文档库 最新最全的文档下载
当前位置:文档库 › 窗函数数字信号课设

窗函数数字信号课设

窗函数数字信号课设
窗函数数字信号课设

河北科技大学

课程设计报告

学生姓名:学号:

专业班级:电子信息工程

课程名称:数字信号处理课程设计

学年学期 2013——2014 学年第二学期指导教师:张秀清

2014年 6月

课程设计成绩评定表

目录

1. 窗函数设计低通滤波器

1.1设计目的 (1)

1.2设计原理推导与计算 (1)

1.3设计内容与要求 (2)

1.4设计源程序与运行结果 (3)

1.5思考题 (10)

2. 用哈明窗设计FIR带通数字滤波器

2.1设计要求……………………………………………………………………

14

2.2设计原理和分析……………………………………………………………

14

2.3详细设计……………………………………………………………………

15

2.4调试分析及运行结果 (15)

2.5心得体会 (17)

参考文献 (17)

1.窗函数设计低通滤波器

1.1设计目的

1. 熟悉设计线性相位数字滤波器的一般步骤。

2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。

3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。

4. 学会根据指标要求选择合适的窗函数。

1.2设计原理推导与计算

如果所希望的滤波器的理想的频率响应函数为()ωj d e H ,则其对应的单位脉冲响应为

()()

ωπ

ωωπ

π

d e e H n h j j d d ?-

=

21

(4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即

()?????≤<≤=-π

ωωωωωα

ω

c c j j

d ,,e

e H 0,其中21-=N α

()()

()[]()

a n a n d e e d e e

H n h c j j j j d d c

c

--=

=

=

??-

--

πωωπ

ωπ

ωαωω

ωαω

π

π

ω

sin 21

21

用有限长单位脉冲响应序列()n h 逼近()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2)

()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函

数()ωj e H 为

()()n

j N n j e

n h e

H ωω

∑-==1

(4.3)

式中,N 为所选窗函数()n ω的长度。

用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取

值。设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见表(一)。

表(一) 各种窗函数的基本参数

这样选定窗函数类型和长度N 之后,求出单位脉冲响应()()()n n h n h d ω?=,并按照式(4.3)求出()ωj e H 。()ωj e H 是否满足要求,如果()ωj e H 不满足要求,则要重新选择窗函数类型和长度N ,再次验算,直至满足要求。

1.3设计内容与要求

(一)设计要求:

1. 学会计算滤波器各项性能指标及如何来满足给定的指标要求。

2. 用MATLAB 语言编程实现给定指标要求的滤波器的设计。

3. 熟悉MATLAB 语言,独立编写程序。

4. 设计低通FIR 滤波器的指标:

通带最大波动

0.25,

p R dB =,0.2p ωπ

=

阻带最小衰减 50,

s A dB =,

0.3s ωπ=

(二)、设计内容:

1.熟悉各种窗函数,在MATLAB 命令窗下浏览各种窗函数,绘出(或打印)所看到的窗函数图。

2.编写计算理想低通滤波器单位抽样响应hd(n)的m 函数文件ideal.m 。

3. 编写计算N 阶差分方程所描述系统频响函数()j H e ω的m 函数文件fr.m 。

4.根据指标要求选择窗函数的形状与长度N 。(至少选择两种符合要求的窗函数及其对应的长度)。

5.编写.m 程序文件,通过调用ideal.m 和fr .m 文件,计算你设计的实际低通FIR 滤波器的单位抽样响应h(n)和频率响应()j H e ω,打印在频率区间[O ,π]上的幅频响应特性曲线()~j H e ωω,幅度用分贝表示。

6.验证所设计的滤波器是否满足指标要求。

1.4设计的源程序及运行结果:

1、利用MATLAB 窗口观察各种窗函数: %巴特利特窗 w=bartlett(20); subplot(3,2,1); plot(w);

stem(w,'y');%'y'表示黄色 %stem 表示以离散图输出 title('巴特利特床窗'); xlabel('n');%横坐标为n ylabel('w(n)');%纵坐标为w(n)

%布莱克曼窗 w=blackman(20);

subplot(3,2,2); plot(w);

stem(w,'b');%'b'表示蓝色 title('布莱克曼窗'); xlabel('n'); ylabel('w(n)'); %矩形窗 w=boxcar(20); subplot(3,2,3); plot(w); stem(w,'r'); title('矩形窗');

xlabel('n');

ylabel('w(n)');

%海明窗

w=hamming(20);

plot(w);

stem(w,'m');%'m'表示紫色title('海明窗');

xlabel('n');

ylabel('w(n)');

%汉宁窗

w=hanning(20);

subplot(3,2,5);

plot(w);

stem(w,'g');%'g'表示绿色

title('汉宁窗');

xlabel('n');

ylabel('w(n)');

%凯泽窗

beta=5.6533;

w=kaiser(20,beta);

subplot(3,2,6);

plot(w);

stem(w,'k');%'k'表示黑色

title('凯泽

窗,beta=5.6533');

xlabel('n');

ylabel('w(n)');

常用窗函数的图形

2、理想低通滤波器单位抽样响应hd(n)的m函数文件ideal.m。

function hd=ideal(wc,M)

%理想低通滤波器计算

%hd为0到M-1之间的理想脉冲响应

%wc为截止频率

%M为理想滤波器的长度

alpha=(M-1)/2;

n=0:M-1;

m=n-alpha+eps;

hd=sin(wc*m)./(pi*m);

3、N阶差分方程所描述的系统频响函数的m函数文件fr.m。function[db,mag,pha,gfd,w]=fr(b,a)

%求解系统响应

%db为相位振幅(db)

%mag为绝对振幅

%pha为相位响应

%grd为群延时

%w为频率样本点矢量

%b为Ha(z)分析多项式系数(对FIR而言,b=h)

%a为Hz(z)分母多项式系数(对FIR而言,a=1)

[H,w]=freqz(b,a,1000,'whole');

H=(H(1:501))';

w=(w(1:501))';

mag=abs(H);

db=20*log10((mag+eps)/max(mag));

pha=angle(H);

gfd=grpdelay(b,a,w);

4、实际低通滤波器FIR:

%用海明窗设计低通滤波器

wp=0.2*pi;

ws=0.3*pi;

tr_width=ws-wp;

disp(['海明窗设计低通滤波器参数:']);

M=ceil(6.6*pi/tr_width)+1;

disp(['滤波器的长度为',num2str(M)]);

n=0:M-1;

wc=(ws+wp)/2; %理想LPF的截止频率

hd=ideal(wc,M);

w_ham=(hamming(M))';

h=hd.*w_ham;

[db,mag,pha,gfd,w]=fr(h,[1]);

delta_w=2*pi/1000;

Rp=-(min(db(1:1:wp/delta_w+1))); %求出实际通带波动

disp(['实际带通波动为',num2str(Rp)]);

