次适应算法; 2、最佳适应算法; 3、最差适应算法; 小组分工: 程序设计讨论: 程序主体设计: 程序调试及修改: 实验报告设计: 总结: (要求注明小组分工情况) 二、详细设计 1)原理概述 对于可变分区存储管理的内存分配与回收,主要为设计以下几个部分: 1、设计动态输入空闲分区表的程序 2、设计内存分配的程序 3、设计内存回收的程序 首次适应算法: FF算法要求空闲分区表或空闲分区链以地址递增的次序链接。在分配内时,从链首开始查找,直至找到一个大小能满足要求分区为止;然后再按照作业大小,从该分区中划一块内存空间分配给请求者,余下的空闲分区仍留在空闲链中。如从链首直至链尾都不能找到一个能满足要求的分区,则此次分配失败,返回 最佳适应算法: BF算法是指每次为作业分配内存,总是把满足要求、又是最小的空闲分区分配给作业,避免“大材小用”。为了加速寻找,该算法要求所有的空闲分区按其容量以从小到大的顺序形成一空闲分区链。这样,第一次找到能满足要求的空闲区,

《操作系统精髓与设计原理·第五版》练习题及答案

第1章计算机系统概述 1.1、图1.3中的理想机器还有两条I/O指令: 0011 = 从I/O中载入AC 0111 = 把AC保存到I/O中 在这种情况下,12位地址标识一个特殊的外部设备。请给出以下程序的执行过程(按照图1.4的格式): 1.从设备5中载入AC。 2.加上存储器单元940的内容。 3.把AC保存到设备6中。 假设从设备5中取到的下一个值为3940单元中的值为2。 答案:存储器(16进制内容):300:3005;301:5940;302:7006 步骤1:3005->IR;步骤2:3->AC 步骤3:5940->IR;步骤4:3+2=5->AC 步骤5:7006->IR:步骤6:AC->设备 6 1.2、本章中用6步来描述图1.4中的程序执行情况,请使用MAR和MBR扩充这个描述。 答案:1. a. PC中包含第一条指令的地址300,该指令的内容被送入MAR中。 b. 地址为300的指令的内容(值为十六进制数1940)被送入MBR,并 且PC增1。这两个步骤是并行完成的。 c. MBR中的值被送入指令寄存器IR中。 2. a. 指令寄存器IR中的地址部分(940)被送入MAR中。 b. 地址940中的值被送入MBR中。 c. MBR中的值被送入AC中。

3. a. PC中的值(301)被送入MAR中。 b. 地址为301的指令的内容(值为十六进制数5941)被送入MBR,并 且PC增1。 c. MBR中的值被送入指令寄存器IR中。 4. a. 指令寄存器IR中的地址部分(941)被送入MAR中。 b. 地址941中的值被送入MBR中。 c. AC中以前的内容和地址为941的存储单元中的内容相加,结果保存 到AC中。 5. a. PC中的值(302)被送入MAR中。 b. 地址为302的指令的内容(值为十六进制数2941)被送入MBR,并 且PC增1。 c. MBR中的值被送入指令寄存器IR中。 6. a. 指令寄存器IR中的地址部分(941)被送入MAR中。 b. AC中的值被送入MBR中。 c. MBR中的值被存储到地址为941的存储单元之中。 1.4、假设有一个微处理器产生一个16位的地址(例如,假设程序计数器和地址寄存器都是16位)并且具有一个16位的数据总线。 a.如果连接到一个16位存储器上,处理器能够直接访问的最大存储器地址空间为多少? b.如果连接到一个8位存储器上,处理器能够直接访问的最大存储器地址空间为多少? c.处理访问一个独立的I/O空间需要哪些结构特征? d.如果输入指令和输出指令可以表示8位I/O端口号,这个微处理器可以支持

操作系统课程设计报告

操作系统课程设计报告

东莞理工学院 操作系统课程设计报告 学院:计算机学院 专业班级: 13软件工程1班 提交时间: 2015/9/14 指导教师评阅意见: . 项目名称:进程与线程管理功能 一、设计目的 用语言来模拟进程和线程管理系统,加深对进程和线程的理解,掌握对进程和线程各种状态和管理的算法原理。

