文档库 最新最全的文档下载
当前位置:文档库 › 立体几何中的常见模型化方法

立体几何中的常见模型化方法

立体几何中的常见模型化方法
立体几何中的常见模型化方法

立体几何中的常见模型化方法

建构几何模型的两个角度:一是待研究的几何体可与特殊几何体建立关联,二是数量关系有明显特征的几何背景.

例题一个多面体的三视图如图1所示,则该多面体的体积是

A. 23/3

B. 47/6

C.6

D.7

分析该几何体的三视图为3个正方形,所以可建构正方体模型辅助解答.

解图2为一个棱长为2的正方体.

由三视图可知,该几何体是正方体截去两个小三棱锥后余下的部分,其体积V=8-2×1/3×1/2×1×1×1=23/3选A.

解后反思大部分几何体可通过对正方体或长方体分割得到,所以将三视图问题放在正方体或长方体模型中研究,能够快速得到直观图,并且线面的位置关系、线段的数量关系明显,计算简便.

变式1 已知正三棱锥P-A BC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为____

分析由于在正三凌锥P-ABC中,PA,PB,PC两两互

相垂直,所以可以将该正三棱锥看作正方体的一部分,构造正方体模型.

解构造如图3所示的正方体.

此正方体外接于球,正方体的体对角线为球的直径EP,球心为正方体对角线的中点O,且EP⊥平面ABC,EP与平面ABC相交于点F.由于FP为正方体体对角线长度的1/3,所以又OP为球的半径,所以OP=.故球心O到截面ABC的距离

解后反思从正方体的8个顶点之中选取不共面的点,可构造出多种几何体,这些几何体可以分享正方体的结构特征.

变式2-个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为

A.3π

B.4π

C.3π

D.6π

分析将一个正方体切掉四个大的“角”,就可得到一个正四面体.

解如图4所示,构造一个棱长为1的正方体

ABCD-A1B1C1D1,连接AB1,AD1,AC,CD1,CB1,B1D1,?t 四面体B1-ACD1为符合题意的四面体,它的外接球的直径AC1=,所以此正方体外接球的表面积S=4πR2=3π.选A.

解后反思正四面体的体积也可通过这种切割的方法求得.由图形分析可知,正四面体的体积是它的外接正方体体积的}.若正四面体的棱长为a,则其体积为

变式3 四面体A-BCD中,共顶点A的三条棱两两互相垂直,且其长分别为1,2,3.若四面体A-BCD的四个顶点同在一个球面上,则这个球的表面积为____.

分析共顶点的三条棱两两互相垂直且长度不相等,这具有长方体的结构特征,可构造长方体来解决问题.

解构造一个棱长分别为1,2,3的长方体,我们可发现四面体A-BCD是这个长方体的一个“角”,它们的外接球相同.所以2R=.故这个球的表面积S=4πR2=14π.

解后反思可构造长方体的几何体在高考中属于高频考点.本题中条件“共顶点A的三条棱两两互相垂直”可变为“共顶点A的三个面两两垂直”,这也是长方体的结构特征之一

变式4 如图5,已知球O的球面上有四点A,B,C,D,DA⊥平面ABC,AB⊥上BC,DA =2,AB=4,BC=6,则球O的体积是____.

分析DA,AB,BC的位置符合长方体三条相连接棱的结构特征,可构造长方体模型.

解以DA,AB,BC为棱长构造长方体.设长方体的外接球O的半径为R,则长方体的体对角线长为球O的直径,即CD.所以

解后反思这种几何体的结构特征是三条棱顿次连接,并且垂直,通常称为“三节棍”模型.

变式5 由空间上一点O出发的4条射线,两两所成的角都相等,求这个角的余弦值.

分析由于是4条射线,并且两两所成的角都相等,联想到正四面体的结构特征――正四面体的中心与四个顶点

的连线两两所成的角相等.

解构造正四面体模型,如图6所示.射线OA,OB,OC,OD两两所成的角相等,∠AOB即为所求.设正四面体的棱长为a,则正四面体的高h=由余弦定理可得

解后反思本题也可建构在正方体中,同学们可以试一试.

变式6 已知直线l与平面a平行,P是直线l上的一个定点,平面a内的动点B满足PB与直线l所成的角为30°,那么点B的轨迹是

A.两条直线

B.椭圆

C.双曲线

D.抛物线

分析由已知条件,构造圆锥模型.

