文档库 最新最全的文档下载
当前位置:文档库 › 固定化生物活性炭的形成及功能研究

固定化生物活性炭的形成及功能研究

固定化生物活性炭的形成及功能研究
固定化生物活性炭的形成及功能研究

第33卷第1期哈尔滨建筑大学学报Vol.33No.1 2000年2期Journal of Harbin U niversit y of C. E.&Architect ure Feb.2000

文章编号:1006-6780(2000)01-0046-05

固定化生物活性炭的形成及功能研究

马放,时双喜,杨基先,李伟光

(哈尔滨建筑大学市政环境工程学院,黑龙江哈尔滨150090)

摘要:通过电子显微镜分析了生物活性炭(BAC)的结构特征,证明BAC的形成是由于炭粒表面的不均匀性、保护胶体和化学键的结合等综合作用所致。粘液性物质的存在,使BAC逐渐成熟稳定,保证了BAC具有稳定和高效的去除率。同时,还探讨了固定化BAC与自然形成BAC之间的区别。在分析BAC协同净化作用的基础上,提出了活性炭生物再生作用的机理。

关键词:固定化;生物活性炭;生物再生;协同净化

中图分类号:TU99112文献标识码:A

St ud y on formation of immobilized BAC and f unction

MA Fan g,SHI Shuan g2xi,YANG Ji2xian,L I Wei2g uan g

(School of Munici p al&Environmental En g ineerin g,Harbin U niversit y of Civil En g ineerin g&Architect ure,Harbin150090,China)

Abstract:The st ruct ural feat ures of BAC(Biolo g ical Activated Carbon)were anal y zed b y means of elect ronic microsco p ic anal y sis and t he formation of BAC was due mainl y to t he une q ual characteris2 tics of carbon articles’surface,t he combination of p rotective colloid and chemical bond etc1com p re2 hensive actions1The existence of mucous substances made BAC mat ure and stable g raduall y,t hus ensurin g BAC p erformin g a stable and hi g h removal rate1In addition,t he difference between im2 mobilized BAC and nat urall y formed ones was st udied as well1Furt hermore,t he f unctional mecha2 nism of biolo g ical re g eneration of activated carbon was p ro p osed in t his st ud y based on t he anal y sis of coo p erative p urification of BAC1

K e y words:immobilization;biolo g ical activated carbon;biolo g ical re g eneration;coo p erative p urification

O3-BAC处理技术的优势就在于微生物的降解作用使活性炭吸附的有机物被去除,将活性炭内这部分物质所占有的吸附位重新空出来,从而长时间地保持活性炭的吸附能力,这就是活性炭的生物再生作用。由于活性炭的物理吸附作用和生物降解作用的同时存在,因此,活性炭的生物再生作用既可以在连续运行状态下进行,又可以在其饱和后单独进行,从而大大延长了活性炭的使用寿命,保证了系统对COD M n始终具有很高的去除率,这在以前的报告中得以证实[1~3]。

1实验材料和方法

111实验材料

研究用的GAC、固定化BAC和自然形成的BAC分别取自小试、吉林前郭炼油厂和大庆石化总厂化肥厂的深度净化装置,参见文献[1~3]。

112测定方法

炭的微观结构———扫描电镜。

细菌总数———平板菌落计数法。

收稿日期:1999-06-01

基金项目:“八五”国家科技攻关课题资助项目(85-908-03-01-02)

作者简介:马放(1963-),男,哈尔滨建筑大学副教授1

第1期47碘值———碘量法(G B770217-87)。

2生物活性炭的形成

利用工程菌使GAC 形成BAC 的关键就是工程菌必须与GAC 结合在一起,但又不能影响活性炭物理吸附作用的正常发挥,因此,研究BAC 的形成机理,是保证BAC 具有很高净化效率的前提。

水处理中,采用的GAC 大都经过高温活化,其表面带有少量的正电荷,呈疏水性;而在正常的水环境中,工程菌表面带负电荷,呈亲水性。这样二者之间就产生了矛盾,但工程菌仍能比较牢固地吸附于GAC 表面,形成BAC ,我们认为其原因如下。

211优先区域的存在

炭表面存在着适合于工程菌作特殊吸附的优先区域,即许多表面缝隙的小凹坑为细菌提供了躲避流体剪切力的“居住区域”。我们从扫描电镜照片可以清楚地看到GAC 、BAC 的表面结构和少量工程菌的分布状况,见图1和图2。

图1GAC 的表面结构图2人工固化BAC 的表面结构

从图1和图2可以看出,采用工程菌人工固化,但未投入运行的BAC 和GAC 其表面结构并无显著差异。而BAC 中工程菌的分布不均匀,因此,工程菌的存在不会影响活性炭的物理吸附作用。212亲水性部位的存在

活性炭本身是非极性的,高温活化(800~1000℃

)后可以生成表面碱性氧化物。碱性氧化物的存在,使活性炭上存在某些亲水性部分,可能会出现亲水相吸的作用,使工程菌能够较容易地吸附在该部位上,这也是工程菌分布不均匀的原因之一。

213氧化物的存在

活性炭表面存在着许多氧化物,它们大都以-COO H 、-O H 、=C

等形式存在。这些表面氧化物中-COO H 和-O H 在电解质溶液中呈酸性,=C 呈碱性,而菌体表面的蛋白质是两性化合物,能与酸碱起成盐作用,故可通过化学键引力进行结合。但从图2中可以看出,工程菌的数量较少,我们认为这种化学吸附的作用较小。因为化学吸附使工程菌结合牢固,而在电镜制片过程中会使刚吸附的工程菌脱落,说明工程菌与炭的结合以物理吸附为主。另外,通过对未投入运行的BAC 进行工程菌计

数,其数量为316×102M PN /g 炭,数量较多,而从电镜照片中反映出的较少,说明工程菌与活性炭的结

合并不十分牢固,为物理吸附。

214粘液性物质的存在

许多工程菌表面具有特殊的粘液性物质(荚膜),使其很容易吸附于炭表面,这种粘结力还可促进工程菌处于群集状态。粘液性物质具有很强的吸附作用,可以迅速将水中的有机物吸附于表面,并加以氧化降解。

我们对实验室和前郭炼油厂使用近3年的BAC 进行了工程菌计数,数量分别为4120×103M PN /g

炭,2175×103M PN /g 炭,说明正是由于粘液性物质的存在,才会使工程菌能长期与活性炭比较牢固地结合,而且数量有所增加。当然,由于水中有机物的浓度较低,成为限制因子,

再加之反冲洗作

马放等:固定化生物活性炭的形成及功能研究=O O =

哈尔滨建筑大学学报第33卷

48

??

用,所以不会导致BAC上工程菌的大量生长繁殖,而是维持在相对稳定的数量上。运行3年的BAC表面结构,见图3和图4。

图3运行中的BAC表面结构图4表面孔隙及工程菌正是由于粘液性物质的存在,使工程菌可以单独或群集于炭孔隙周围及表面,而不影响活性炭的物理吸附作用。同时,粘液性物质的存在,对活性炭本身也起着保护作用,特别是在反冲洗过程中,减轻了活性炭之间因摩擦造成的破损,间接地增强了活性炭的机械强度。

总之,工程菌与活性炭的结合可能是炭粒表面的不均匀性、保护胶体和化学键的结合等综合作用所致。这些掩蔽作用、吸附力和化学引力所形成的结合力远大于亲疏互斥力所形成的排斥力,使两者比较牢固地结合。另外,由于粘液性物质的存在,使BAC逐渐成熟稳定,从而保证了BAC具有稳定和高效的去除率。