As=-round(max(db(ws/delta_w+1:1:501))); %求出最小阻带衰减disp(['最小阻带衰减为-',num2str(As)],’db’);

%绘图

subplot(1,1,1)

subplot(2,6,1)

stem(n,hd);

title('理想冲击响应');

axis([0 M-1 -0.1 0.3]);

ylabel('hd(n)');

subplot(2,6,2)

stem(n,w_ham);

title('海明窗');

axis([0 M-1 0 1.1]);

ylabel('w(n)');

subplot(2,6,7)

stem(n,h);

title('实际冲激响应');

axis([0 M-1 -0.1 0.3]);

xlabel('n');

ylabel('h(n)');

subplot(2,6,8)

plot(w/pi,db);

title('幅度响应(db)');

axis([0 1 -100 10]);

grid;

xlabel('以pi为单位的频率');

ylabel('分贝数');

图(1)海明窗设计的FIR 海明窗设计低通滤波器参数:

滤波器的长度为67

实际带通波动为0.03936

最小阻带衰减为-52db

%用布莱克曼窗设计低通滤波器

wp=0.2*pi;

ws=0.3*pi;

tr_width=ws-wp;

disp(['布莱克曼窗设计低通滤波器的参数:']);

M=ceil(11.0*pi/tr_width)+1;

disp(['滤波器的长度为',num2str(M)]);

n=0:M-1;

%理想LPF的截止频率

wc=(ws+wp)/2;

hd=ideal(wc,M);

w_bla=(blackman(M))';

h=hd.*w_bla;

[db,mag,pha,gfd,w]=fr(h,[1]);

delta_w=2*pi/1000;

Rp=-(min(db(1:1:wp/delta_w+1))); %求出实际通带波动

disp(['实际带通波动为',num2str(Rp)]);

As=-round(max(db(ws/delta_w+1:1:501))); %求出最小阻带衰减disp(['最小阻带衰减-',num2str(As)],’db’);

%绘图

subplot(2,6,3)

stem(n,hd);

title('理想冲击响应');

axis([0 M-1 -0.1 0.3]);

ylabel('hd(n)');

subplot(2,6,4)

stem(n,w_bla);

title('布莱克曼窗');

axis([0 M-1 0 1.1]);

ylabel('w(n)');

subplot(2,6,9)

stem(n,h);

title('实际冲激响应');

axis([0 M-1 -0.1 0.3]);

xlabel('n');

ylabel('h(n)');

subplot(2,6,10)

plot(w/pi,db);

title('幅度响应(db)');

axis([0 1 -100 10]);

grid;

xlabel('以pi为单位的频率');

ylabel('分贝数');

图(2)布莱克曼窗设计的FIR 布莱克曼窗设计低通滤波器的参数:

滤波器的长度为111 实际带通波动为0.0033304 最小阻带衰减为-73db 5、技术指标比较:

(1)海明窗设计低通滤波器参数: 滤波器的长度为67 实际带通波动为0.03936 最小阻带衰减为-52db

(2)布莱克曼窗设计低通滤波器的参数: 滤波器的长度为111 实际带通波动为0.0033304 最小阻带衰减为-73db

在相同的技术指标下用布莱克曼窗设计的低通滤波器实际带通波动实际带通波动最小,最小阻带衰减,滤波器的长度最大;海明窗和凯泽窗最小阻带衰减差不多,滤波器的长度页差不多,但是海明窗实际波动小于凯泽窗;所以用布莱克曼窗用设计的FIR 最逼近理想单位冲击响应。这三个窗设计的低通滤波器都符合要求。

1.5思考题:

1. 设计线性相位数字滤波器的一般步骤:

(1)、给定所要求的频率响应函数Hd(jw e )以及技术指标阻带衰减ωδ?和; (2)、求hd=IDTFT[Hd(jw e )];

由过渡带带宽及带阻最小衰减的要求,利用六种常见的窗函数基本参数的比较表或凯泽窗设计FIR 滤波器的经验公式,选择窗函数的形状及N 的大小(一般N 要通过几次试探而最后确定);

(3)求得所设计的FIR 滤波器的单位抽样响应:

h(n)=hd(n)w(n),N=0,1,2,3…,N-1

(4)、求Hd(jw e )=DIFT[h(n)],校验是否满足设计要求,如果不满足,则重新设计。

2.窗函数有哪些指标要求?对给定指标要求的低通滤波器,理论计算所需窗函数的长度N。

答:窗函数的指标要求:主瓣宽度,旁瓣峰值。海明窗设计低通滤波器的长度为67,凯泽窗设计低通滤波器的长度为60,布莱克曼窗设计低通滤波器的长度为111。

3.用窗函数法设计FIR滤波器,滤波器的过渡带宽度和阻带衰减与哪些因素有关?

答:过渡带宽度与窗函数的形状和窗的宽度有关;阻带衰减只有窗函数的形状决定,不受N的影响。

4、计算理想带通滤波器单位抽样响应hd(n)时取N为奇数和N为偶数有没有区别?你计算时所用的方法是仅适合于N为奇数或偶数的一种还是两种都可以用?

答:以海明窗为例说明:

滤波器的长度为 67

实际带通波动为 0.03936

最小阻带衰减为 52

滤波器的长度为 68

实际带通波动为 0.036424

最小阻带衰减为 53

滤波器的长度为 64

实际带通波动为 0.068677

最小阻带衰减为 45

N取奇偶数时,低通滤波器的幅度函数是不同的,如上图所示(海明窗设计低通滤波器N取奇偶数时的图),通过比较,当滤波器的长度大于技术指标要求的长度时,选择偶数也是满足要求的,所以海明窗奇偶都满足。同理,N取奇偶数,选择其他的窗函数也满足设计低通滤波器的指标要求。

比较所选窗长N相同但窗形状不同对滤波器设计结果的影响以及选同一种窗函数但窗长N不同时对滤波器设计结果的影响,将结论写在报告中。

结论:

1、当以海明窗设计的低通滤波器的长度N,用布莱克曼窗和凯泽窗设计低通滤波器,即N=67时,三个窗函数设计的低通滤波器中布莱克曼窗设计的不满足要求,凯泽窗设计的带通波动大于海明窗设计的低通滤波器带通波动,最小阻带衰减小于海明窗设计的低通滤波器。凯泽窗设计的结果没有用海明窗设计结果好。

当N取67 、60、111时,用海明窗设计的低通滤波器的性能不同,通过上表比较,N也越大性能越好,满足要求,当N<67时不满足设计技术指标。

2、以凯泽窗设计的低通滤波器的长度N,用布莱克曼窗和海明窗窗设计低通滤波器,即N=60时,海明窗设计的低通滤波器的最小阻带衰减不满足指标要求,布莱克曼窗设计的低通滤波器的最小阻带衰减和带通波动都不满足要。