二、环境条件 系统: WindowsXP、VMWare、Ubuntu Linux 语言:C/C++ 开发工具:gcc/g++、Visual C++ 6.0 三、设计内容 1. 项目背景 计算机的硬件资源有限,为了提高内存的利用率和系统的吞吐量,就要根据某种算法来管理进程和线程的状态从而达到目的。 进程与线程管理功能完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 进程与线程管理功能 基本要求:完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 提高要求:(增加1项就予以加分) (1) 实现多种线程调度算法; (2)通过“公共信箱”进行通信的机制,规定每一封信的大小为128字节,实现两个用户进程之间通过这个“公共信箱”进行通信。 (3) 实现多用户进程并发的虚拟内存管理功能。

(4) 实现用户进程间通信功能,并用生产者/消费者问题测试进程间通信功能的正确性。 (5) 实现改进型Clock页面置换算法。 (6) 实现Cache功能,采用FIFO替换算法。 2. 扩展内容 实现多种线程调度算法:时间片轮转调度算法 四、人员分工 优先级调度算法:钟德新,莫友芝 时间片轮转调度算法:张德华,袁马龙 设计报告由小组队员共同完成。小组成员设计的代码分工如下:钟德新编写的代码:void Prinft(){ PCB *p; system("cls");//清屏 p=run; //运行队列 if(p!=NULL) { p->next=NULL; } cout<<"当前正在运行的进程:"<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<

操作系统课程设计报告

上海电力学院 计算机操作系统原理 课程设计报告 题目名称:编写程序模拟虚拟存储器管理 姓名:杜志豪.学号: 班级: 2012053班 . 同组姓名:孙嘉轶 课程设计时间:—— 评语: 成绩: 目录 一、设计内容及要求 (4) 1. 1 设计题目 (4) 1.2 使用算法分析: (4)

1. FIFO算法(先进先出淘汰算法) (4) 1. LRU算法(最久未使用淘汰算法) (5) 1. OPT算法(最佳淘汰算法) (5) 分工情况 (5) 二、详细设计 (6) 原理概述 (6) 主要数据结构(主要代码) (6) 算法流程图 (9) 主流程图 (9) Optimal算法流程图 (10) FIFO算法流程图 (10) LRU算法流程图 (11) .1源程序文件名 (11) . 2执行文件名 (11) 三、实验结果与分析 (11) Optimal页面置换算法结果与分析 (11) FIFO页面置换算法结果与分析 (16) LRU页面置换算法结果与分析 (20) 四、设计创新点 (24) 五、设计与总结 (27)