3生物活性炭的净化功能

311生物活性炭的协同净化作用

BAC对有机物的去除是炭的物理吸附和生物降解协同作用的结果,在GAC自然形成BAC的过程中,分为驯化阶段、增长阶段、稳定阶段,真正意义上的BAC作用是指稳定阶段,主要是生物降解起作用,而采用工程菌人工固化形成的BAC与自然形成的BAC之间有很大的区别,主要体现在:(1)形成的方式不同。人工固化BAC是人为投加驯化、培养的工程菌,并具有很高的活性;自然形成的BAC无选择性,生物相复杂。(2)生物降解与活性炭吸附协同作用的起始时间不同。人工固化BAC对有机物的降解自始至终是物理吸附和生物降解的协同作用的结果,即处于稳定期。(3)BAC上菌的来源不同。人工固化BAC上的菌是经过筛选、驯化的工程菌,已适应环境,而自然形成的BAC上的菌是水中存在的,未经过驯化,所以短时间内难以适应环境,生物降解作用较小。(4)物理吸附作用的时间不同。人工固化BAC 一开始就存在工程菌,在物理吸附的同时又有生物降解作用,工程菌的存在又不影响物理吸附作用,所以有机物在被吸附的同时就被降解掉,这样就大大延长了活性炭的吸附饱和期,即延长了活性炭的使用寿命。从大庆石化总厂化肥厂的GAC滤罐运行结果看,GAC使用10个月就基本饱和,但取样测定活性炭的细菌量仍达218×102M PN/g炭,说明GAC上即使存在微生物,也不能称之为真正意义上的BAC。

由于大多数细菌的大小为104A,故工程菌主要集中于炭颗粒的外表及邻近大孔中,而不能进入微孔中。工程菌能直接将活性炭表面和大孔中吸附的有机物降解掉,从而使活性炭表面的有机物浓度相对降低,造成炭粒内存在一个由内向外减小的浓度梯度,有机物就会向活性炭表面扩散,可逆吸附的有机物会因此解吸下来而被微生物利用。另外,细胞分泌的胞外酶和因细胞解体而释放出的酶类(10A大小),能直接进入BAC过渡孔和微孔中去,与孔隙内吸附的有机物作用,使其从原吸附位上解脱下来,并被BAC表面上的工程菌所分解,构成了吸附和降解的协同作用,即BAC具有双重功能。这样,就能保证BAC在生物降解和活性炭物理吸附的双重作用下长期稳定地运行,并且具有稳定的去除效率,通过实验结果已证明了这一点。Mark等对吸附用和生物载体用的活性炭进行了研

第1期49马放等:

固定化生物活性炭的形成及功能研究图5BAC 的碘值变化

究,结果表明BAC 运行稳定,生物降解能力很强,有机物的去除率主要是靠生物作用[4]。

BAC 能长期稳定地去除水中微量有机物,是由于活性炭吸附和工程菌生物降解的协同净化的结果,所以不能将二者的作用简单地叠加,我们认为BAC 的协同净化作用,类似于菌藻互生系统,其中活性炭为工程菌的生存提供了良好的栖息环境,并通过吸附作用为工程菌提供了生长繁殖的营养物质,而工程菌的生物降解作用,又使得活性炭的吸附作用得以长期存在,正因为如此,BAC 才具有长期稳定的净化效率。

312活性炭的生物再生作用

GAC 使用一定时间之后就达到饱和状态,丧失了吸附能力,此时就需要采用一定的方法对其进行再生。目前GAC 的再生方法有:药剂再生法、生物再生法、湿式氧化再生法、化学氧化再生法和加热再生法等。

活性炭的再生方法很多,一般情况下大多采用加热再生的方法,但加热再生存在费用高、消耗能量、损失活性炭等问题,因此,人们将注意力集中到生物再生法上。

生物再生法是指吸附饱和的活性炭经过驯化培养的菌种处理,在微生物的作用下,吸附在活性炭上的有机物解吸并进一步氧化分解成H 2O 和CO 2,从而使饱和炭恢复吸附能力的方法。David 等的研究指出,由于脱附速度和微生物增长速度的限制,尤其是难降解物质的存在,使得活性炭不可能完全再生,但使用降解活性高的多种微生物,并加快增殖速度,就可以使炭的吸附能力恢复到最大程度。

活性炭的吸附作用主要是靠微孔来实现的,而

衡量活性炭吸附效能的主要指标是碘值。碘值越

高,活性炭的吸附能力越强。因此,通过碘值的测

定,可以反映出工程菌对活性炭是否有再生作用。

在大庆石化总厂化肥厂的生产性实验中,为

了考察工程菌对活性炭的生物再生作用,我们对

活性炭的碘值进行了测定。实验前饱和炭的碘值

分别为1#炭689m g /g ,3#炭701m g /g ,经过一

年的运行,碘值的测定结果为1#炭707m g /g ,

3#炭825m g /g 。从测定结果不难看出,未经过工

程菌活化的1#炭其碘值基本一样,而经过工程

菌活化的3#炭其碘值有了很大的提高。由此证

明工程菌对活性炭有生物再生作用。另外,我们在实验室研究过程中对人工固化BAC 的碘值变化也进行了测定,见图5。

由图5可以看出,新炭经工程菌活化形成BAC 后,其吸附作用并不受影响,而且从一开始就存在物理吸附和生物同化与降解的协同净化作用,因此,BAC 的协同净化作用,对活性炭本身就是一个再生作用过程。从碘值的变化也可以说明,采用工程菌人工固化形成BAC ,的确能够延长活性炭的使用寿命。海贺等人的研究结果表明,自然形成的BAC 在运行的前5个月,碘值下降很快,其后下降较为缓慢。由于经O 3氧化后水中仍存在一定的难降有机物,在自然条件下未等到GAC 形成BAC ,GAC 已经吸附饱和,故很难发挥BAC 的协同净化作用,而是以生物降解作用为主来延长GAC 的使用寿命,这与人工固化BAC 的再生机理是有所区别的。

关于BAC 的再生机理尚不清楚,但人们普遍接受的是胞外酶再生假说。Perrotti 和Rodman 针对生物再生现象提出炭内吸附物质与胞外酶反应产生脱附的假说[5],认为细菌虽然不能进入微孔,但所分泌的胞外酶可以通过扩散作用进入微孔,与炭吸附的物质反应,形成酶-底物复合体或反应产物从原吸附位上脱附,并扩散到炭的外部,而被微生物降解,从而使活性炭得以再生。对于这一假说,张晓健博士提出了质疑[6],并通过实验和理论分析证明这一假说对活性炭的净化过程并不适用。但无论如何,活性炭的生物再生就是使饱和炭中的物质脱附,再被微生物降解的过程。胞外酶

哈尔滨建筑大学学报第33卷50

或者位于细胞膜外表面,或者存在于细胞外质空间,若按胞外酶再生假说,就必须产生种类繁多的胞外酶,而且必须渗透到微孔中,与炭吸附的物质结合后再扩散到炭的外表面,而这种酶的复合物能否扩散出来就不得而知,同时,由于水中有机物浓度很低,导致炭上的微生物种类和数量一定,所以胞外酶再生假说就存在很多缺欠,难以圆满解释活性炭的生物再生作用。

通过实验证明,利用工程菌对新炭进行人工固化后,碘值变化很缓慢,说明工程菌的降解作用使吸附物质不能进入微孔;而对饱和炭进行活化,使碘值升高,也说明是工程菌在起作用。因此,我们认为活性炭的生物再生作用是由于工程菌的降解作用使炭表面和水中的有机物浓度降低,破坏了原有的固液平衡关系,产生逆浓度梯度脱附,从而使活性炭得以再生。

4结论

通过BAC的微观结构和生物量测定,证明固定化BAC的形成是由于炭粒表面的不均匀性、保护胶体和化学键的综合作用所致。而且,BAC能长期稳定地去除微量有机物是由于活性炭的吸附与工程菌生物降解作用的协同作用。而生物再生作用是由于工程菌的降解作用使水中及炭表面的有机物浓度降低,破坏了原有的固液平衡关系,产生逆浓度梯度脱附,从而使活性炭再生,延长其使用寿命。