解由于P是直线l上的一个定点,平面α内的动点B满足PB与直线l所成的角为30°,所以点B在以P为顶点的圆锥侧面上.又直线l与平面α平行,所以平面α与圆锥的轴平行,即平行于圆锥的轴的平面截圆锥的侧面,可得截面图形为双曲线.选C.

解后反思本题中,点B的轨迹符合圆锥的结构特征是解题的突破口.

变式7 如图7,AB是平面α的斜线段,A为斜足,若点P在平面α内运动,使得△ABP的面积为定值,则动点P 的轨迹是

A.圆

B.椭圆

C.一条直线

D.两条平行直线

分析考虑到三角形面积为定值,底边一定,从而P到直线AB的距离为定值,可构造圆柱模型.

解由已知可得动点P的轨迹在圆柱面上.由于AB是平面α的斜线段,所以平面α斜截圆柱面,得到的截面图形为椭圆.选B.

解后反思本题中,点P的轨迹符合圆柱的结构特征是解题的突破口.

模型化方法的本质是根据题意进行数学建模,提升空间想象能力.对常见几何体的结构特征特别熟悉,是建构合理模型的关键.

高中数学 立体几何 2.(第二次修订版)八个有趣模型——搞定空间几何体的外接球与内切球(教师版)

八个有趣模型——搞定空间几何体的外接球与内切球当讲到付雨楼老师于2018年1月14日总第539期微文章,我如获至宝.为有了教学的实施,我以付老师的文章主基石、框架,增加了我个人的理解及例题,形成此文,仍用文原名,与各位同行分享.不当之处,敬请大家批评指正. 一、有关定义 1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球. 2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球. 3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球. 二、外接球的有关知识与方法 1.性质: 性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等; 性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆; 性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理); 性质4:球心在大圆面和小圆面上的射影是相应圆的圆心; 性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心). 初图1 初图2 2.结论: 结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心; 结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆; 结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处; 结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径; 结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球; 结论7:圆锥体的外接球球心在圆锥的高所在的直线上; 结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径; 结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球. 3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度); 三、内切球的有关知识与方法 1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性). 2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆). 3.正多面体的内切球和外接球的球心重合. 4.正棱锥的内切球和外接球球心都在高线上,但不一定重合. 5.基本方法:

高中立体几何证明线面平行的常见方法

E D C B A 高中立体几何证明线面平行问题(数学作业十七) (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC⊥BE . 求证: (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM. 3、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; (2) 利用三角形中位线的性质 4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 12 1 中点为PD E 求证:AE ∥平面PBC ; (第1题图) A B C D E F G M

(4)利用对应线段成比例 9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且 SM AM =ND BN , 求证:MN ∥平面SDC (5)利用面面平行 10、如图,三棱锥中,底面,,PB=BC=CA , 为的中点,为的中点,点在上,且. (1)求证:平面; (2)求证:平面;

立体几何复习知识点汇总(全)

立体几何知识点汇总(全) 1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段) ⑦b a,是夹在两平行平面间的线段,若 a,的位置关系为相交或平行或异面. a=,则b b ⑧异面直线判定定理:过平面外一点与平 面内一点的直线和平面内不经过该点的直线是

异面直线.(不在任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 (直线与直线所成角]90,0[??∈θ)(向量与向量所成角])180,0[οο∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能 叫1L 与2L 平行的平面) 3. 直线与平面平行、直线与平面垂直. (1). 空间直线与平面位置分三种:相交、平行、在平面内. (2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交) (3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线

立体几何证明方法汇总

① 中位线定理 例题:已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点. (1)求证:GH ∥平面CDE ; (2)若2,CD DB ==,求四棱锥F-ABCD 的体积. 练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。 求证:AC 1∥平面CDB 1; 2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。(1)求证: //1BD 平面DE C 1;(2)求三棱锥BC D D 1-的体积. 3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。 (1)证明://PA BDE 平面; (2)求PAD ?以PA 为轴旋转所围成的几何体体积。 A 1 C _ H _ G _ D _ A _ B _ C E F

G P A B C D F E A B C D E F 例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形) 练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中点。求证:AF ∥平面PCE ; ②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。求证://PAD MN 平面 P A B C D M N ③ 如图,已知AB 平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ; 的交点.求证://1O C 面 ④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线11 AB D . D 1C 1 B 1 A 1