六、代码附录 (27) 课程设计题目 一、设计内容及要求 编写程序模拟虚拟存储器管理。假设以M页的进程分配了N

块内存(N

《操作系统精髓与设计原理·第六版》中文版标准答案

《操作系统精髓与设计原理·第六版》中文版答案

————————————————————————————————作者:————————————————————————————————日期: 2

复习题答案 第1章计算机系统概述 1.1 列出并简要地定义计算机的四个主要组成部分。 主存储器,存储数据和程序;算术逻辑单元,能处理二进制数据;控制单元,解读存储器中的指令并且使他们得到执行;输入/输出设备,由控制单元管理。 1.2 定义处理器寄存器的两种主要类别。 用户可见寄存器:优先使用这些寄存器,可以使机器语言或者汇编语言的程序员减少对主存储器的访问次数。对高级语言而言,由优化编译器负责决定把哪些变量应该分配给主存储器。一些高级语言,如C语言,允许程序言建议编译器把哪些变量保存在寄存器中。 控制和状态寄存器:用以控制处理器的操作,且主要被具有特权的操作系统例程使用,以控制程序的执行。 1.3 一般而言,一条机器指令能指定的四种不同操作是什么? 处理器-寄存器:数据可以从处理器传送到存储器,或者从存储器传送到处理器。 处理器-I/O:通过处理器和I/O模块间的数据传送,数据可以输出到外部设备,或者从外部设备输入数据。 数据处理:处理器可以执行很多关于数据的算术操作或逻辑操作。 控制:某些指令可以改变执行顺序。 1.4 什么是中断? 中断:其他模块(I/O,存储器)中断处理器正常处理过程的机制。 1.5 多中断的处理方式是什么? 处理多中断有两种方法。第一种方法是当正在处理一个中断时,禁止再发生中断。第二种方法是定义中断优先级,允许高优先级的中断打断低优先级的中断处理器的运行。 1.6 内存层次的各个元素间的特征是什么? 存储器的三个重要特性是:价格,容量和访问时间。 1.7 什么是高速缓冲存储器? 高速缓冲存储器是比主存小而快的存储器,用以协调主存跟处理器,作为最近储存地址的缓冲区。 1.8 列出并简要地定义I/O操作的三种技术。 可编程I/O:当处理器正在执行程序并遇到与I/O相关的指令时,它给相应的I/O模块发布命令(用以执行这个指令);在进一步的动作之前,处理器处于繁忙的等待中,直到该操作已经完成。 中断驱动I/O:当处理器正在执行程序并遇到与I/O相关的指令时,它给相应的I/O模块发布命令,并继续执行后续指令,直到后者完成,它将被I/O模块中断。如果它对于进程等待I/O的完成来说是不必要的,可能是由于后续指令处于相同的进程中。否则,此进程在中断之前将被挂起,其他工作将被执行。 直接存储访问:DMA模块控制主存与I/O模块间的数据交换。处理器向DMA模块发送一个传送数据块的请求,(处理器)只有当整个数据块传送完毕后才会被中断。 1.9 空间局部性和临时局部性间的区别是什么? 空间局部性是指最近被访问的元素的周围的元素在不久的将来可能会被访问。临时局部性(即时间局部性)是指最近被访问的元素在不久的将来可能会被再次访问。 1.10 开发空间局部性和时间局部性的策略是什么? 空间局部性的开发是利用更大的缓冲块并且在存储器控制逻辑中加入预处理机制。时间局部性的开发是利用在高速缓冲存储器中保留最近使用的指令及数据,并且定义缓冲存储的优先级。 第2章操作系统概述

操作系统原理及应用试题附答案

操作系统原理及应用试题附答案 第一部分选择题一、单项选择题(本大题共4小题,每小题2分,共8分) 1、从静态角度来看,进程由__________、数据集合、进程控制块及相关表格三部分组成。()A、JCB B、PCB C、程序段 D、I/O缓冲区 2、请求页式管理方式中,首先淘汰在内存中驻留时间最长的帧,这种替换策略是_____.()A、先进先出法(FIFO) B、最近最少使用法(LRU) C、优先级调度 D、轮转法 3、文件安全管理中,___________安全管理规定用户对目录或文件的访问权限。()A、系统级 B、用户级 C、目录级 D、文件级 4、排队等待时间最长的作业被优先调度,这种算法是___________。A、优先级调度 B、响应比高优先 C、短作业优先D、先来先服务第二部分非选择题 二、填空题(本大题共16小题,每小题1分,共16分) 5、常规操作系统的主要功能有:_处理机管理_、存贮管理、设备管理、文件管理以及用户界面管理。 6、操作系统把硬件全部隐藏起来,提供友好的、易于操作的用户界面,好象是一个扩展了的机器,即一台操作系统虚拟机。 7、进程管理的功能之一是对系统中多个进程的状态转换进行控制。 8、逻辑_文件是一种呈现在用户面前的文件结构。 9、操作系统中实现进程互斥和同步的机制称为同步机构_。 10、内存中用于存放用户的程序和数据的部分称为用户区(域)。 11、存贮器段页式管理中,地址结构由段号、段内页号和页内相对地址三部分组成。 12、在操作系统中,通常用户不使用设备的物理名称(或物理地址),而代之以另外一种名称来操作,这就是逻辑设备名。 13、在操作系统中,时钟常有两种用途:报告日历和时间,对资源使用记时。 14、库文件允许用户对其进行读取、执行,但不允许修改.