参考文献:

[1]马放,王宝贞,孙建平1固定化生物活性炭除微污染有机物的实验研究[J]1哈尔滨建筑大学学报,1998,31(5):

52-571

[2]马放,李伟光,王宝贞1固定化生物活性炭除微量有机物的运行效果[J]1哈尔滨建筑大学学报,1998,31(6):

56-631

[3]马放1[D]1哈尔滨:哈尔滨建筑大学,19981

[4]Mark A1Carlson,kerin M1Heffernan,et1al11Com p arin g two GAC for Adsor p tion and Biostabilization[J]1

J1AWWA,1994,86(3)1

[5]Perotti A1E1&Rodman C1A1Factors Involoved wit h Biolo g ical Re g eneration of Activated Carbon[M]1Water-

1974,A ICE S y m p1Series144,19781

[6]张晓健1生物活性炭生物降解与炭吸附有机物关系的研究[D]1北京:清华大学,19861

固定化微生物

1 引言 随着石油工业的迅速发展油气田开发对土壤的污染越来越严重。石油污染土壤已经是石油及石化企业的重要污染之一,其中的石油污染物对人体及环境具有很高的毒害作用。土壤污染不仅会破坏其自身结构、改变其物理化学性质,而且会影响作物的产量和品质,并通过食物链危害人类的健康和生命。因此,修复污染土壤,保障人类健康,已引起各国政府及环境学家的广泛关注,成为当前国内外环保研究的热点。 2 石油污染土壤的现状及危害 随着国民经济的迅速发展,人们对石油的需求不断增加,石油的勘探开发、运输及炼制过程中,石油污染问题日益凸显,特别是土壤污染日趋严重。据报道,目前世界石油总产量每年约有22亿t,其中约有800万t石油进入环境已造成污染,我国石油年产量已超过1亿t,每年新污染土壤10万t,其中每年有近60万t石油进入环境,污染了土壤、地下水、河流和海洋[fll。石油污染土壤主要由于石油的泄漏和排放引起的,一般集中在油田、油库、炼油厂周围,对土壤的污染大多集中在20cm左右的土壤表层[f2l。我国许多油区污染严重,例如陇东油区年产原油约200万吨是中国第二大油田的中心区,石油污染面积正在逐年扩大,目前石油污染面积SOO}l000hm2,在重污染区,土壤原油含量高达3510mg/kg,高出临界值(200mg/kg) 17.6倍。因此,修复石油污染土壤,加快土壤的修复和治理显得尤为重要。 石油是一种成分极其复杂的混合物,主要是由各种不同的碳氢化合物组成,还含有少量的氧、氮、硫、氯、硅和磷等非金属元素以及少量的重金属元素成分。石油通常指原油和石油初加工产品(包括汽油、煤油、柴油、重油、润滑油等)及各类油的分解产物,主要包括烷烃、环烷烃和芳香烃、烯烃等,其中多环芳香烃类物质被认为具有严重的致癌、致突变、致畸作用,其形态包括气体、挥发性液体、高沸点液体以及固体等[[3,4] o 石油进入土壤后,影响土壤环境质量,严重威胁着生态环境、食品安全和人身健康: 1)石油吸附在土壤颗粒表面堵塞土壤孔隙,降低了土壤透水性,改变土壤有机质的组成、结构和物理化学性质,引起土壤有机质的变化如碳磷比;

活性炭的选型、投入与活性炭滤池的运行维护

活性炭的选型、投入与活性炭滤池的运行维护 张捷,徐子松 (桐乡市水务集团有限公司,桐乡314500) 摘要。本文重点介绍了桐乡市自来水公司果园桥水厂活性炭的选型、投入以及活性炭滤池的运行维护情况。通过对活性炭滤池不同规格活性炭运行情况进行系统的跟踪分析,摸索活性炭滤池的运行维护管理经验,旨在优化活性炭滤池的运行,为今后的设计和运行管理提供借鉴。 关键词t活性炭:活性炭滤池:运行维护 O.前言 近年来,作为桐乡市果园桥水厂供水水源的大运河支流康泾塘受到有机污染的程度越来越严重(见表一)。在人们对生活质量的需求不断提升的前提下,对饮用水质量的要求也越来越高。针对日益恶化的源水水质,采用预处理及深度处理工艺成为提高供水水质的必要手段,也是今后国内水处理发展的趋势。深度处理中的臭氧活性炭工艺是目前处理微污染源水最有效的手段之一,在国内外研究应用已有70多年历史。活性炭过滤是深度处理工艺的最后阶段,更是必不可少的环节。对活性炭滤池科学的运行维护能够有效的提高供水水质、节省制水成本、延长活性炭的使用周期。果园桥水厂对此有多年的实践,有必要作一次全面的总结。 1.工艺概况 臭氧活性炭深度处理工艺利用臭氧的强氧化性改变大分子有机物的性质和结构、利用活性炭的吸附性能以及附着在活性炭表面上的生物膜的生物降解作用去除水中有机物,达到净化水

质的目的。 臭氧的氧化能力极强,仅次于氟,在活性炭过滤前投加臭氧可以杀死细菌、去除病毒、氧化水中有机物、提高水中有机物的可生化性,增强活性炭吸附的生物作用,有利于活性炭对有机物的去除,还可以延长活性炭的再生周期。 活性炭对分子量在1500以下的环状化合物、不饱和化合物以及分子量在数千以上的直链化合物(糖类)有较强的吸附能力,对去除腐殖酸、异臭、色度、农药、烃类有机物、有机氯化物、洗涤剂等有很好的效果,特别是对致突变物质及氯化致突变物前驱物的良好吸附,进一步降低了出水的致突变活性。 许多实验研究证明,为了抑制饮用水中大肠杆菌的生长,需要达到AOC<50 ug/L,TOC<2mg/L,活性炭表面附着的生物膜具有生物降解作用,在常规处理之后进行生物处理对致突物有一定的去除效果,使出水达到更好的生物稳定性,管网水也获得了更长的保质期。 果园桥水厂的水质“革命”作为一个技改项目在市人大会议上提出,并列为桐乡市2003年为民办实事的十件大事之一。采用生物接触氧化预处理+常规处理+臭氧活性炭深度处理为全过程的水处理新工艺,一期工程设计规模为8万m3/d,在原有常规处理工艺的基础上新增预处理及深度处理工艺,2002年7月开工,2003年5月竣工投产;二期工程设计规模为7万m3/d,为一套完整的预处理+常规处理+深度处理工艺,2003年8月开工,2004年7月竣工投产。两期工程全部竣工并投入运行后,果园桥水厂的水处理工艺从原来的单一常规处理迅速跃升至国内先进水平。 臭氧投加点在活性炭过滤之前,根据实际水质情况投加量为l~3mg/L,臭氧接触时间为15min。活性炭滤池分为10格,一期7格为1.5mm柱状炭,3格为8X30目破碎炭,二期10格全部为12X40目破碎炭,利用原有反冲洗水塔中的砂滤池出水对炭层进行反冲洗,通

【臭氧~生物活性炭工艺设计】的设计和运行管理

【臭氧- -生物活性炭工艺】的设计与运行管理 臭氧- 生物活性炭工艺的设计与运行管理 张金松, 范洁, 乔铁军 (深圳市水务〈集团〉有限公司, 深圳518031) 摘要: 针对臭氧—生物活性炭工艺设计和运行管理的重点问题,首先对工艺设计中的活性炭滤料选择、活性炭滤层结构设计、活性炭池型选择、臭氧系统选择、臭氧接触池优化设计和复合预氧化设计等内容进行了研究和总结,并且对工艺运行管理中存在的微生物安全、大型微生物控制、活性炭滤池初滤水管理及pH控制、预臭氧和主臭氧工艺的运行管理等问题,提出了相应的解决方案,以及今后应用中应重点注意的若干问题。 关键词: 臭氧活性炭; 设计; 运行管理; 微生物安全; 标准 深水集团所属梅林水厂和笔架山水厂的臭氧—生物活性炭工艺分别于2005 年和2006 年投入运行,对水厂进一步提高有机物、氨氮的去除效果,降低嗅味,全面改善水质发挥了重要作用。但在实际运行中,也陆续发现了一些国内外文献未曾报道过的新问题,如生物活性炭导致pH值大幅降低,出水有剑水蚤、线虫等微型动物检出等水质问题。因此,如何通过更好的设计和运行管理,从技术上解决这些问题,无论在理