高中数学教学论文 高中数学立体几何学习的几点建议

高中数学立体几何学习的几点建议 一逐渐提高逻辑论证能力 立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确 无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充 分条件,向已知靠拢,然后用综合法(“推出法”)形式写出 二立足课本,夯实基础 直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线 与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处: (1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。 (2)培养空间想象力。 (3)得出一些解题方面的启示。 在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。 三“转化”思想的应用 我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如: 1. 两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影 所成的角。 2. 异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转

高中数学《立体几何》重要公式、定理

高中数学《立体几何》重要公式、定理 1.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行. 2.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行. 3.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直; (3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 4.证明直线与平面垂直的思考途径 (1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 5.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直. 6.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直. 7.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a . (2)加法结合律:(a +b)+c=a +(b +c). (3)数乘分配律:λ(a +b)=λa +λb . 8.共线向量定理 对空间任意两个向量a 、b(b ≠0 ),a ∥b ?存在实数λ使a=λb . P A B 、、三点共线?||AP AB ?AP t AB =?(1)OP t OA tOB =-+. ||AB CD ?AB 、CD 共线且AB CD 、不共线?AB tCD =且AB CD 、不共线. 9.共面向量定理 向量p 与两个不共线的向量a 、b 共面的?存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的?存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++. 10.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角 线所表示的向量. 11.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1 k ≠

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

立体几何公式

立体几何公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

立体几何公式 一、平面图形 名称符号周长C和面积S 1、正方形 a—边长 C=4a S=a2 2、长方形 a和b-边长C=2(a+b) S=ab 3、三角形 a,b,c-三边长; h-a边上的高;s-周长的一半; A,B,C-内角其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 4、四边形 d,D-对角线长;α-对角线夹角 S=dD/2·sinα 5、平行四边形 a,b-边长; h-a边的高;α-两边夹角 S=ah =absinα 6、菱形 a-边长;α-夹角; D-长对角线长; d-短对角线长 S=Dd/2 =a2sinα 7、梯形 a和b-上、下底长; h-高; m-中位线长 S=(a+b)h/2 =mh 8、圆 r-半径; d-直径; C=πd=2πr S=πr2 =πd2/4 9、扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 10、弓形 l-弧长; b-弦长; h-矢高; r-半径;α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3 11、圆环 R-外圆半径;r-内圆半径;D-外圆直径;d-内圆直径 S=π(R2-r2) =π(D2-d2)/4 12、椭圆 D-长轴;d-短轴;S=πDd/4 二、立方图形 名称符号面积S和体积V 1、正方体 a-边长S=6a2 ; V=a3 2、长方体 a-长;b-宽;c-高;S=2(ab+ac+bc) ; V=abc 3、棱柱 S-底面积; h-高; V=Sh 4、棱锥S-底面积 h-高;V=Sh/3 5、棱台 S1和S2-上、下底面积 h-高;V=h[S1+S2+(S1S1)1/2]/3 6、拟柱体 S1-上底面积;S2-下底面积;S0-中截面积;h-高 V=h(S1+S2+4S0)/6

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

【高中学习立体几何的方法有哪些】高中立体几何做辅助线方法

【高中学习立体几何的方法有哪些】高中立体几何做辅助线方法 升入高中后,面对新的课程,新的知识,新的学习方法很多学生多会感到无所适从,尤其是在高中立体几何方面颇感头疼。那么高中学习立体几何的方法有哪些呢?以下是小编分享给大家的高中学习立体几何的方法的资料,希望可以帮到你! 高中学习立体几何的方法一 立足课本,夯实基础 直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。(这个定理对今后学习线面垂直以及二面角的平面角的作法非常重要)定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处: (1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。 (2)培养空间想象力。 (3)得出一些解题方面的启示。 在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,(我要求学生用手里的书本当平面,笔作直线)这样亲自实践可以帮助提高空间想象力。对后面的学习也打下了很好的基础。 高中学习立体几何的方法二 培养空间想象力