操作系统原理期末试卷10套含答案7

操作系统原理期末试卷10套含答案7 一、单项选择题(每题2分,共20分) 1.以下著名的操作系统中,属于多用户、分时系统的是( B ). A.DOS系统B.UNIX系统 C.Windows NT系统D.OS/2系统 2.在操作系统中,进程的最基本的特征是( A ). A.动态性和并发性B.顺序性和可再现性 C.与程序的对应性D.执行过程的封闭性 3.操作系统中利用信号量和P、V操作,( C ). A.只能实现进程的互斥B.只能实现进程的同步 C.可实现进程的互斥和同步D.可完成进程调度 4.作业调度的关键在于( C ). A.选择恰当的进程管理程序B.用户作业准备充分 C.选择恰当的作业调度算法D.有一个较好的操作环境 5.系统抖动是指( D ). A.使用机器时,屏幕闪烁的现象 B.由于主存分配不当,偶然造成主存不够的现象 C.系统盘有问题,致使系统不稳定的现象 D.被调出的页面又立刻被调入所形成的频繁调入调出现象 6.在分页存储管理系统中,从页号到物理块号的地址映射是通过( B )实现的. A.段表B.页表 C. PCB D.JCB 7.在下述文件系统目录结构中,能够用多条路径访问同一文件(或目录)的目录结构是( D ) A.单级目录B.二级目录

C.纯树型目录D.非循环图目录 8.SPOOLing技术可以实现设备的( C )分配. A.独占B.共享 C.虚拟D.物理 9.避免死锁的一个著名的算法是( C ). A.先人先出算法B.优先级算法 C.银行家算法D.资源按序分配法 10.下列关于进程和线程的叙述中,正确的是( C ). A.一个进程只可拥有一个线程 B.一个线程只可拥有一个进程 C.一个进程可拥有若干个线程 D.一个线程可拥有若干个进程 二、判断题(选择你认为正确的叙述划√,认为错误的划×并说明原因.每题2分,共10分) 1.简单地说,进程是程序的执行过程.因而,进程和程序是一一对应的.( ) 2.V操作是对信号量执行加1操作,意味着释放一个单位资源,加l后如果信号量的值小于等于零,则从等待队列中唤醒一个进程,使该进程变为阻塞状态,而现进程继续进行.( ) 3.段页式存储管理汲取了页式管理和段式管理的长处,其实现原理结合了页式和段式管理的基本思想,即用分段方法来分配和管理用户地址空间,用分页方法来管理物理存储空间.( ) 4.在采用树型目录结构的文件系统中,各用户的文件名必须互不相同.( ) 5.用户程序应与实际使用的物理设备无关,这种特性就称作与设备无关性.( ) 答案:1.(×)改正为:进程和程序不是一一对应的. 2.(×)改正为:V操作是对信号量执行加1操作,意味着释放一个单位资源,加1后如果信号量的值小于等于零,则从等待队列中唤醒一个进程,现进程变为就绪状态,否则现进程继续进行. 3.(√) 4.(×)改正为:在采用树型目录结构的文件系统中,不同用户的文件名可以相同. 5.(√) 三、填空题(每空2分,共30分)