论上还是在实践中均具有非常重要的意义。 1 工艺设计 1.1 活性炭性能指标的选择标准 根据制造原料不同,活性炭可分为木质炭、果壳炭和煤质炭等,其中煤质活性炭因其具有多孔性和高硬度的优点,且来源稳定和价格较低,在大规模水处理工程中得到广泛应用。 在水处理工程中,国外多采用不定型炭(主要是压块破碎炭) ,而国内柱状炭的应用最为广泛。近些年来,不定型炭(主要是柱状破碎炭)在国内得到越来越多的关注,并已经被应用在一些新建水厂中。 研究结果表明,活性炭滤池出水水质与活性炭性能指标之间具有某种相关性。根据分析结果和实际运行情况,并参考国内外活性炭选择的标准,制定了适合于我国南方地区饮用水中活性炭选择的性能指标,如表1所示。1.2 活性炭滤层结构活性炭滤层厚度一般不低于1. 2 m,根据要去除的不同污染物,接触时间在6~30 min之间,但在一些应用中可高于或低于这个范围。通常,以去除嗅味为主时,接触时间一般为8 ~10 min; 以去除CODMn为主时,接触时间一般为12~15 min。 研究结果表明,砂垫层对浊度有去除效果,但是去除率不高,当砂垫层进水浊度为0. 10 NTU时,浊度的平均去除率为6. 5%;石英砂垫层对高锰酸盐指数和氨氮基本没有去除作用。然而

生物活性炭滤池的反冲洗方式研究

生物活性炭滤池的反冲洗方式研究

生物活性炭滤池的反冲洗方式研究 在臭氧—生物活性炭深度处理技术应用中,生物活性炭(BAC)滤池的反冲洗问题非常棘手又亟需解决。随着BAC滤池运行时间的延长,炭粒表面和滤床中积累的生物和非生物颗粒量不断增加,导致炭粒间隙减小,影响滤池的出水水质和产水量[1]。反冲洗方式与相关参数直接影响BAC滤池的运行效果和成本。有研究表明[2],采用单独水冲的滤池出水中生物可同化有机碳(AOC)和细菌量高于采用气水联合反冲的滤池,而充分去除过量的生物膜是保证滤池成功运行的重要前提。国外对生物滤池反冲过程中的颗粒脱附机理进行了研究[3],但关于其程序及相关参数选取的报道较少,而这又恰是指导生产所必须解决的重要问题。国内对此方面的研究起步较晚,个别采用生物活性炭技术的水厂只能直接参照国外经验,如昆明、北京水司均采用单独水冲(滤层膨胀率为25%)。 1 试验方法 1.1 工艺流程及装置 中试的工艺流程为预臭氧化→混凝、沉淀、过滤→臭氧—生物活性炭,试验装置包括常规处理、臭氧化和BAC滤池处理系统。 BAC滤池横断面尺寸为500 mm×500 mm,高度为4.92 m,内部均分为两格,采用小阻力配水系统。池内装填ZJ-15型柱状活性炭,其碘值和亚甲蓝吸附值分别为961、187 mg/ g。运行之前采用未加氯的砂滤出水先浸泡活性炭1周,再反洗清洁。

试验期间,臭氧化与常规处理工艺参数基本恒定。预臭氧化的接触时间和投量分别为4.5min和1.5 mg/L左右;主臭氧化的接触时间和投量分别为16 min和2.0mg/L左右。常规处理水量为3~3.5m3/h,混合时间为6~6.5s,反应时间为23.2~19.9 min,沉淀池清水区上升流速为1.39~1.62 mm/s、斜管内上升流速为1.60~1.87mm/s,滤池滤速为6.49~7. 57 m/h。混凝剂和pH值调节剂分别采用液态碱铝和氢氧化钠,投加浓度分别为2.5、6 mg/L左右。 1.2 反冲方式 第一阶段单独水反冲试验的炭床高度分别为2.0、2.5 m,冲洗强度分别为12、14、18L/(m2·s),冲洗历时约为10 min。第二阶段气水联合反冲洗试验的炭床高度为2.0 m,气冲强度分别为8、11、14L/(m2·s),气冲历时分别为3、5min;水冲强度分别为6、8、10、1 2、14L/(m2·s),水冲历时约为10 min。 试验期间BAC滤池进水水温较高(平均为29 ℃),采用自然挂膜(生物膜成熟时间约为15d),其反冲洗周期一般为7d。 2 结果与分析 水中生物颗粒的相对含量以浊度表示,其微生物最低检测浓度为3.7×105个/mL[4]。BAC滤池反冲废水中微生物浓度(个/mL)的数量级一般不低于105[2、3],故以反冲废水的浊度作为一项主要检测指标。 2.1 水反冲 ①冲洗强度

微生物固定化技术的发展及其在污水处理的研究

微生物固定化技术的发展及其在污水处理的研究 摘要:微生物固定化技术是一种有效的废水处理技术,通过对固定化技术方法的介绍以及不同载体选择的对比,分析评价了微生物固定化在废水处理的国内外应用研究现状,并针对相关问题提出了今后的研究和发展方向。 关键字:固定化技术载体材料废水处理微生物 Abstract:Immobilized microorganism technique is a kind of effective wastewater treatment technology. Based on the technique of immobilization method introduction and different carrier choose contrast.TAnalysis and evaluation the immobilized microorganism technology applied to various kinds of wastewater treatment both in China and abroad are summarized. Aiming at its relevant problems, its future research and developing directions are brought forward. Key words: immobilization technique Carrier material wastewater treatment microorganism 微生物固定化技术是从二十世纪60年代开始迅速发展起来的一项新技术,至今已经形成了较为完备的理论和方法。微生物固定化技术是指通过利用化学或物理手段将游离的微生物或酶,定位于限定的空间区域内,使之不溶于水,但仍能保持其生物活性且在适宜的条件下还可以增殖,是一种可以反复使用的技术[1]。这项技术最初利用于工业发酵,20世纪70年代后期,随着水环境污染的日益严重,研究一种高效、快速,能连续处理的生物处理废水系统的要求日益迫切,国内外开始应用微生物固定化技术来处理废水,从此微生物固定化技术在污水处理中得到广泛的应用[2,3]。 与普通悬浮生物处理法相比,采用微生物固定化技术有以下优点[4]: (1)有利于提高生物反应器内微生物浓度和纯度,提高处理负荷、减少处理装置容积; (2)污泥产量少,利于反应器的固液分离; (3)可选择性地固定优势菌种,稳定性强,提高难降解有机物的降解效率; (4)抗毒物毒能力强; (5)对水质及pH的变化有较好的稳定性。 这些优点使微生物固定化技术在国内外废水处理领域中备受重视,特别是在难降解和有毒废水处理中表现出更大的潜力。 1、微生物固定化的分类 微生物细胞固定化的方法多种多样,任何一种限制细胞自由流动的技术都可以用来对微生物细胞进行固定化。按照固定载体及其作用方式不同,主要有共价结合固定化、吸附固定化、包埋固定化和交联固定化四大类[5]。 1.1共价结合法 共价结合法就是是细胞表面上官能团和固相支持物表面的反应基团形成化学共价健连接。用共价键固定酶,载体与酶的结合牢固,不易脱落,但限制了微生物的活性,半衰期较长。但由于化学共价法结合操作与控制复杂苛刻,反应剧烈,常常引起酶蛋白高级结构发生变化,因此,一般细胞活性回收较低。能够用于共价法固定的酶蛋白上的功能基因中,最常用的是氨基和羧基。对于共价偶联反应的选择一般应考虑酶蛋白上供共价结合的功能基团必须不影响酶的催化活性,反应条件应尽可能温和,最好在水溶液中反应。偶联反应应该对酶蛋白上某一类功能基团有很高的专一性,而对其他功能基团或水溶液几乎无副反应。共价反应的主要方法有酰化反应法、芳化和烷基化反应法、溴化氰法、重氮化反应法以及硅烷基化法等。 1.2吸附法 吸附法又称载体结合法,根据载体特性可分为物理吸附和离子交换吸附。物理吸附是使用具有高吸附能力的物质,如硅胶、活性炭、多孔玻璃、碎石、卵石、焦炭、硅藻土、多孔砖等吸附剂,将微生物吸附在表面使其固定化。离子吸附是利用微生物在解离状态下离子健合作用而固定于带有相反电荷的离子交换剂上,常见的离子交换剂有DEAE -纤维素、CM-纤维素等。吸附法是依据带电的