当N取67 、60、111时,用布莱克曼窗设计的低通滤波器的性能不同,通过上表比较,N也越大性能越好,满足要求,当N<111时不满足设计技术指标。

3、以布莱克曼窗设计的低通滤波器的长度N,用凯泽窗和海明窗窗设计低通滤波器,即N=111时,三个都满足要求。但是用布莱克曼窗函数设计的低通滤波器的性能更好。

当N取67 、60、111时,用凯泽窗设计的低通滤波器的性能不同,通过上表比较,N也越大性能越好,满足要求,当N>60时都满足设计技术指标。

2、用哈明窗设计FIR带通数字滤波器

2.1设计要求

x t,设计滤波系统,滤除针对一个含有5Hz、15Hz和30Hz的混合正弦波信号()

5Hz和30Hz的正弦分量,阻带的最小衰减不小于50dB。

x t进行采样;

①确定采样频率s f、采样长度N,对()

②选择合适的窗函数,设计FIR带通数字滤波器;

③通过计算机仿真对滤波器的性能进行分析。

2.2设计原理分析和设计

此题要求也是滤波,但是要求滤掉5Hz和30Hz的信号,而保留15Hz的信号,因此必须采用带通滤波器。要求阻带的最小衰减不低于50dB,查表可知可选哈明窗。

分析题目可知:

f1=5Hz,T1=1/5s;

f2=15Hz,T2=1/15s;

f3=30Hz,T3=1/30s;

则采样时长tT至少应为0.2s,取tT=1s;

采样频率fs≥2fc;可取fs=150;则采样间隔T=1/fs;

所以采样长度N=tT/T=150;

数字技术指标可取

wp1=2*pi*14/fs;

wp2=2*pi*23/fs;

ws1=2*pi*7/fs;

ws2=2*pi*27/fs;

滤波器设计好后,利用卷积和可得输出信号y(n)=x(n)*h(n),卷积和长度N=N1+N2-1;

2.3详细设计

源程序代码:

tT=1; %采样时长

fs=150; %采样频率

wp1=2*pi*14/fs;

wp2=2*pi*20/fs;

ws1=2*pi*7/fs;

ws2=2*pi*27/fs;

trwidth=wp1-ws1; %过渡带带宽

N1=ceil(8*pi/trwidth) %计算滤波器阶次

n=0:N1-1;

wc1=(ws1+wp1)/2; wc2=(ws2+wp2)/2; %计算3dB截止频率

alpha=(N1-1)/2; %单位响应的对称中心

m=n-alpha;

hd=sin(wc2*m)./(pi*m)-sin(wc1*m)./(pi*m); %理想带通滤波器的单位响应wham=(hamming(N1))';

h=hd.*wham; %实际带通滤波器单位响应

w=0:0.01:pi;

H=freqz(h,1,w); %单位滤波器幅频响应

T=1/fs; %对输入信号进行采样

N2=fs*tT;

t=(0:N2-1)*T;

x=sin(2*pi*5*t)+sin(2*pi*15*t)+sin(2*pi*30*t);

subplot(411) %绘制数字滤波器幅频响应

plot(w/pi,abs(H));

grid on;title('数字滤波器幅频响应');

subplot(412) %绘制数字滤波器单位响应

stem(n,h,'.');

grid on;title('数字滤波器单位响应')

subplot(413) %绘制输入信号

plot(t,x);

axis([0 0.4 -4 4])

grid on;title('输入信号')

subplot(414) %绘制输出信号

y=conv(x,h); %用卷积求输出信号

N=N1+N2-1; %计算卷积和长度

tt=(0:N-1)*T;

plot(tt,y);

axis([0 0.8 -1 1])

grid on;title('输出信号')

2.4调试分析及运行结果

代码完成后,滤波器幅频响应、单位响应和输入信号能够正常输出,但是绘制输出信号时用的是plot(y),并未指明自变量,结果绘制的图(如下)是以n 为自变量,看起来非常不明了也不清楚。

0102030405060708090100

-1

-0.500.51输出信号

后将绘图语句直接改为plot(t,y),结果出现错误

提示t 和y 矩阵长度不匹配,翻阅《信号与系统》上册课本重新复习了离散卷积和部分,得知两信号卷积后长度变化规律,于是将绘制输出信号部分代码改为: y=conv(x,h); N=N1+N2-1; tt=(0:N-1)*T; plot(tt,y);

然后得到以时间为横坐标的输出信号。 运行结果如下:

《数字信号处理》实验报告

数字信号处理》 实验报告 年级:2011 级班级:信通 4 班姓名:朱明贵学号: 111100443 老师:李娟 福州大学 2013 年11 月

实验一快速傅里叶变换(FFT)及其应用 一、实验目的 1. 在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB^的有关函数。 2. 熟悉应用FFT对典型信号进行频谱分析的方法。 3. 了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。 4. 熟悉应用FFT实现两个序列的线性卷积和相关的方法。 二、实验类型 演示型 三、实验仪器 装有MATLA爵言的计算机 四、实验原理 在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以 使用离散Fouier变换(DFT)。这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为: JV-1 $生 反变换为: 如-器冃吋 科— 有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等 距采样,因此可以用于序列的谱分析。 FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。它 是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。常用的FFT 是以2为基数的,其长度A - o它的效率高,程序简单,使用非常方便,当要变换的 序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。 (一)在运用DFT进行频谱分析的过程中可能的产生三种误差 1 .混叠 序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会 发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。避免混叠现象的 唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须

数字信号处理课设题目详细分解步骤

数字信号处理课程详细步骤分解 语音(音乐)信号滤波去噪的选题 课题具体内容 1.1、语音(音乐)信号的采集 要求学生利用Windows下的录音机,录制语音信号“大家好,我是***”,时间在2-3 s左右。或者网上下载一段格式为.wav的音乐。然后在Matlab软件平台下,利用函数wavread 对语音信号进行采样,记住采样频率和采样点数。通过wavread函数的使用,学生很快理解了采样频率、采样位数等概念。采集完成后在信号中加入一个单频噪声,设计的任务即为从含噪信号中滤除单频噪声,还原原始信号。 参考调用格式: [x,fs,bits]=wavread('e:\yuyin.wav'); % 输入参数为文件的全路径和文件名,输出的第一个参数是每个样本的值,fs是生成该波形文件时的采样率,bits是波形文件每样本的编码位数。 sound(x,fs,bits); % 按指定的采样率和每样本编码位数回放 N=length(x); % 计算信号x的长度 fn=2100; % 单频噪声频率,此参数可改 t=0:1/fs:(N-1)/fs; % 计算时间范围,样本数除以采样频率 x=x'; y=x+0.1*sin(fn*2*pi*t); sound(y,fs,bits); % 应该可以明显听出有尖锐的单频啸叫声 1.2、语音信号的频谱分析 要求学生首先画出语音信号的时域波形;然后对语音号进行快速傅里叶变换,得到信号的频谱特性,从而加深学生对频谱特性的理解。 参考调用格式: X=abs(fft(x)); Y=abs(fft(y)); % 对原始信号和加噪信号进行fft变换,取幅度谱 X=X(1:N/2); Y=Y(1:N/2); % 截取前半部分 deltaf=fs/2/N; % 计算频谱的谱线间隔 f=0:deltaf:fs/2-deltaf; % 计算频谱频率范围 用绘图命令分别画出加噪前后信号的时域和频域波形,注意:布局为2*2的子图,每个子图都分别加上横纵坐标,网格和标题。