从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。 建立空间观念要做到:重视看图能力的培养:对于一个几何体,可从不同的角度去观察,可以是俯视、仰视、侧视、斜视,体会不同的感觉,以开拓空间视野,培养空间感。加强画图能力的培养:掌握基本图形的画法;如异面直线的几种画法、二面角的几种画法等等;对线面的位置关系,所成的角,所有的定理、公理都要画出其图形,而且要画出具有较强的立体感,除此之外,还要体会到用语言叙述的图形,画哪一个面在水平面上,产生的视觉完全不同,往往从一个方向上看不清的图形,从另方向上可能一目了然。加强认图能力的培养:对立体几何题,既要由复杂的几何图形体看出基本图形,如点、线、面的位置关系;又要从点、线、面的位置关系想到复杂的几何图形,既要看到所画出的图形,又要想到未画出的部分。能实现这一些,可使有些问题一眼看穿。 此外,多用图表示概念和定理,多在头脑中证明定理和构造定理的图,对于建立空间观念也是很有帮助的。 高中学习立体几何的方法三 建立数学模型 新课程标准中多次提到数学模型一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。 从形状的角度反映现实世界的物体时,经过抽象得到的空间几何体就是现实世界物体的几何模型。由于立体几何学习的知识内容与学生的联系非常密切,空间几何体是很多物体的几何模型,这些模型可以描述现实世界中的许多物体。他们直观、具体、对培养大家的几何直观能力有很大的帮助。空间几何体,特别是长方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面位置关系的直观载体。学习时,一方面要注意从实际出发,把学习的知识与周围的实物联系起来,另一方面,也要注意经历从现实的生活抽象空间图形的过程,注重探索空间图形的位置关系,归纳、概括它们的判定定理和性质定理。 高中学习立体几何的方法四

立体几何教学中的哲学思想

立体几何教学中的哲学思想 摘要:数学作为一门经典科学,其理论的产生、发展与完善又很好阐释了哲学的各理论。数学教学中需要从哲学的角度认识数学、理解数学,从哲学的角度探讨数学中的辩证思想:自觉地渗透辩证的思维方法、辩证的认识论,从而有助于学生更好地理解数学的产生与发展,更好地理解先人发现数学的历程与艰难,并进而更有助于开拓学生视角、优化学生思维。 关键词:对立与统一;具体到抽象;归纳与类比 中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)06-276-01 数学的产生与发展是与哲学紧密相连的,哲学作为一切运动最普遍规律的学科,渗透到数学发展的各个阶段和各个领域。同时,数学作为一门经典科学,其理论的产生、发展与完善又很好阐释了哲学的各理论。数学教学中需要从哲学的角度认识数学、理解数学,从哲学的角度探讨数学中的辩证思想:自觉地渗透辩证的思维方法、辩证的认识论,从而有助于学生更好地理解数学的产生与发展,更好地理解先人发现数学的历程与艰难,并进而更有助于开拓学生视角、优化学生思维。

何以需要把哲学认识观融入立体几何的教学中,究其因,一方面,哲学认识观给数学教学送来了获得智慧的经验与方法,能高屋建瓴的认识立体几何,给统领立体几何教学的观点、方法与思想带来了一个高度;另一方面,立体几何中诸多的知识与方法素材更是诠释哲学思想、哲学认识论的良好契机,如空间问题转化为平面问题、几何关系与数量关系的互化都昭示了事物的普遍联系与相互转化。 一、对立与统一地认识问题 唯物主义哲学告诉我们,对立统一规律是辩证法的实质与核心。唯物辩证法认为,事物联系的根本内容就是互相区别、相互对立的矛盾双方之间的联系。用这个观点考查立体几何就容易发现,在立体几何中,处处都存在着典型的、深刻的矛盾辩证法。空间由点、线(直线与曲线)、面(平面与曲面)、体元素构成,点动成线、线动成面、面动成体,从这个角度上说,这四者体现的是部分与整体的关系。当我们在具体判断这些元素位置关系时,它们却是对立统一的:线线、线面、面面等位置关系可以相互转化,呈现对立统一之态。 例如,在判断线面平行时,可以转化为线线平行(线面平行判定定理)思考,抑或可以转化为面面平行(面面平行性质)思考。线线平行、线面平行、面面平行既对立又统一。对立体现的是相互的区别性、统一体现的是相互的联系

高中数学立体几何解析几何 判定&性质&公式整理(全)

高中数学必修二复习 基本概念 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。 公理3:过不在同一条直线上的三个点,有且只有一个平面。 推论1: 经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 空间两直线的位置关系: 空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 esp.空间向量法(找平面的法向量) 规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角 由此得直线和平面所成角的取值范围为[0°,90°] 最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角 三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 esp.直线和平面垂直 直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