生物分子固定化方法

生物传感器中生物组分的固定化方法 生物传感器由两部分组成: 生物敏感元件和信号转换器。生物传感器的选择性主要取决于敏感材料的选取,而灵敏度的高低则与转换器的类型、生物组分的固定化技术等有很大的关系。因此固定化技术的发展是提高传感器性能的关键因素之一。生物传感器要呈现良好的工作性能, 其固定化技术应满足以下条件: (1) 固定化后的生物组分仍能维持良好的生物活性; (2) 生物膜与转换器须紧密接触,且能适应多种测试环境; (3) 固定化层要有良好的稳定性和耐用性; (4) 减少生物膜中生物组分的相互作用以保持其原有的高度选择性。 为了研制廉价、灵敏度高而且选择性好的生物传感器,固定化技术已成为研究者们努力探求的目标。经过近20年的不懈探索,已建立了对各种不同生物功能材料的固定化方法。 物理吸附法 此法是通过生物分子的极性键、氢键、疏水键的作用将生物组分吸附于不溶性的惰性载体上。文献已经报道了一些材料可用作吸附其它材料的载体,比如,石墨粉[25]、石墨-聚四氟乙烯[26]、活性碳[27]、离子交换树脂[28]等。物理吸附法的特点 是方法简便、操作条件温和,缺点是生物分子与载体表面的结合力弱,在表面进行任意取向的不规则分布,因此使制得的生物传感器容易发生生物分子的脱落和泄漏,从而造成传感器的灵敏度低,重现性差。 包埋法 将生物组分与合成高分子经溶剂混合而使生物组分包埋于其中,制成敏感膜的方法称作包埋法。采取的包埋方式通常包括凝胶包埋法和胶囊包埋法二种形式[29,30]。 。包埋法的优点是操作条件比较温和,膜的孔径和形状可随意控制,对生物组分活性的影响较小,缺点是需控制很多实验因素,而且生物组分在聚合物膜内的活性会受到影响。 共价键合法将生物组分通过共价键与电极表面结合而固定的方法称作共价键合法。该法是利用基体表面进行活化处理,然后与生物组分偶联,从而使生物组分结合到基 体表面。活化的方法有:烷基化法[31]、高碘酸氧化法[32]、迭氮法[33]等。该法的优点是通过形成特殊键将生物组分进行固定,因此生物组分不易发生泄漏,并且改善了生物分子在表面的定向,但缺点是操作复杂,成本高,而且生物组分易失活。 化学交联法 化学交联法是在交联剂(具有两个或两个以上功能团的试剂) 的作用下,生物分子间发生共价结合,也可将生物组分直接与载体共价交联。最常用的交联剂是戊二醛[35]。该法的优点是生物组分的固定比较牢固,不易脱落,缺点是反应难以控制,扩 散阻力大,所需的生物样品量多。 电化学聚合法 电化学聚合法是通过将聚合物单体和生物组分同时混合于电解液内,通过恒电位

生物技术发展

学高身正明德睿智 云南省唯一的省属重点师范大学 学校:云南师范大学 学院:生命科学学院 专业:生物科学10级B班 姓名: 学号: 学制: 四年

浅谈现代生物技术发展历史 摘要:现代生物技术是通过生物化学与分子生物学的基础研究而快速发展起来的。医药生物技术起步最早、发展最快,目前世界已有2000多家生物技术公司,其中70%从事医药产品的开发。生物技术工业总体日趋成熟,正在由风险产业变成以商业为动力,以市场为中心的产业。应用生物技术已有可能产生几乎所有的多肽和蛋白质,基因工程技术的应用已使新药研究方法和制药工业的生产方式发生重大变革。 关键字:现代生物技术历史现状研究 导言科学家们认为,20世纪的科学技术是以物理学和化学的成就占主导地位,而21世纪的科学技术是以生物学的成就占主导地位。21世纪称为生命科学的世纪,生物技术称为21世纪的朝阳产业。生命科学的新发现,生物技术的新突破,生物技术产业的新发展将极大地改变人类及其社会发展的进程。在生物技术领域取得的突破性进展可以彻底消除营养不良,改善食品的生产方式,消除各种污染,延长人类寿命,提高生命质量等。一些成果还可以帮助人类加速植物和动物的人工进化以及改善生态环境对人类的影响等。 一.分类 生物技术的发展可分为三个阶段,即传统生物技术、近代生物技术和现代生物技术。 (一)传统生物技术阶段 指19世纪末到20世纪30年代前,以发酵产品为主干的工业微生物技术体系。这一时期的生物技术主要是通过微生物的初级发酵来生产食品,其应用仅仅局限在化学工程和微生物工程的领域,通过对粗材料进行加工、发酵和转化来生产纯化人们需要的产品,如乳酸、酒精、面包酵母、柠檬酸和蛋白酶等。 (二)近代生物技术阶段 近代生物技术是以20世纪4O年代抗菌素的提取,50年代氨基酸的发酵到60年代酶制剂工程为线索,仍以微生物发酵技术为技术特征的。这一时期抗生素工业、氨基酸发酵和酶制剂工程相继得到发展,细胞工程相关技术日臻完善,但从技术特征上看还不具备高新技术诸要素,因此只能被视为近代生物技术。 (三)现代生物技术阶段 现代生物技术以20世纪70年代DNA重组技术的建立为标志,以世界上第一家生物技术公司——Gene-Tech的诞生(1976)年为纪元。此后,越来越多的科学

微生物固定化载体5.10

微生物固定化载体 固定化微生物技术是将特选的微生物固定在选证的载体上,限制或定位于一定的空间区域.使其高度密集并保持生物活性,在适宜条件下能够快速、大量增殖的现代生物技术。固定化微生物具有生物浓度易控制、耐毒害能力强、菌种流失少、产物易分离、运行设备小型化等特点。近年来固定化微生物技术的研究非常活跃,发展很快,已遍及环境保护、食品工业、化学分析、能源开发、医学和制药等多种领域,并得到了广泛的应用。同时,对载体材料的性能也提出了更高的要求。载体材料的性能对固定化微生物功能的发挥起着至关重要的作用,有关固定化载体材料的研究也就显得非常重要 1.微生物固定化对载体材料的要求 载体材料的主要作用是为微生物提供栖息和繁殖的稳定环境。根据所固定的微生物种类以及固定化方法与工艺的不同,需要制备不同的周定化载体材料。制备合适的载体材料是固定化细胞技术的关键,在选择和制备载体材料时,必须考虑所固定微生物的生理习性及其应用的环境条件。一般情况下。理想载体应该具有以下特征:(1)载体对细胞呈惰性,对微生物无毒害;(2)具有高的载体活性,固定化细胞密度大;(3)力学强度和化学稳定性好,耐微生物分解;(4)操作简便,易于成型;(5)底物和产物的扩散阻力小,具有良好的传质性能;(6)微生物的活性回收率要高,能较长时间使用和重复使用;(7)原料易得,成本低。 2.固定化载体材料的种类 2.1天然载体材料 天然无机类载体材料主要有沙粒、沸石、硅藻土等。天然有机载体材料的究和应用较多,它们主要是天然多糖类材料,如纤维素及其衍生物、琼脂、角叉莱胶、海藻酸盐、卡拉胶。 2.2合成高分子载体 该类材料应用较多的主要是聚乙烯醇、聚乙二醇、聚氨酯、羧甲基纤维素等。 2.3人工无机载体材料