操作系统精髓与设计原理课后答案

操作系统精髓与设计原理课后答案 第1章计算机系统概述 1.1列出并简要地定义计算机的四个主要组成部分。 主存储器,存储数据和程序;算术逻辑单元,能处理二进制数据;控制单元,解读存储器中的指令并且使他们得到执行;输入/输出设备,由控制单元管理。 1.2定义处理器寄存器的两种主要类别。 用户可见寄存器:优先使用这些寄存器,可以使机器语言或者汇编语言的程序员减少对主存储器的访问次数。对高级语言而言,由优化编译器负责决定把哪些变量应该分配给主存储器。一些高级语言,如C语言,允许程序言建议编译器把哪些变量保存在寄存器中。 控制和状态寄存器:用以控制处理器的操作,且主要被具有特权的操作系统例程使用,以控制程序的执行。 1.3一般而言,一条机器指令能指定的四种不同操作是什么? 处理器-寄存器:数据可以从处理器传送到存储器,或者从存储器传送到处理器。 处理器-I/O:通过处理器和I/O模块间的数据传送,数据可以输出到外部设备,或者从外部设备输入数据。 数据处理:处理器可以执行很多关于数据的算术操作或逻辑操作。 控制:某些指令可以改变执行顺序。 1.4什么是中断? 中断:其他模块(I/O,存储器)中断处理器正常处理过程的机制。 1.5多中断的处理方式是什么? 处理多中断有两种方法。第一种方法是当正在处理一个中断时,禁止再发生中断。第二种方法是定义中断优先级,允许高优先级的中断打断低优先级的中断处理器的运行。 1.6内存层次的各个元素间的特征是什么? 存储器的三个重要特性是:价格,容量和访问时间。 1.7什么是高速缓冲存储器? 高速缓冲存储器是比主存小而快的存储器,用以协调主存跟处理器,作为最近储存地址的缓冲区。1.8列出并简要地定义I/O操作的三种技术。 可编程I/O:当处理器正在执行程序并遇到与I/O相关的指令时,它给相应的I/O模块发布命令(用以执行这个指令);在进一步的动作之前,处理器处于繁忙的等待中,直到该操作已经完成。 中断驱动I/O:当处理器正在执行程序并遇到与I/O相关的指令时,它给相应的I/O模块发布命令,并继续执行后续指令,直到后者完成,它将被I/O模块中断。如果它对于进程等待I/O的完成来说是不必要的,可能是由于后续指令处于相同的进程中。否则,此进程在中断之前将被挂起,其他工作将被执行。 直接存储访问:DMA模块控制主存与I/O模块间的数据交换。处理器向DMA模块发送一个传送数据块的请求,(处理器)只有当整个数据块传送完毕后才会被中断。 1.9空间局部性和临时局部性间的区别是什么? 空间局部性是指最近被访问的元素的周围的元素在不久的将来可能会被访问。临时局部性(即时间局部性)是指最近被访问的元素在不久的将来可能会被再次访问。 1.10开发空间局部性和时间局部性的策略是什么? 空间局部性的开发是利用更大的缓冲块并且在存储器控制逻辑中加入预处理机制。时间局部性的开发是利用在高速缓冲存储器中保留最近使用的指令及数据,并且定义缓冲存储的优先级。 第2章操作系统概述

操作系统课程设计报告

东莞理工学院 操作系统课程设计报告学院:计算机学院 专业班级:13软件工程1班 提交时间:2015/9/14 指导教师评阅意见: . 项目名称:进程与线程管理功能 一、设计目的 用语言来模拟进程和线程管理系统,加深对进程和线程的理解,掌握对进程和线程各种状态和管理的算法原理。 二、环境条件 系统:WindowsXP、VMWare、Ubuntu Linux 语言:C/C++ 开发工具:gcc/g++、Visual C++ 6.0 三、设计内容 1. 项目背景

计算机的硬件资源有限,为了提高内存的利用率和系统的吞吐量,就要根据某种算法来管理进程和线程的状态从而达到目的。 进程与线程管理功能完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 进程与线程管理功能 基本要求:完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 提高要求:(增加1项就予以加分) (1) 实现多种线程调度算法; (2)通过“公共信箱”进行通信的机制,规定每一封信的大小为128字节,实现两个用户进程之间通过这个“公共信箱”进行通信。 (3) 实现多用户进程并发的虚拟内存管理功能。 (4) 实现用户进程间通信功能,并用生产者/消费者问题测试进程间通信功能的正确性。 (5) 实现改进型Clock页面置换算法。 (6) 实现Cache功能,采用FIFO替换算法。 2. 扩展内容 实现多种线程调度算法:时间片轮转调度算法 四、人员分工 优先级调度算法:钟德新,莫友芝 时间片轮转调度算法:张德华,袁马龙 设计报告由小组队员共同完成。小组成员设计的代码分工如下: 钟德新编写的代码:void Prinft(){ PCB *p; system("cls");//清屏 p=run; //运行队列 if(p!=NULL) { p->next=NULL; } cout<<"当前正在运行的进程:"<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<