八个无敌模型——全搞定空间几何的外接球和内切球问题

八个有趣模型——搞定空间几何体的外接球与内切球 类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径) 图1 图2 图3 方法:找三条两两垂直的线段,直接用公式2 2 2 2 )2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:(1)162 ==h a V ,2=a ,24164442 222=++=++=h a a R ,π24=S ,选C ; (2 )933342 =++=R ,ππ942 ==R S (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =则正三棱锥ABC S -外接球的表面积是 。π36 解:引理:正三棱锥的对棱互垂直。证明如下: 如图(3)-1,取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥, BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD , ∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直, 本题图如图(3)-2, MN AM ⊥,MN SB //, ∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥, 故三棱锥ABC S -的三棱条侧棱两两互相垂直, ∴36)32()32()3 2()2(2222=++=R ,即3642=R , (3)题-1 A A

立体几何常见证明方法

立体几何方法归纳小结 一、线线平行的证明方法 1、根据公理4,证明两直线都与第三条直线平行。 2、根据线面平行的性质定理,若直线a平行于平面A ,过a的平面B与平面A相交于b ,则a//b。 3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b 。 4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线a与直线b,则a//b 。 二、线面平行的证明方法 1、根据线面平行的定义,证直线与平面没有公共点。 2、根据线面平行的判定定理,若平面A内存在一条直线b与平面外的直线a平行,则a//A 。(用相似三角形或平行四边形) 3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。 三、面面平行的证明方法 1、根据定义,若两平面没有公共点,则两平面平行。 2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。 或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。 3、垂直同一直线的两平面平行。 4、平行同一平面的两平面平行。 四、两直线垂直的证明方法 1、根据定义,证明两直线所成的角为90° 2、一直线垂直于两平行直线中的一条,也垂直于另一条. 3、一直线垂直于一个平面,则它垂直于平面内的所有直线. 4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线). 五、线面垂直的证明方法 1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面. 2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面. 3、一直线垂直于两平行平面中的一个,也垂直于另一个. 4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面. 5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面. 六、面面垂直的证明方法 1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。 2、根据面面垂直的判定定理,一平面经过另一平面的一条垂线,则两平面垂直。 3、一平面垂直于两平行平面中的一个,也垂直于另一个。 七、两异面直线所成角的求法 1、根据定义,平移其中一条和另一条相交,然后在三角形中求角。

高一数学必修2空间几何部分公式定理大全

必修2空间几何部分公式定理总结 棱柱、棱锥、棱台的表面积 设圆柱的底面半径为,母线长为,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即 . 设圆锥的底面半径为,母线长为,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即 . 设圆台的上、下底面半径分别为,,母线长为,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即 . 柱、锥、台的体积公式 柱体体积公式为:,(为底面积,为高) 锥体体积公式为:,(为底面积,为高) 台体体积公式为: (,分别为上、下底面面积,为高) 球的体积和表面积 球的体积公式 球的表面积公式

其中,为球的半径.显然,球的体积和表面积的大小只与半径有关. 公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2 过不在一条直线上的三点,有且只有一个平面. 推论1 经过一条直线和直线外一点有且只有一个平面. 推论2 经过两条相交的直线有且只有一个平面. 推论3 经过两条平行的直线有且只有一个平面. 公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4 (平行公理)平行于同一条直线的两条直线互相平行. 定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 不同在任何一个平面内的两条直线叫做异面直线. 空间两条直线的位置关系有且只有三种: 共面直线:相交直线(在同一平面内,有且只有一个公共点);平行直线(在同一平面内,没有公共点);异面直线:不同在任何一个平面内且没有公共点. 空间中直线与平面位置关系有且只有三种: 直线在平面内——有无数个公共点 直线与平面相交——有且只有一个公共点 直线与平面平行——没有公共点 直线与平面相交或平行的情况统称为直线在平面外. 两个平面的位置关系只有两种: 两个平面平行——没有公共点 两个平面相交——有一条公共直线 异面直线所成的角 已知两条异面直线,经过空间任一点作直线∥,∥,把与所成的锐角(或直角)叫做异面直线所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作. 异面直线的判定定理 过平面外一点与平面内一点的直线,和平面内不经过该点的直线 是异面直线.

2020高考数学-立体几何中的常用模型

⑵ A 2013 l ∥α l l ∥β α, β α∥β B l ⊥α l ⊥β α∥β C l ⊥α l ∥β α∥β D α⊥β l ∥α l ⊥β 第 6 讲立体几何中的常用模型 §6.1 平行与垂直的直观感受 【例1】⑴ A B 2013 m ∥α m ∥α m,n n∥α m∥β αβ m∥n α∥β C m∥n m ⊥α n ⊥α D m ∥α α⊥β m⊥β A α⊥β α β B α β α β C α⊥γ β⊥γα∩ β= l l ⊥γ D α⊥β α β

§6.2 借助正(长)方体模型研究问题 【例2】 A B C D .