固定化微生物技术处理废水

固定化微生物技术处理废水 作者:李静, 谭月臣, 洪剑明 作者单位:首都师范大学生命科学学院,北京,100048 刊名: 安徽农业科学 英文刊名:JOURNAL OF ANHUI AGRICULTURAL SCIENCES 年,卷(期):2010(25) 参考文献(25条) 1.熊津;丁桑岚畜禽养殖废水脱氮除磷研究进展[期刊论文]-畜牧与饲料科学 2009(01) 2.张蔚萍;陈建中固定化微生物技术在环境工程中的应用[期刊论文]-云南环境科学 2003(04) 3.饶应福;夏四清;姜剑固定化微生物技术在环境治理中的应用[期刊论文]-能源环境保护 2005(02) 4.RAJ J;SHARMA N N;PRASAD S Acrylamide synthesis using agar entrapped cells of Rhodococcus rhodochrous PA-34 in a partitioned fed batch reactor[外文期刊] 2008(01) 5.CHSUBBA RAO;PRAKASHAM R S;BHASKAR RAO A Functionalized alginate as immobilization matrixin enantioselective L(+) lactic acid production by lactobacillus delbrucekii 2008(03) 6.曹国民;赵庆祥;龚剑丽固定化微生物在好氧条件下同时硝化和反硝化[期刊论文]-环境工程 2000(05) 7.王青;张善锋固定化微生物技术在废水处理中的应用[期刊论文]-环境科学与管理 2008(11) 8.BAI X;YE Z F;LI Y F Preparation of crosslinked macroporous PVA foam carrier for immobilization of microorganisms[外文期刊] 2010(01) 9.肖亦;钟飞;潘献晓固定化微生物技术在废水处理中的应用研究进展[期刊论文]-环境科学与管理 2009(06) 10.彭会清;安显威吸附法在废水除磷中的应用[期刊论文]-辽宁化工 2006(09) 11.刘帅;张培玉;曲洋包埋法固定化微生物技术中的载体选择及在污水生物处理中的应用[期刊论文]-河南科学2009(05) 12.贾敏;徐冉;杨长明固碳技术在猪场废水低碳化处理中的应用进展[期刊论文]-畜牧与饲料科学 2009(09) 13.何江;利锋山区农村养猪场废水处理方法探讨[期刊论文]-畜牧与饲料科学 2009(03) 14.曹娴;王国成EM技术在工业废水治理上的应用[期刊论文]-内蒙古农业科技 2007(04) 15.ZHU J;LIN C F;KAO J C M Evaluation of potential integration of entrapped mixed microbial cell and membrane bioreactor processes for biological wastewater treatment/reuse 2009(08) 16.KARIMINIAAE-HAMEDAANI H R;KANDA K;KATO F Wastewater treatment with bacteria immobilized onto a ceramic carrier in an aerated system 2003(02) 17.王凤;叶正芳固定化微生物滤池去除地下水中硝酸盐的研究[期刊论文]-安徽农业科学 2009(23) 18.CELIS L B;VILLA-GMEZ D;ALPUCHE-SOLIS A G Characterization of sulfate-reducing bacteria dominated surface communities during start-up of a down-flow fluidized bed reactor 2009(01) 19.童群义;陈坚;堵国成PVA-卡拉胶混合载体固定化大肠杆菌-酵母菌混合体系生产谷胱甘肽[期刊论文]-工业微生物 2000(04) 20.齐水冰;罗建中;乔庆霞固定化微生物技术处理废水[期刊论文]-上海环境科学 2002(03) 21.王坤;刘永军活细胞固定化技术在焦化废水生物处理中的应用试验[期刊论文]-环境科技 2009(04) 22.唐凤舞;樊华固定化微生物技术处理城市污水的研究[期刊论文]-环保科技 2009(01) 23.黄川;王里奥;崔志强采用海藻酸钠固定化微生物技术处理甲醇废水[期刊论文]-中国给水排水 2008(07)