操作系统原理与应用第2章文件管理

第2章文件管理习题解答 1.什么是文件和文件系统?文件系统有哪些功能? 【解答】文件是具有符号名而且在逻辑上具有完整意义的信息项的有序序列。 文件系统是指操作系统系统中实现对文件的组织、管理和存取的一组系统程序,它实现对文件的共享和保护,方便用户“按名存取”。 文件系统的功能“ (1)文件及目录的管理。如打开、关闭、读、写等。 (2)提供有关文件自身的服务。如文件共享机制、文件的安全性等。 (3)文件存储空间的管理。如分配和释放。主要针对可改写的外存如磁盘。(4)提供用户接口。为方便用户使用文件系统所提供的服务,称为接口。文件系统通常向用户提供两种类型的接口:命令接口和程序接口。不同的操作系统提供不同类型的接口,不同的应用程序往往使用不同的接口。 2.Linux文件可以根据什么分类?可以分为哪几类?各有什么特点? 【解答】在Linux操作系统中,文件可以根据内部结构和处理方式进行分类。 在Linux操作系统中,可以将文件分为普通文件、目录文件、特别文件三类。 各类文件的特点是: 普通文件:由表示程序、数据或正文的字符串构成的文件,内部没有固定的结构。这种文件既可以是系统文件,也可以是库文件或用户文件。 目录文件:由文件目录构成的一类文件。对它的处理(读、写、执行)在形式上与普通文件相同。 特别文件:特指各种外部设备,为了便于管理,把所有的输入/输出设备都按文件格式供用户使用。这类文件对于查找目录、存取权限验证等的处理与普通文件相似,而其他部分的处理要针对设备特性要求做相应的特殊处理。 应该指出,按不同的分类方式就有不同的文件系统。 3.什么是文件的逻辑结构?什么是文件的物理结构?Linux文件系统分别采用什么样的结构?有什么优点和缺点? 【解答】文件的逻辑结构:用户对文件的观察的使用是从自身处理文件中数据时采用的组织方式来看待文件组织形式。这种从用户观点出发所见到的文件组织方式称为文件的逻辑组织。 文件的物理结构:从系统的角度考察文件在实际存储设备上的存放形式,又称为文件的存储结构。 在Linux系统中,所有文件的逻辑结构都被看作是流式文件,系统不对文件进行格式处理。 在Linux系统中,文件的物理结构采用的是混合多重索引结构,即将文件所占用盘块的盘块号,直接或间接地存放在该文件索引结点的地址项中。 在Linux系统中,采用混合索引结构的优点是,对于小文件,访问速度快;对于大中

操作系统课程设计报告

东莞理工学院 操作系统课程设计报告 学院:计算机学院 专业班级:13软件工程1班 提交时间:2015/9/14 指导教师评阅意见: . 项目名称:进程与线程管理功能 一、设计目的 用语言来模拟进程和线程管理系统,加深对进程和线程的理解,掌握对进程和线程各种状态和管理的算法原理。 二、环境条件

系统:WindowsXP、VMWare、Ubuntu Linux 语言:C/C++ 开发工具:gcc/g++、Visual C++ 6.0 三、设计内容 1. 项目背景 计算机的硬件资源有限,为了提高内存的利用率和系统的吞吐量,就要根据某种算法来管理进程和线程的状态从而达到目的。 进程与线程管理功能完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 进程与线程管理功能 基本要求:完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 提高要求:(增加1项就予以加分) (1) 实现多种线程调度算法; (2)通过“公共信箱”进行通信的机制,规定每一封信的大小为128字节,实现两个用户进程之间通过这个“公共信箱”进行通信。 (3) 实现多用户进程并发的虚拟内存管理功能。 (4) 实现用户进程间通信功能,并用生产者/消费者问题测试进程间通信功能的正确性。 (5) 实现改进型Clock页面置换算法。 (6) 实现Cache功能,采用FIFO替换算法。