模拟电子电路课程设计正弦波三角波方波函数发生器样本

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题目: 正弦波-三角波-方波函数发生器 初始条件: 具备模拟电子电路的理论知识; 具备模拟电路基本电路的设计能力; 具备模拟电路的基本调试手段; 自选相关电子器件; 能够使用实验室仪器调试。 要求完成的主要任务: ( 包括课程设计工作量及其技术要求, 以及说明书撰写等具体要求) 1、频率范围三段: 10~100Hz, 100 Hz~1KHz, 1 KHz~10 KHz; 2、正弦波Uopp≈3V, 三角波Uopp≈5V, 方波Uopp≈14V; 3、幅度连续可调, 线性失真小; 4、安装调试并完成符合学校要求的设计说明书 时间安排: 一周, 其中3天硬件设计, 2天硬件调试 指导教师签名: 年月日 系主任( 或责任教师) 签名: 年月日

目录 1.综述...........................................................1 1.1信号发生器概论...................................................1 1.2 Multisim简介....................................................2 1.3集成运放lm324简介...............................................3 2.方案设计与论证...............................................4 2.1方案一...................................................4 2.2方案二..................................................4 2.3方案三..................................................5 3.单元电路设计..............................................6

数字信号课设

洛阳理工学院 课程设计报告 课程名称数字信号处理课程设计 设计题目空气柱主频率模型测定 专业通信工程 班级B110508 学号B11050805 姓名朱照霞 完成日期2014.6.20

课程设计任务书 设计题目:空气柱主频率模型测定 _________________________________________________________ 设计内容与要求: 题目3:空气柱主频率测定 当我们向暖水瓶倒水时,暖水瓶中的空气柱会发生振动。随着水位的升高,空气柱越来越短,空气柱振动的频率越来越大,音调就越来越高,所以根据声音音调的高低就能知道水是否灌满。甚至我们可以量化这个过程,根据倒水声音音调的高低来反算水位的高低。 笔者对倒水的过程进行了采集试验,选用标准暖水瓶一个,用近似匀速的水流在43秒时间内将水瓶贮满,声音文件的STFT频谱图如下图所示:

题目的基本要求如下: (1)建立水位高度H和振动频率f的数学模型; (2)自行设计一个倒水的过程,采集倒水过程的音频信号; (3)用试验五的STFT程序对倒水声音进行分析; (4)分离信号基本频率和水位高度的函数曲线; (5)用函数曲线来验证数学模型的正确性。 指导教师: 年月日 课程设计评语 成绩: 指导教师: 年月日

摘要 《数字信号处理》课程是通信专业的一门重要专业基础课,是信息的数字化处理、存储和应用的基础。数字信号处理的主要研究对象是数字信号,且是采用运算的方法达到处理的目的的,因此,其实现方法,基本上分成两种实现方法,即软件和硬件实现方法。软件实现方法指的是按照原理和算法,自己编写程序或者采用现成的程序在通用计算机上实现,硬件实现指的是按照具体的要求和算法,设计硬件结构图,用乘法器加法器延时器、控制器、存储器以及输入输出接口部件实现的一种方法。 Matlab语言是一种广泛应用于工程计算及数值分析领域的新型高级语言,Matlab功能强大、简单易学、编程效率高,深受广大科技工作者的喜爱。特别是Matlab还具有信号分析工具箱,不需具备很强的编程能力,就可以很方便地进行语音信号分析、处理和设计。语音信号的处理与滤波是数字信号处理课程中常出现的课题,也是现代科学中值得深入究研的一个课题。 语音信号的处理与滤波的设计主要是用Matlab作为工具平台,设计中涉及到声音的录制、播放、存储和读取,语音信号的抽样、频谱分析,滤波器的设计及语音信号的滤波,通过数字信号处理课程的理论知识的综合运用。从实践上初步实现对数字信号的处理。数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。 关键词:滤波器;采样率;频谱分析;数学建模

数字信号处理实验报告(实验1_4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验容 1、帮助命令 使用 help 命令,查找 sqrt (开方)函数的使用方法; 2、MATLAB 命令窗口 (1)在MATLAB 命令窗口直接输入命令行计算3 1)5.0sin(21+=πy 的值; (2)求多项式 p(x) = x3 + 2x+ 4的根; 3、矩阵运算 (1)矩阵的乘法 已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B

(2)矩阵的行列式 已知A=[1 2 3;4 5 6;7 8 9],求A (3)矩阵的转置及共轭转置 已知A=[1 2 3;4 5 6;7 8 9],求A' 已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B' (4)特征值、特征向量、特征多项式 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;

(5)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素; 4、Matlab 基本编程方法 (1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;

(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。

5、MATLAB基本绘图命令 (1)绘制余弦曲线 y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π] (3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求: (a)线形为点划线、颜色为红色、数据点标记为加号; (b)坐标轴控制:显示围、刻度线、比例、网络线 (c)标注控制:坐标轴名称、标题、相应文本; >> clear;

数字信号处理课设共18页文档

数字信号处理课程设计 姓名:刘倩 学号:201014407 专业:信息与计算科学 实验一:常见离散信号产生和实现 一、实验目的: 1、加深对常用离散信号的理解; 2、掌握matlab 中一些基本函数的建立方法。 二、实验原理: 1.单位抽样序列 在MATLAB 中可以利用zeros()函数实现。 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: 2.单位阶越序列 在MATLAB 中可以利用ones()函数实现。 3.正弦序列 在MATLAB 中 4.复指数序列 在MATLAB 中 5.指数序列 在MATLAB 中

实验内容:由周期为10的正弦函数生成周期为20的余弦函数。 实验代码: n=0:30; y=sin(0.2*pi*n+pi/2); y1=sin(0.1*pi*n+pi/2); subplot(121) stem(n,y); xlabel ('时间序列n');ylabel('振幅');title('正弦函数序列y=sin(0.2*pi*n+pi/2)'); subplot(122) stem(n,y1); xlabel ('时间序列n');ylabel('振幅'); title('正弦函数序列y=sin(0.2*pi*n+pi/2)'); 实验结果: 实验二:离散系统的时域分析 实验目的:加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。实验原理:离散系统 其输入、输出关系可用以下差分方程描述: 输入信号分解为冲激信号, 记系统单位冲激响应 则系统响应为如下的卷积计算式:

当N k d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=filter(p,d,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积,用y=impz(p,d,N)求系统的冲激响应。 实验内容:用MATLAB 计算全解 当n>=0时,求用系数差分方程y[n]+y[n-1]-6y[n-2]=x[n]描述的一个离散时间系统对阶跃输入x[n]=8μ[n]的全解。 实验代码: n=0:7; >> [y,sf]=filter(1,[1 1 -6],8*ones(1,8),[-7 6]); >> y1(n+1)=-1.8*(-3).^n+4.8*(2).^n-2; >> subplot(121) >> stem(n,y); >> title('由fliter 函数计算结果'); >> subplot(122) >> stem(n,y1); >> title('准确结果'); 实验结果: 结果分析:有图可得由fliter 函数得出的结果与计算出的准确结果完全一致。 实验三FFT 算法的应用

EDA课程设计——函数信号发生器

EDA课程设计——函数信号发生器 实验报告 学院(系) 专业、班级 学生姓名 学号 小组其他队员: 指导教师

(1)实验要求 (2)总体设计思路 (3)程序仿真 (4)实验结果 (5)心得体会 一.实验要求 (1)利用VHDL语言设计一个多功能信号发生器,可以产生正弦波,三角波,锯齿波和方波的数字信号。

(2)焊接一个D/A转换器,对输出的数字信号转换成模拟信号并在示波器上产生波形。 (3)在电路板上可以对波形进行选择输出。 (4)在电路板上可以对波形的频率与幅度进行调节。 二.总体设计思路 信号发生器主要由分频,波形数据的产生,四选一多路选择,调幅和D/A转换五个部分组成。 总体框架图如下: (1)分频 分频器是数字电路中最常用的电路之一,在FPGA的设计中也是使用效率非常高的基本设计。实现的分频电路一般有两种方法:一是使用FPGA芯片内部提供的锁相环电路,如ALTERA提供的PLL(Phase Locked Loop),Xilinx提供的DLL(Delay Locked Loop);二是使用硬件描述语言,如

VHDL、Verilog HDL等。本次我们使用VHDL进行分频器设计,将奇数分频,和偶数分频结合起来,可以实现50%占空比任意正整数的分频。 分频器原理图: 在我们本次试验中的实现即为当按下按键时,频率自动减半。如当输入为100MHZ,输出为50MHZ。 (2)信号的产生。 根据查找资料,我们最终确定了在QUARTUS中波形数据产生的方法,即利用地址信号发生器和LPM_ROM模块。ROM 的地址信号发生器,有七位计数器担任。LPM_ROM底层是FPGA 中的M4K等模块。然后在VHDL顶层程序设计中将两部分调用从而实现信号的发生。ROM中存放不同的初始化MIF文件(存放不同波形的数据)从而产生不同的波形。 信号产生模块:

数字信号处理实验报告92885

目录 实验1 离散时间信号的频域分析-----------------------2 实验2 FFT算法与应用-------------------------------7 实验3 IIR数字滤波器的设计------------------------12 实验4 FIR数字滤波器的设计------------------------17

实验1 离散时间信号的频域分析 一.实验目的 信号的频域分析是信号处理中一种有效的工具。在离散信号的时域分析中,通常将信号表示成单位采样序列δ(n )的线性组合,而在频域中,将信号表示成复变量e n j ω-或 e n N j π2-的线性组合。通过这样的表示,可以将时域的离散序 列映射到频域以便于进一步的处理。 在本实验中,将学习利用MATLAB 计算离散时间信号的DTFT 和DFT,并加深对其相互关系的理解。 二、实验原理 (1)DTFT 和DFT 的定义及其相互关系。序列x(n)DTFT 定义为()jw X e = ()n x n e ∞ =∞ ∑ω jn -它是关于自变量ω的复函数,且是以2π为周期的连续函数。 ()jw X e 可以表示为()()()jw jw jw re im X e X e jX e =+,其中,()jw re X e 和()jw im X e 分别是 ()jw X e 实部和虚部;还可以表示为 ()jw X e =()|()|jw j w X e e θ,其中, |()|jw X e 和{} ()arg ()j w X e ωθ=分别是()jw X e 的幅度函数和相位函数;它们都是ω的实函数,也是以2π为周期的周期函数。 序列()x n 的N 点DFT 定义为2211 ()()()()N N j k j kn kn N N N N n X k X e x n e x n W π π ---==== ∑∑,()X k 是周期为N 的序列。()j X e ω与()X k 的关系:()X k 是对()j X e ω)在一个周期 中的谱的等间隔N 点采样,即 2k |()()|jw w N X k X e π = = ,而()j X e ω 可以通过对()X k 内插获得,即

数字信号处理课设+语音信号的数字滤波

语音信号的数字滤波 ——利用双线性变换法实现IIR数字滤波器的设计一.课程设计的目的 通过对常用数字滤波器的设计和实现,掌握数字信号处理的工作原理及设计方法;熟悉用双线性变换法设计 IIR 数字滤波器的原理与方法,掌握利用数字滤波器对信号进行滤波的方法,掌握数字滤波器的计算机仿真方法,并能够对设计结果加以分析。 二.设计方案论证 1.IIR数字滤波器设计方法 IIR数字滤波器是一种离散时间系统,其系统函数为 假设M≤N,当M>N时,系统函数可以看作一个IIR的子系统和一个(M-N)的FIR子系统的级联。IIR数字滤波器的设计实际上是求解滤波器的系数和,它 是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。如果在S平面上去逼近,就得到模拟滤波器;如果在z平面上去逼近,就得到数字滤波器。 2.用双线性变换法设计IIR数字滤波器 脉冲响应不变法的主要缺点是产生频率响应的混叠失真。这是因为从S平面到Z平面是多值的映射关系所造成的。为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-π/T~π/T之间,再用z=e sT转换 平面的-π/T~π到Z平面上。也就是说,第一步先将整个S平面压缩映射到S 1 /T一条横带里;第二步再通过标准变换关系z=e s1T将此横带变换到整个Z平面上去。这样就使S平面与Z平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,映射关系如图1所示。 图1双线性变换的映射关系 为了将S平面的整个虚轴jΩ压缩到S1平面jΩ1轴上的-π/T到π/T段上,可以通过以下的正切变换实现

数字信号处理实验报告 (实验四)