固定化微生物技术及其在污水处理中的应用

固定化微生物技术及其在污水处理中的应用 发表时间:2018-12-22T14:09:01.650Z 来源:《防护工程》2018年第23期作者:王诚诚 [导读] 近年来,我国的环境污染问题日益严重,而我国的经济发展、环境也造成了一定的破坏,人们关于环保意识逐渐增强。 摘要:近年来,我国的环境污染问题日益严重,而我国的经济发展、环境也造成了一定的破坏,人们关于环保意识逐渐增强。因此,固定化微生物技术的应用促进了环境保护工程发展。利用固化微生物技术处理污染环境中的废水、废气和废渣,对环境保护做出了突出贡献。 关键词:固定化微生物技术;污水处理;应用 前言:固定化微生物技术是利用微生物的活性特点,对污染物进行降解、分化,在污水处理、空气污染处理、土壤污染处理中有着显著的效果。但在实际应用中固定化微生物技术还存在一些不足之处,想要更广泛地被应用,还需要继续研究与发展。 1固化微生物技术应用现状 固化微生物技术是起始于20世纪60年代,在固化酶的基础上研发出来。我国对固化微生物技术的研发和应用,要比其他国家晚了十年左右。固化微生物技术也就是把细胞或是酶进行固化处理,因为酶在直接使用上有着一些不足之处,例如价格高、稳定性差、不能重复使用,而且比较难提取等,也就造成了酶在应用上的局限性。而固化微生物技术在环境工程中应用更多的是在污水处理上。通过把较为分散的微生物固定在一个载体上,充分发挥微生物的作用,可以进行印染污水处理、重金属污水处理、含氮生活污水处理等。同时对于大气污染物和土壤中的污染物也能很好的降解。 2固化微生物技术特点 由于固化微生物能够提高微生物的浓度,使活性物质的作用得到提升和优化。所以在环境工程中,固化微生物技术对废水处理有着很好的效果。固化微生物技术能够培养优良微生物群,让污染物与微生物有更明显的区别。微生物经过了固化处理,其抗毒能力得到改善,这样可以防止微生物被有毒物侵害。微生物的固化反应不需要特别大的空间,这样就能降低空间占用率。 3固定化微生物技术在废水处理中的应用 近年来,固定化微生物技术因其特有的优势,引起广泛的关注。固定化生物技术开始迅速发展,并已取得了阶段性的成果。此项技术在处理含重金属离子废水、含氮废水、含难降解有机废水的处理等方面都得到了很好的应用。 3.1固定化微生物技术在印染废水中的应用 印染、造纸废水的水量大,污染物质也比较复杂,是比较难处理的工业废水。采用固定化微生物工艺,对混凝沉淀后退浆工序的印染废水进行了现场中试处理研究。实验结果表明,在水力停留时间(HRT)为20h的条件下,对于进水化学需氧量(CODCr)为1.0耀1.2g/L 的退浆废水,经过两级水解酸化、两级好氧处理后,其出水CODCr约100mg/L,达到国家一级排放标准。其中,水解酸化阶段的HRT为10h,CODCr复合1.7kg/(d·m3),去除率为44%;好氧阶段HRT为10h,CODCr复合1.9kg/(d·m3),去除率为83%。 3.2含重金属离子废水的处理 重金属污染对生物的影响越来越严重,由于固定化后的微生物,稳定性能好,抗毒性强,因此被广泛用于去除废水中的重金属离子。李杰[2]等人采用固定化微生物SBR反应器和普通活性污泥SBR反应器处理投加了Cr6+的生活污水,考察了固定化微生物去除COD及 Cr6+的能力及抗毒性。结果表明:在保证对COD的去除率较稳定的条件下,固定化微生物与普通活性污泥所能承受的Cr6+浓度分别为 70mg/L和1.9mg/L。利用聚丙烯酰胺与壳聚糖形成的互融聚合物网络凝胶固定非活性的铜绿假单胞菌,研究了这种固定化微生物颗粒对Cu2+的吸附特性。结果表明,该固定化微生物对Cu2+的吸附很迅速,在40min内吸附基本达到平衡。 3.3含氮废水的处理 微生物去除氮和氨,一般是通过好氧微生物的硝化反应过程。和厌氧微生物的反硝化反应过程。吕志刚[4]等人采用聚乙烯醇(PVA)为载体的包埋固定化微生物处理低浓度氨氮絮凝余水,在HRT为3h之内从地表水环境质量V类水标准以外达到了I类水标准,在较短的水力停留时间成功实现了氨氮的去除。以竹炭为载体,将硝化菌、反硝化菌等微生物固定在竹炭上,研究竹炭固定化微生物对氨氮的去除及影响因素。结果表明:竹炭固定化微生物处理氨氮水样存在竹炭吸附和微生物脱氮两种作用。对于初始氨氮质量浓度臆200mg·L-1的水样,调节水样pH为8,控制水样溶解氧质量浓度为1mg·L-1左右,竹炭固定化微生物系统中可发生同时硝化—反硝化作用,氨氮去除率可达70%以上。 3.4酚类及醇类废水的处理 采用聚乙烯醇(PVA)—硼酸法制作固定化活性污泥小球,从温度、浓度和pH3方面比较了固定化活性污泥和游离活性污泥对氯苯酚降解效果的影响。研究表明:固定化活性污泥降解对氯苯酚的最适宜温度为25益耀35益,最适pH为6耀8;固定化活性污泥对氯苯酚的降解速度大于游离活性污泥。以苯酚模拟废水为研究对象,采用苯酚驯化后的优势菌群,利用竹炭作为载体,用竹炭固定化微生物处理含酚废水。实验表明,在苯酚浓度为40mg/L低浓度废水,在投菌量为100mL/10g竹炭,竹炭量为10g/100mL污水的条件下经5h处理后,苯酚和COD的去除率分别为95%和70%。 4固定化微生物技术的未来发展趋势 固定化微生物技术目前在我国的环境工程的建设中发挥着重要作用,其应用范围广,利用效率高。但仍然存在一些需要改进的问题,如加以完善,则对于我国环境工程的建设起到推波助澜的作用。 4.1固定化的微生物不是可以一直使用的,其都有一定退化的区间 微生物是固定化技术的主体。就目前来说,微生物的价格很贵,加之其有一定的使用寿命,这就导致更换微生物的频率增加,大大的增加了环境工程建设过程中的费用支出。因此,我们对固定化的微生物进行研发时,应该加大对比较稳定的微生物进行研发,降低环境工程建设的成本。 4.2因固定化细胞的稳定性能不高 我们应该加大对细胞稳定性能的分析和研究,提高固定化技术的性能和处理效率。提高固定化细胞的稳定性,有利于抑制污染物细菌

最新生物技术的发展和应用

生物技术地发展和应用 自2001年初,生物技术产业便显现出一片诱人地前景。人类基因组草图地即将完成,带动各生物技术地不断飚升。人们普遍认为这将导致医学与药物研究地繁荣,并会带来滚滚地财富。随着基因组测序地完成,许多科学家和投资者开始把目光投向生物技术向个学科地渗透,如今生物技术已经在芯片、医学等领域都取得丰硕地成果。下面对生物芯片、基因治疗及微生物地研究地基本问题作简单地介绍。 (一)生物芯片 20世纪90年代初开始实施地人类基因组计划取得了人们当初意料不到地巨大进展,而由此也诞生了一项类似于计算机芯片技术地新兴生物高技术———生物芯片。 生物芯片主要是指通过微加工和微电子技术在固体芯片表面构建微型生物化学分析系统,以实现对生命机体地组织、细胞、蛋白质、核酸、糖类以及其他生物组分进行准确、快速、大信息量地检测。目前常见地生物芯片分为三大类:即基因芯片、蛋白芯片、芯片实验室或称微流控芯片等。生物芯片主要特点是高通量、微型化和自动化。生物芯片上高度集成地成千上万密集排列地分子微阵列,能够在很短时间内分析大量地生物分子,使人们能够快速准确地获取样品中地生物信息,检测效率是传统检测手段地成百上千倍。使用基因芯片分析人类基因组,可找出癌症、

糖尿病由遗传基因缺陷引起疾病地致病地遗传基因。生物医学研究人员可以在数秒钟内鉴定出导致癌症地突变基因。借助一小滴测试液,医生们能很快检测病菌对人体地感染。利用基因芯片分析遗传基因,可以使糖尿病地确诊率达到50%以上。生物芯片在疾病检测诊断方面具有独特地优势,它可以在一张芯片上同时对多个病人进行多种疾病地检测。仅用极小量地样品,在极短时间内,向医务人员提供大量地疾病诊断信息,这些信息有助于医生在短时间内找到正确地治疗措施。对肿瘤、糖尿病、传染性疾病、遗传病等常见病和多发病地临床检验及健康人群检查,具有十分重要地应用价值。 (二)基因治疗 众里盼她千百度,如今,基因治疗已近走出实验室,进入实践阶段,如:癌症地基因治疗,肿瘤地基因治疗属于一种生物治疗手段,是一大类治疗策略地总称。根据治疗机理不同,目前至少可以分为以下几方面: (1)免疫基因治疗:指地是通过基因修饰地瘤苗或抗原呈递细胞体内回输,或者免疫基因地直接体内导入,激发或增强人体地抗肿瘤免疫功能,达到治疗肿瘤地目地,它也是一大类治疗地总称。治疗基因包括肿瘤相关抗原基因、细胞因子基因或者MHC基因等。

生物活性炭(PACT)工艺研究

生物活性炭(PACT)工艺研究 1 引言 生物活性炭法(PACT)是指将粉末活性炭投加到好氧系统的回流污泥中,通过含炭污泥中粉末活性炭(PAC)与活性污泥中微生物的相互作用,提升对废水中污染物的去除效果.目前较多应用在印染废水、化工废水、垃圾渗滤液的处理中.研究表明,PACT工艺的促进机理主要在于系统内“吸附-降解-再生-再吸附”的协同作用,涉及到复杂的吸附与生物降解同步作用过程,因此在具体微观机理和动力学模型方面仍有研究空间.此外,对PACT工艺的宏观生物强化效果,也缺乏全方位的表征,使得PACT工艺在实际运行中缺乏相应的针对性. 本文以印染园区实际综合废水为处理对象,主体处理工艺为水解酸化+A2/O工艺,通过平行对比A2/O与A2/O(PACT)中试运行效果,从常规处理指标(尤其是低温运行条件下)入手对比PACT工艺的强化作用,再通过毒性、重金属指标、GC-MS、紫外-可见光光谱等表征手段,重点研究PACT系统的生物强化特性,探讨PACT工艺的主要作用目标和规律.本研究对深入理解PACT工艺作用机理、提高PACT作用效率以及实现园区综合废水的有效处理,具有较大的借鉴意义. 2 材料与方法 2.1 实验水样及材料 实验以苏南某印染废水为主(印染废水占85%,化工废水占10%,生活污水占5%左右)的园区集中污水处理厂水解酸化处理出水为试验对象(进水).由于进水水质不尽相同,因此其具体水质指标见相应实验结果. 粉末活性炭为100目木质炭(溧阳东方活性炭厂),经检测(ASAP2010,Micromeritics,美国),该粉末活性炭的内部性质为:BET 比表面积532.26 m2 · g-1,微孔(<2 nm)体积0.1 cm3 · g-1,中孔(2~50 nm)体积0.449 cm3 · g-1,平均孔径3.8 nm. 2.2 实验装置及运行条件 本研究的实验装置如图 1所示. 图 1 实验装置结构图 中试实验装置含A2/O反应器以及二沉池,其中A2/O反应器有机玻璃材质,有效容积为1.0 m3. 二沉池为竖流式沉淀池,表面负荷0.63 m3 · m-2 · h-1. A2/O反应器实验装置