2. 扩展内容 实现多种线程调度算法:时间片轮转调度算法 四、人员分工 优先级调度算法:钟德新,莫友芝 时间片轮转调度算法:张德华,袁马龙 设计报告由小组队员共同完成。小组成员设计的代码分工如下:钟德新编写的代码:void Prinft(){ PCB *p; system("cls");//清屏 p=run; //运行队列 if(p!=NULL) { p->next=NULL; } cout<<"当前正在运行的进程:"<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<

操作系统(一个小型操作系统的设计与实现)课程设计

南通大学计算机科学与技术学院操作系统课程设计报告 专业: 学生姓名: 学号: 时间:

操作系统模拟算法课程设计报告 设计要求 将本学期三次的实验集成实现: A.处理机管理; B.存储器管理; C.虚拟存储器的缺页调度。 设计流程图 主流程图 开始的图形界面 处理机管理存储器管理缺页调度 先来先服务时 间 片 轮 转 首 次 适 应 法 最 佳 适 应 法 先 进 先 出 L R U 算 法

A.处理机调度 1)先来先服务FCFS N Y 先来先服务算法流程 开始 初始化进程控制块,让进程控制块按进程到达先后顺序让进程排队 调度数组中首个进程,并让数组中的下一位移到首位 计算并打印进程的完成时刻、周转时间、带权周转时间 其中:周转时间 = 完成时间 - 到达时间 带权周转时间=周转时间/服务时间 更改计时器的当前时间,即下一刻进程的开始时间 当前时间=前一进程的完成时间+其服务时间 数组为空 结束

2)时间片轮转法 开始 输入进程总数 指针所指的进程是 否结束 输入各进程信息 输出为就绪状态的进程的信息 更改正在运行的进程的已运行时间 跳过已结束的程序 结束 N 指向下一个进程 Y 如果存在下一个进程的话 Y N 输出此时为就绪状态的进程的信息 时间片轮转算法流程图

B.存储器管理(可变式分区管理) 1)首次适应法 分配流程图 申请xkb内存 由链头找到第一个空闲区 分区大小≥xkb? 大于 分区大小=分区大小-xkb,修改下一个空闲区的后向指针内容为(后向指针)+xkb;修改上一个空闲区的前向指针为(前向指针)+xkb 将该空闲区从链中摘除:修改下一个空闲区的后向地址=该空闲区后向地址,修改上一个空闲区的前向指针为该空闲区的前向指针 等于 小于延链查找下 一个空闲区 到链尾 了? 作业等待 返回是 否 登记已分配表 返回分配给进程的内存首地址 开始

操作系统课程设计报告

操作系统课程设计实验报告 实验名称:进程控制 姓名/学号: 一、实验目的 学习、理解和掌握Linux与windows的进行控制系统调用的功能,熟悉主要的几个系统调用命令的格式和如何利用系统调用命令进行编程。通过学习,理解如何创建一个进程、改变进程执行的程序、进程和线程终止以及父子进程的同步等,从而提高对进程和线程控制系统调用的编程能力。 二、实验内容 设计并实现Unix的“time”命令。“mytime”命令通过命令行参数接受要运行的程序,创建一个独立的进程来运行该程序,并记录程序运行的时间。 三、实验环境 CPU: Inter ×2 2.10GHz RAM: 3.00GB Windows 7 旗舰版 Linux Ubuntu 10.04 编译: VS2010 四、程序设计与实现 4.1进程控制系统的调用 4.1.1 windows进程控制调用程序中使用的数据结构及主要符号说明 SYSTEMTIME starttime,endtime; //进程开始时间和结束时间 PROCESS_INFORMATION pi //该结构返回有关新进程及 //其主线程的信息 STARTUPINFO si //该结构用于指定新进程的主窗口特性4.1.2 linux进程控制调用程序中使用的数据结构及主要符号说明 struct timeval starttime,endtime //进程开始时间和结束时间 pid_t pid //进程标志符