实验四 离散时间信号的DTFT 一、实验目的 1. 运用MA TLAB 计算离散时间系统的频率响应。 2. 运用MA TLAB 验证离散时间傅立叶变换的性质。 二、实验原理 (一)、计算离散时间系统的DTFT 已知一个离散时间系统∑∑==-= -N k k N k k k n x b k n y a 00)()(,可以用MA TLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。由于)(ωj e H 是ω的连续函数,需要 尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。在MA TLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除 得到L l e H l j ,,2,1),( =ω。为了更加方便快速地运算,应将L 的值选为2的幂,如256或 者512。 例3.1 运用MA TLAB 画出以下系统的频率响应。 y(n)-0.6y(n-1)=2x(n)+x(n-1) 程序: clf; w=-4*pi:8*pi/511:4*pi; num=[2 1];den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1) plot(w/pi,real(h));grid title(‘H(e^{j\omega}的实部’)) xlabel(‘\omega/ \pi ’); ylabel(‘振幅’); subplot(2,1,1) plot(w/pi,imag(h));grid title(‘H(e^{j\omega}的虚部’)) xlabel(‘\omega/ \pi ’); ylabel(‘振幅’); (二)、离散时间傅立叶变换DTFT 的性质。 1.时移与频移 设 )]([)(n x FT e X j =ω, 那么

数字信号处理课程设计

数字信号处理 课 程 设 计 院系:电子信息与电气工程学院 专业:电子信息工程专业 班级:电信班 姓名: 学号: 组员:

摘要 滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。通过理论推导得出相应结论,再利用 MATLAB 作为编程工具进行计算机实现。在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB 作为辅助工具完成设计中的计算与图形的绘制。通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。 关键词数字滤波器 MATLAB 窗函数法巴特沃斯

目录 摘要 (1) 1 引言 (1) 1.1课程设计目的 (1) 1.2 课程设计内容及要求 (1) 1.3课程设计设备及平台 (1) 1.3.1 数字滤波器的简介及发展 (1) 1.3.2 MATLAB软件简介 (2) 2 课程设计原理及流程 (4) 3.课程设计原理过程 (4) 3.1 语音信号的采集 (4) 3.2 语音信号的时频分析 (5) 3.3合成后语音加噪声处理 (7) 3.3.1 噪声信号的时频分析 (7) 3.3.2 混合信号的时频分析 (8) 3.4滤波器设计及消噪处理 (10) 3.4.1 设计IIR和FIR数字滤波器 (10) 3.4.2 合成后语音信号的消噪处理 (13) 3.4.3 比较滤波前后语音信号的波形及频谱 (13) 3.4.4回放语音信号 (15) 3.5结果分析 (15) 4 结束语 (15) 5 参考文献 (16)

模电课程设计_函数信号发生器

山东农业大学信息学院 课程设计(论文) 课程名称:模拟电子技术基础课程设计 题目名称:函数信号发生器 姓名: 学号: 班级: 专业:电子信息科学与技术 设计时间:2011-2012-1学期15、16周 教师评分: 2011 年 12 月 6 日

目录 1设计的目的及任务 (1) 1.1 课程设计的目的 (2) 1.2 课程设计的任务与要求 (2) 2 电路设计总方案及各部分电路工作原理 (2) 2.1 电路设计总体方案 (2) 2.2 正弦波发生电路的工作原理 (3) 2.3 正弦波---方波工作原理 (4) 2.4 方波---三角波工作原理 (6) 2.5 三角波---正弦波工作原理 (7) 3 电路仿真及结果 (10) 3.1 仿真电路图及参数选择 (10) 3.2 仿真结果及分析 (10) 4收获与体会 (10) 5 仪器仪表明细清单 (11) 参考文献 (12)

1.设计的目的及其任务 1.1课程设计的目的 1.通过这次课程设计可以更好的掌握集成运算放大器构成正弦 波,方波和三角波等函数信号的设计方法。 2.可以学会安装,调试与仿真等集成电路组成的多级电子电路小 系统。 3.可以更好的掌握课本上所学的知识,培养自己对所学专业的热 爱。 1.2课程设计的任务与要求 1.能输出特定频率的正弦波,方波和三角波。 扩展项:频率可调,脉冲波,锯齿波。 2. 实现步骤: 正弦波→方波→三角波→正弦波 3、工具:multisim 4. 频率范围:固定频率1kHZ,或者设计的为频率可调电路。 5、提交形式:以课程论文(打印)的形式提交。 6. 合理的设计硬件电路,说明工作原理及设计过程,画出相关的电路原理图。 7. 选择常用的电路元件。 8. 画出设计的电路原理图,做出电路的仿真。 2.电路设计总方案及各部分电路工作原理 2.1电路设计原理框图

数字信号实验报告 (全)

数字信号处理实验报告 实验一:用 FFT 做谱分析 一、 实验目的 1、进一步加深 DFT 算法原理和基本性质的理解。 2、熟悉 FFT 算法原理和 FFT 子程序的应用。 3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用 FFT 。 二、实验原理 用FFT 对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ≤D 。可以根据此时选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。 周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。 对模拟信号的频谱时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。 三、实验内容和步骤 对以下典型信号进行谱分析: ?? ? ??≤≤-≤≤-=?? ? ??≤≤-≤≤+==其它n n n n n n x 其它n n n n n n x n R n x ,07 4, 330,4)(, 07 4, 830,1)() ()(3241 4() cos 4 x n n π = 5()cos(/4)cos(/8)x n n n ππ=+ 6() cos8cos16cos20x t t t t πππ=++

模拟电路课程设计-函数信号发生器

模拟电路课程设计——函数信号发生器 一、设计任务和要求 1 在给定的±12V直流电源电压条件下,使用运算放大器设计并制作一个函 数信号发生器。 2 信号频率:1kHz~10kHz 3 输出电压:方波:Vp-p≤24V 三角波:Vp-p≤6V 正弦波: Vp-p>1V 4 方波:上升和下降时间:≤10ms 5 三角波失真度:≤2% 6 正弦波失真度:≤5% 二、设计方案论证 1.信号产生电路 〖方案一〗 由文氏电桥产生正弦振荡,然后通过比较器得到方波,方波积分可得三角波。三角波 这一方案为一开环电路,结构简单,产生的正弦波和方波的波形失真较小。但是对于三角波的产生则有一定的麻烦,因为题目要求有10倍的频率覆盖系数,然而对于积分器的输入输出关系为: 显然对于10倍的频率变化会有积分时间dt的10倍变化从而导致输出电压振幅的10倍变化。而这是电路所不希望的。幅度稳定性难以达到要求。而且通过仿真实验会发现积分器极易产生失调。 〖方案二〗 由积分器和比较器同时产生三角波和方波。其中比较器起电子开关的作用,将恒定的正、负极性的 方波 三角波 电位交替地反馈积分器去积分而得到三角波。该电路的优点是十分明显的: 1 线性良好、稳定性好;