污水处理微生物与载体自固定化技术

污水处理微生物与载体自固定化技术 一、技术概述 该技术采用先进的微生物与载体自固定化技术,将生物菌群固定在载体中,可对有机物、氮、磷等污染物同步去除。载体微生物负载量最高可达40g/L,容积负荷最高可达16kgBOD5/m3d。CODCr去除率90%,氨氮去除率95%;出水水质达到《污水综合排放标准》(GB8978-1996)一级A标。曝气生物流化池可休眠,启动迅速。日处理5000m3的工程总投资约135万元,吨水运行成本约为0.68元。 二、技术优势 (1)充分利用原水中的碳源进行好氧反应,对于生活污水不需另加碳源。 (2)采用小池结构,布置灵活,可逐级串联,对污水中的污染物进行分级深度处理;采用微生物与载体自固定化技术,提高载体的流化性能,能与污水进行充分接触,提高处理效果,使出水稳定并达到设计要求。 (3)采用自主研发的JHE型生物载体,可提高生物负载量。 (4)全程采用自动化控制技术,提高自控水平,便于管理。 (5)可在进水的情况下进行系统维护及检修。 三、适用范围 分散式生活污水处理、中型污水厂提标改造等。 四、基本原理 曝气生物流化池(简称ABFT)内有上下拦截网将载体限制在载体区,并利用好氧及厌氧微生物的高效固定化技术附着于载体上,进行好氧及厌氧反应,通过硝化及反硝化作用对水中的污染物质进行去除。 五、工艺流程 污水通过人工隔栅将比较大的悬浮物隔离后,由阀门控制直接进入六组并联的ABFT 生化系统,出水端采用穿孔管集中出水,经ABFT生化处理完成后直接进入清水池,用泵提升至蓄水池后作为体育公园所需的回用水,六组ABFT生化系统可根据实际需要来控制单独使用,最大限度的降低运行成本。

微生物固定化技术

固定化微生物技术是将特选的微生物固定在选证的载体上,使其高度密集并保持生物活性,在适宜条件下能够快速、大量增殖的生物技术。这种技术应用于废水处理,有利于提高生物反应器内微生物(尤其是特殊功能的微生物)的浓度,有利于微生物抵抗不利环境的影响,有利于反应后的固液分离,缩短处理所需的时间。 利用固定化微生物技术提高废水处理效率的工艺方法也被称作"生物增效",其适用的领域非常广泛,例如:化粪池、隔油槽、排水管、城市污水处理厂以及工业废水…等。一般而言,针对特殊污染源,来自天然环境的微生物消耗很快、效率低下,即使有快速的繁殖能力仍不足以负荷。因此,生物增效的作业过程还是依循自然的方式,向目标添加定制的、具有已知降解能力的微生物制剂(固定化微生物),处理效果则有明显的提升。 现在所研究的生物吸附剂的固定化方法主要有以下几种: 1吸附法 吸附法一般依靠生物体与载体之间的作用,包括范德华力、氢键、静电作用、共价键及离子键,两者间的屯电位,在微生物体和载体的相互作用中起重要作用。常用的吸附载体有活性炭、木屑、多孔玻璃、多孔陶瓷、磁铁矿、硅藻土、硅胶、纤维素、聚氨醋泡沫体、离子交换树脂等。它是一种简单易行、条件温和的固定化方法,但用它固定的生物体不够牢靠,容易脱落。 2交联法 交联法又称无载固定化法,是一种不用载体的工艺,通过化学、物理手段使生物体细胞间彼此附着交联。化学交联法它一般是利用醛类、胺类等具有双功能或多功能基团的交联剂与生物体之间形成共价键相互联结形成不溶性的大分子而加以固定,所使用的交联剂主要有戊二醛、聚乙烯酞胺、表氯醇等等。物理交联法在是指在微生物培养过程中,适当改变细胞悬浮液的培养条件(如离子强度、温度、pH值等),使微生物细胞之间发生直接作用而颗粒化或絮凝来实现固定化,即利用微生物自身的自絮凝能力形成颗粒的一种固定化技术。 3包埋法 在微生物的固定化方法中,以包埋法最为常用。它的原理是将生物体细胞截留在水不溶性的凝胶聚合物孔隙的网络中,通过聚合作用或通过离子网络形成,或通过沉淀作用,或通过改变溶剂、温度、pH值使细胞截留。凝胶聚合物的网络可以阻止细胞的泄露,同时能让基质渗入和产物扩散出来。 包埋材料可以分为两大类:

生物的活性炭滤池地实用实用工艺全参数试验地地研究

生物活性炭滤池的工艺参数试验研究 前言 随着水源污染的日益严重,为了克服常规处理工艺的不足,满足不断提高的饮用水水质标准,对常规 处理工艺岀水再进行深度净化将成为自来水厂的选择之一。生物活性炭技术能有效去除水中有机物(尤其是 可生物降解部分)和嗅味等,从而提高饮用水化学和微生物安全性,目前它已作为自来水深度净化的一个重要途径而被水工业界重视[1,2]。该技术要点是:以粒状活性炭为载体富集水中的微生物而形成生物膜,通过生物膜的生物降解和活性炭的吸附去除水中污染物,同时生物膜能通过降解活性炭吸附的部分污染物而再生活性炭,从而大大延长活性炭的使用周期。生物活性炭滤池的工艺参数直接影响其处理效果和成本,并且合适的参数值还和滤池边水水质有一定关联,在大规模应用前进行针对性的研究很有必要。 1 .试验研究方法 1.1试验工艺流程及装置 本次试验为中试规模,试验工艺流程为预臭氧化十混凝、沉淀、过滤+臭氧--生物活性炭,试验装置(图1)设于深圳大涌水厂内,包括常规处理、臭氧化和活性炭滤池处理系统。 £左观if冶蛊 甦葩豹虫鱼毬赵迪_跑虬坯鱸熔,廖斛 图1臭氧一一生物活性炭棵度处理试验裝置示意图 活性炭滤池横截断面尺寸为500 x500mm,高度为4.92m,内部均分两格,采用小阻力配水系统。装填ZJ-15型柱状活性炭(山西新华化工厂产品),该炭碘值和亚甲兰吸附值分别为961和187mg/g ,堆 积密度460g/L。活性炭在使用之前,先用未加氯的砂滤岀水浸泡1周,再用未加氯的砂滤岀水反洗清洁, 然后装池。生物活性炭滤池采用下向流型式,进水溶解氧含量一般在7.50mg/L左右,能充分保证生物降 解对溶解氧的需求。滤池采用两段式气水反冲洗,即首先以空气擦洗、再以未加氯的砂滤岀水反冲,反冲洗周期为7天。 臭氧采用Ozonia公司的CFS-1A型臭氧发生器现场制备,以空气为气源、以自来水为冷却介质。预臭氧化的臭氧接触时间和投加量分别为 4.5min和1.5mg/L左右,水在塔内流速40m/h左右。主臭氧化

相关文档
相关文档 最新文档