4.2 程序流程图 图1 windows进程控制调用图2 linux进程控制调用程序运行流程图程序运行流程图 五、实验结果和分析 5.1 windows实验结果和分析

专科《操作系统原理及应用》

[试题分类]:专科《操作系统原理及应用》_08004260 [题型]:单选 [分数]:2 1.批处理最主要的一个缺点是()。 A.用户无法与程序交互 B.没有实现并发处理 C.CPU的利用率较低 D.一次只能执行一个程序 答案:A 2.磁盘空闲块常用的组织形式有三种,其中一种为()。 A.空闲块连续 B.空闲块索引 C.空闲块压缩 D.空闲块链 答案:D 3.常用的文件物理结构有三种,其中的一种形式是()。 A.记录文件 B.压缩文件 C.索引文件 D.流式文件 答案:C 4.批处理系统中,作业的状态可分为多种,其中一种为()。 A.提交 B.就绪 C.创建 D.等待 答案:A 5.并发执行的一个特点是()。 A.计算结果会出错 B.不会顺序执行 C.程序与计算不再一一对应 D.结果可再现

6.下列选项()不是操作系统关心的。 A.管理计算机资源 B.提供用户操作的界面 C.高级程序设计语言的编译 D.管理计算机硬件 答案:C 7.当CPU执行用户程序的代码时,处理器处于()。 A.核心态 B.就绪态 C.自由态 D.用户态 答案:D 8.根据对设备占用方式的不同,设备分配技术中的一种是()。 A.动态分配 B.永久分配 C.静态分配 D.虚拟分配 答案:D 9.评价作业调度的性能时,衡量用户满意度的准确指标应该是()。 A.周转时间 B.平均周转时间 C.带权周转时间 D.平均带权周转时间 答案:C 10.在手工操作阶段,存在的一个严重的问题是()。 A.外部设备太少 B.用户使用不方便 C.计算机的速度不快 D.计算机的内存容量不大 答案:B 11.作业的处理一般分为多个作业步,连接成功后,下一步的工作是()。

操作系统精髓与设计原理-第2章 操作系统概述

第二章操作系统概述 复习题 2.1操作系统设计的三个目标是什么? 方便:操作系统使计算机更易于使用。 有效:操作系统允许以更有效的方式使用计算机系统资源。 扩展的能力:在构造操作系统时,应该允许在不妨碍服务的前提下有效地开发、测试和引进新的系统功能。 2.2什么是操作系统的内核? 内核是操作系统最常使用的部分,它存在于主存中并在特权模式下运行,响应进程调度和设备中断。 2.3什么是多道程序设计? 多道程序设计是一种处理操作,它在两个或多个程序间交错处理每个进程。 2.4什么是进程? 进程是一个正在执行的程序,它被操作系统控制和选择。 2.5操作系统是怎么使用进程上下文的? 执行上下文又称为进程状态,是操作系统用来管理和控制所需的内部数据。这种内部信息和进程是分开的,因为操作系统信息不允许被进程直接访问。上下文包括操作系统管理进程以及处理器正确执行进程所需要的所有信息,包括各种处理器寄存器的内容,如程序计数器和数据寄存器。它还包括操作系统使用的信息,如进程优先级以及进程是否在等待特定I/O事件的完成。 2.6列出并简要介绍操作系统的五种典型存储管理职责。 进程隔离:操作系统必须保护独立的进程,防止互相干涉数据和存储空间。 自动分配和管理:程序应该根据需要在存储层次间动态的分配,分配对程序员是透明的。因此,程序员无需关心与存储限制有关的问题,操作系统有效的实现分配问题,可以仅在需要时才给作业分配存储空间。 2.7解释实地址和虚地址的区别。 虚地址指的是存在于虚拟内存中的地址,它有时候在磁盘中有时候在主存中。实地址指的是主存中的地址。 2.8描述轮循调度技术。 轮循调度是一种调度算法,所有的进程存放在一个环形队列中并按固定循序依次激活。因为等待一些事件(例如:等待一个子进程或一个I/O操作)的发生而不能被处理的进程将控制权交给调度器。

相关文档
相关文档 最新文档