【例3】 ABCD - A 1B 1C 1D 1 P . BD 1 【例4】 ABCD . AB = C D = 2 AC = BD = 3 AD = BC = §6.3 外接球问题 【例5】 3 【例6】 2019 A - BCD AB ⊥ BCD AB = BD = CB = CD = 1 A - BCD P 5 1 2 2

1 E F §6.4 等体积法 【例7】 ABCD - A 1B 1C 1D 1 D 1 - EDF A 1 D 1 C 1 B 1 E F D C A B 【例8】 EF = 1 2 ABCD - A 1B 1C 1D 1 △AEF C 1 E D 1 1 B 1D 1 A - CEF . B 1 F A 1 C B D A AA 1 B 1 C E F

. . β 32π 3 B 4π C 2π b ?β? b ∥γ ? α? β?α? 【习题1】 2012 A . B C D . 【习题2】 2011 A α ⊥ β α β B α β α C α ⊥ γ β ⊥ γ α β = l l ⊥ γ D α ⊥ β α β 【习题3】 a 、b 、c a ∥c ? ? a ∥b ? α ∥γ ? ? α ∥ β ? α、β、γ a ∥γ ? ? a ∥b ? a ∥ c ? ? a ∥α ? α ∥ c ? ? α ∥ β ? a ∥γ ? ? a ∥α ? A B C D 【习题4】 S - ABC SA ⊥ ABC AB ⊥ BC S SA = AB = BC = 1 A C B 【习题5】 2014 A D 1 2 4π 3

立体几何证明方法大全

(二)立体几何证明方法汇总 1、线线平行判定定理 一个平面 点 平行于同一条直线的两条直线的 两条直线平行 线面平行性质如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 面面平行的性一个平面与两个平行平面相交 则交线平行 线面垂直的性垂直于同 行

两条直线所成的角是 线面垂直的性质一条直线垂直于一个平面任何一条直线 一条直线垂直三角形两边则垂直一条直线垂直于三角形的两条边 第三边 三垂线定理 个平面的一条斜线的射影垂直,那么它和这条斜线垂直 三垂线定理逆定三垂线逆定理 这个平面的一条斜线垂直,那么它和这条斜线的射影垂直

一条直线与平面没有交点 线面平行判两个平面平行, 平行于另一个平面 如果一条直线垂直于平面内的任何一条 直线,则直线与平面垂直。 的一条直线垂直于平面内两条相交直线, 则平行于这个平面。 的推一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 的若二平面垂直,那么在一个平面内垂直 于它们的交线的直线垂直于另一个平面

如果两个平面没有公共点,则两个平面平行。 面面平行的如果一个平面内有两条相交直线平行于另一 个平面,那么这两个平面平行 面面平行的判定定理推如果两个平面内两条相交直线平行于另一个平面内两条相交直线,则两个平面平行。 线面垂直的 垂直于同一直线的两个平面平行 两个平面相交, 这两个平面垂直。 面面垂直的判如果平面经过另一个平面的一条垂线, 面垂直。

公理 么这条直线上的所有点都在这个平面内。( ( 公理 它公共点,这些公共点的集合是一条直线( ( 公理 个平面。 干个点共面的依据 推论 有一个平面。 ( ( 推论 推论

立体几何证明方法汇总

E B C D A P ① 中位线定理 例题:已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点. (1)求证:GH ∥平面CDE ; (2)若2,42CD DB ==,求四棱锥F-ABCD 的体积. 练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。 求证:AC 1∥平面CDB 1; 2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。(1)求证://1BD 平面 DE C 1;(2)求三棱锥BC D D 1-的体积. 3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。 (1)证明://PA BDE 平面; (2)求PAD ?以PA 为轴旋转所围成的几何体体积。 E A 1 B 1 C 1 D 1D C B A _ H _ G _ D _ A _ B _ C E F

G P A B C D F E A B C D E F 例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形) 练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中点。求证:AF ∥平面PCE ; ②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。求证://PAD MN 平面 P A B C D M N ③ 如图,已知AB ⊥平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ; ④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线的交点.求证://1O C 面11 AB D . D 1 C 1B 1A 1

相关文档
相关文档 最新文档