2 频率易调,在几个数量级的频带范围内,可以方便地连续地改变频率, 而且频率改变时,幅度恒定不变; 3 不存在如文氏电桥那样的过渡过程,接通电源后会立即产生稳定的波 形; 4 三角波和方波在半周期内是时间的线性函数,易于变换其他波形。 综合上述分析,我们采用了第二种方案来产生信号。下面将分析讨论对生成的三角波和方波变换为正弦波的方法。 2.信号变换电路 三角波变为正弦波的方法有多种,但总的看来可以分为两类:一种是通过滤波器进行“频域”处理,另一种则是通过非线性元件或电路作折线近似变换“时域”处理。具体有以下几种方案: 〖方案一〗 采用米勒积分法。设三角波的峰值为,三角波的傅立叶级数展开: 通过线性积分后: 显见滤波式的优点是不太受输入三角波电平变动的影响,其缺点是输出正弦波幅度会随频率一起变化(随频率的升高而衰减),这对于我们要求的10倍的频率覆盖系数是不合适的。另外我们在仿真时还发现,这种积分滤波电路存在这较明显的失调,这种失调使输出信号的直流电平不断向某一方向变化。 积分滤波法的失调图(Protel 99 SE SIM99仿真) 而且输出存在直流分量。 〖方案二〗 才用二极管-电阻转换网络折线逼近法。十分明显,用折线逼近正弦波时,如果增多折线的段数,则逼近的精度会增高,但是实际的二极管不是理想开关,存在导通阈值问题,故不可盲目的增加分段数;在所选的折线段数一定的情况下,转折电的位置的选择也影响逼近的精度。凭直观可以判知,在正弦波变化较快的区段,转折点应选择的密一些;而变化缓慢的区段应选的稀疏一些。 二极管-电阻网络折线逼近电路对于集成化来说是比较简单,但要采用分立元件打接则会用到数十个器件,而且为了达到较高的精度所有处于对称位置的电阻和

数字信号实验报告

北京科技大学 《信号系统与信号处理综合实验》实验 报告 学号:__________ 姓名:_____________________ 专业:____________ 年月日

目录: 1实验一CCS使用实验 2实验二、SEED-DTK6446 Linux开发环境搭建3实验三、Linux平台实验 4二、音频采集回放实验 5三、视频采集回放实验 6OSD图像叠加实验 7图像边缘检测实验

课程实验目的 1.数字信号处理是一门理论与实践并重的课程,在学习理论知识的同时再配合经典DSP实验,可以加深对数字信号处理软、硬件的理解与掌握。 2.接触并了解SEED-DTK6446实验箱,学会通过Linux操作平台,利用SEED-DTK6446实验箱完成一些经典的实验历程,加深对数字信号处理的了解。 3. 学习并掌握SEED-DTK6446 CCS开发环境的搭建,建立好所有编译测试环境,为下面的实验做好准备工作。 实验一 CCS使用实验 一、实验目的 1.熟悉CCS3.3集成开发环境,掌握工程的生成方法; 2.熟悉SEED-DTK6446实验环境; 3. 学习用标准C 语言编制程序; 4.掌握CCS3.3集成开发环境的调试方法; 二、实验内容 1.DSP源文件的建立; 2.DSP程序工程文件的建立; 3. 学习使用CCS3.3集成开发工具的调试工具。 三、实验步骤 1.创建源文件:选择File →New →Source File 命令;打开配套光盘\03. Examples of program\01.SEEE-DTK6446 CCS Examples\examples\3.1.1 math。 2.创建工程文件:点击Project-->New,创建新工程;点击Project选择add files to project,添加源程序math.c。 3. 设置编译与连接选项:点击Project选择Build Opitions; 4. 工程编译与调试:点击Project →Build all,对工程进行编译;点击File →load program,在弹出的对话框中载入debug 文件夹下的.out可执行文件;点击debug →Go Main回到C程序的入口;运行程序并观察输出结果。 四.实验要求:

设计数字信号处理课程设计

语音信号滤波去噪报告书 课程:数字信号处理 指导老师: 完成组员: 完成日期: 2013.01.05

摘要本课程设计主要是下载一段语音信号,绘制其波形并观察其频谱。然后在该语言信号中加一个噪音,利用布莱克曼和矩形窗窗设计一个FIR滤波器,对该语音信号进行虑噪处理,然后比较滤波前后的波形与频谱。在本课程设计中,是用MATLAB的集成环境完成一系列的设计。首先对加噪的语音信号进行虑波去噪处理,再比较滤波前后的频率响应曲线,若一样则满足所设计指标,否则不满足。也可以调用函数sound听滤波前后其语音信号是否带有噪声。若无噪声也说明该滤波器的设置也是成功的。 关键词语音信号;MATLAB; FIR滤波器;滤波去噪; 1 引言 人们在语音通信的过程中将不可避免的会受到来自周围环境的干扰,例如传输媒介引入的噪声,通信设备内部的电噪声,乃至其他讲话者的话音等。正因为有这些干扰噪声的存在,接受者接受到的语音已不是原始的纯净语音信号,而是受噪声干扰污染的带噪声语音信号。而本课程设计就是利用MATLAB集成环境用布莱克曼窗的方法设计一个FIR滤波器,对语音信号进行滤波去噪处理,并将虑噪前后的频谱图进行对比。 1.1 课程设计目的 数字信号处理课程设计是数字信号处理课程的重要实践性环节,是学生在校期间一次较全面的工程师能力训练,在实现学生总体培养目标中占有重要地位。综合运用本课程的理论知识进行频谱分析以及滤波器设计,通过理论推导得出相应结论,并利用MATLAB作为编程工具进行计算机实现,从而复习巩固了课堂所学的理论知识,提高了对所学知识的综合应用能力,并从实践上初步实现了对数字信号的处理。本课程设计能使学生对通信工程领域各种技术的DSP实现的设计有较熟练的掌握。且通过自身的实践,对DSP的设计程序、内容和方法有更深入的掌握,提高实际运用的能力。并可综合运用这些知识解决一定

函数信号发生器课程设计报告书

信号发生器 一、设计目的 1.进一步掌握模拟电子技术的理论知识,培养工程设计能力 和综合分析问题、解决问题的能力。 2.基本掌握常用电子电路的一般设计方法,提高电子电路的 设计和实验能力。 3.学会运用Multisim10仿真软件对所作出的理论设计进行 仿真测试,并能进一步完善设计。 4.掌握常用元器件的识别和测试,熟悉常用仪表,了解电路 调试的基本方法。 二、设计容与要求 1.设计、组装、调试函数信号发生器 2.输出波形:正弦波、三角波、方波 3.频率围:10Hz-10KHz围可调 4.输出电压:方波V PP<20V, 三角波V PP=6V, 正弦波V PP>1V 三、设计方案仿真结果 1.正弦波—矩形波—三角波电路 原理图:

首先产生正弦波,再由过零比较器产生方波,最后由积分电路产生三角波。正弦波通过RC串并联振荡电路(文氏桥振荡电路)产生,利用集成运放工作在非线性区的特点,由最简单的过零比较器将正弦波转换为方波,然后将方波经过积分运算变换成三角波。 正弦—矩形波—三角波产生电路: 总电路中,R5用来使电路起振;R1和R7用来调节振荡的频率,R6、R9、R8分别用来调节正弦波、方波、三角波的幅值。左边第一个运放与RC串并联电路产生正弦波,中间部分为过零比较器,用来输出方波,最好一个运放与电容组成积分电路,用来输出三角波。

仿真波形: 调频和调幅原理 调频原理:根据RC 振荡电路的频率计算公式 RC f o π21 = 可知,只需改变R 或C 的值即可,本方案中采用两个可变电阻R1和R7同时调节来改变频率。 调幅原理:本方案选用了最简单有效的电阻分压的方式调幅,在输出端通过电阻接地,输出信号的幅值取决于电阻分得的电压多少。其最大幅值为电路的输出电压峰值,最小值为0。 RC 串并联网络的频率特性可以表示为 ) 1(311112 1 2 RC RC j RC j R C j R RC j R f Z Z Z U U F ωωωωω-+=++++=+= = ? ? ? 令,1 RC o =ω则上式可简化为) ( 31 ω ωωωO O j F -+ = ? ,以上频率特性可 分别用幅频特性和相频特性的表达式表示如下:

郑州大学数字信号处理课程设计报告

实验一:基于DFT的数字谱分析以及可能出现的问题 一、实验目的: 1.进一步加深对DFT的基本性质的理解。 2.掌握在MATLAB环境下采用FFT函数编程实现DFT的语句用法。 3.学习用DFT进行谱分析的方法,了解DFT谱分析中出现的频谱泄露和栅栏效应现 象,以便在实际中正确应用DFT。 二、实验步骤: 1.复习DFT的定义、物理含义以及主要性质。 2.复习采用DFT进行谱分析可能出现的三个主要问题以及改善方案。 3.按实验内容要求,上机实验,编写程序。 4.通过观察分析实验结果,回答思考题,加深对DFT相关知识的理解。 三、上机实验内容: 1.编写程序产生下列信号供谱分析用: 离散信号: x1=R10(n) x2={1,2,3,4,4,3,2,1},n=0,1,2,3,4,5,6,7 x3={4,3,2,1, 1,2,3,4},n=0,1,2,3,4,5,6,7 连续信号: x4=sin(2πf1t)+sin(2πf2t) f1=100Hz, f2=120Hz,采样率fs=800Hz 2.对10点矩形信号x1分别进行10点、16点、64点和256点谱分析,要求256点 频谱画出连续幅度谱,10点、16点和64点频谱画出离散幅度谱,观察栅栏效应。 3.产生信号x2和x3分别进行8点、16点谱分析,画出离散幅度谱,观察两个信 号的时域关系和幅度谱的关系。 4.对双正弦信号x4以采样率fs=800Hz抽样,生成离散双正弦信号并画出连续波形; 对离散双正弦信号进行时域截断,截取样本数分别为1000、250、50。对不同样本的双正弦信号分别进行1024点谱分析,画出连续幅度谱,观察频谱泄露现象。

数字信号实验报告1

实验一信号、系统及系统响应 1、实验目的 认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法; 熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。 2、实验内容 a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。 clc y1=rand(500); x1=linspace(0,1,100); yn=hist(y1,x1); yn=yn/length(y1); bar(x1,yn); title('[0,1]均匀分布'); figure; y2=randn(1,500); ymin=min(y2); ymax=max(y2); x2=linspace(ymin,ymax,100); ym=hist(y2,x2); ym=ym/length(y2); bar(x2,ym); title('[0,1]高斯分布');

b. 线性时不变系统单位脉冲响应为h(n)=(0.9)n u(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。 function [x,n]=stepseq(n0,ns,ne) n=[ns:ne]; x=[(n-n0)>=0]; function [y,ny]=conv_m(x,nx,h,nh) ny1=nx(1)+nh(1); ny2=nx(length(x))+nh(length(h)); ny=[ny1:ny2]; y=conv(x,h); h=((0.9).^n).*stepseq(0,-5,50); subplot(3,1,1); stem(n,x,'filled'); axis([-5,50,0,2]); ylabel('X(n)'); subplot(3,1,2); stem(n,h,'filled');

数字信号课程设计

《数字信号》课程设计报 告 学院:信息科学与工程 专业班级:通信1201

一、 目的与要求 是使学生通过上机使用Matlab 工具进行数字信号处理技术的仿真练习,加深对《信号分析与处理(自)》课程所学基本理论和概念的理解,培养学生应用Matlab 等工具进行数字信号处理的基本技能和实践能力,为工程应用打下良好基础。 二、 主要内容 1.了解Matlab 基本使用方法,掌握Matlab 数字信号处理的基本编程技术。掌握数字信号的基本概念。 2.用Matlab 生成几种典型数字信号(正弦信号、矩形信号、三角波信号等),并做幅频特性分析 2.Matlab 编程实现典型离散信号(正弦信号、矩形信号、三角信号)的离散傅立叶变换,显示时域信号和频谱图形(幅值谱和相位谱);以正弦周期信号为例,观察讨论基本概念(混叠、泄漏、整周期截取、频率分辨率等)。 3.设计任意数字滤波器,并对某类型信号进行滤波,并对结果进行显示和分析。 4.利用matlab 求解差分方程,并做时域和频域分析。用matlab 函数求解单位脉冲响应,并利用窗函数分离信号。 5.用matlab 产生窗函数,并做世玉和频域分析。 6.显示图像,理解图像的模型,将图像进行三原色分解和边缘分析。 三.课程设计题目 一、 1) 生成信号发生器:能产生频率(或基频)为10Hz 的周期性正弦波、三角波和方波信号。绘出它们的时域波形 2) 为避免频谱混叠,试确定各信号的采样频率。说明选择理由。 3)对周期信号进行离散傅立叶变换,为了克服频谱泄露现象,试确定截取数据的长度,即信号长度。分析说明选择理由。 4)绘出各信号频域的幅频特性和相频特性 5)以正弦周期信号为例,观察讨论基本概念(频谱混叠、频谱泄漏、整周期截取等)。 二、已知三个信号()i a p n ,经调制产生信号3 1 ()()cos(/4)i i s n a p n i n π==∑,其中i a 为常 数,()p n 为具有窄带特性的Hanning 信号。将此已调信号通过信道传输,描述该信道的差分方程为 得到接收信号()()*()y n s n h n = 1)分析Hanning 信号()p n 的时域与频域特性 2)分析已调信号()s n 的时域与频域特性 () 1.1172(1)0.9841(2)0.4022(3)0.2247(4) 0.2247()0.4022(1)0.9841(2) 1.1172(3)(4)y n y n y n y n y n x n x n x n x n x n --+---+-= --+---+-

相关文档
相关文档 最新文档