文档库 最新最全的文档下载
当前位置:文档库 › 专题15空间位置关系与距离(教师版)

专题15空间位置关系与距离(教师版)

专题15空间位置关系与距离(教师版)
专题15空间位置关系与距离(教师版)

1

C

D

_A

_B

_M

_D

_E

O

_C

专题15 空间位置关系与距离

★★★高考在考什么

【考题回放】

1.已知平面α外不共线的三点A,B,C到α的距离都相等,则正确的结论是( B)

A.平面ABC必平行于α

B.存在△ABC的一条中位线平行于α或在α内

C. 平面ABC必与α相交

D. 平面ABC必不垂直于α

2.如图,过平行六面体ABCD-A1B1C1D1

点作直线,其中与平面DBB1D1平行的直线共有( D )

A.4条

B.6条

C.8条

D.12条

3.设三棱柱ABC—A1B1C1的体积为V,P、Q分别

是侧棱AA1、CC1 上的点,且PA=QC1,则

四棱锥B—APQC的体积为( C )

A.1

6

V B.

1

4

V C.

1

3

V D.

1

2

V

4.已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若β

α

β

α//

,

,则

⊥m

m;②若β

α

α

β

γ

α//

,

,则

③若β

α

β

α//

,

//

,

,则

n

m

n

m?

?;

④若m、n是异面直线,β

α

α

β

β

α//

,

//

,

,

//

,则

n

n

m

m?

?,其中真命题是(D)

A.①和②B.①和③C.③和④D.①和④

5.在正方形'

'

'

'D

C

B

A

ABCD-中,过对角线'

BD的一个平面交'

AA于E,交'

CC于F,则( )

①四边形E

BFD'一定是平行四边形

②四边形E

BFD'有可能是正方形

③四边形E

BFD'在底面ABCD内的投影一定是正方形

④四边形E

BFD

'有可能垂直于平面D

BB'

以上结论正确的为①③④。(写出所有正确结论的编号)

6.如图,四面体ABCD中,O、E分别BD、BC的中点,2,

CA CB CD BD

==== AB AD

==

(Ⅰ)求证:AO⊥平面BCD;

(Ⅱ)求异面直线AB与CD所成角的大小;

(Ⅲ)求点E到平面ACD的距离.

【专家解答】

(I)证明:连结OC

,,.

BO DO AB AD AO BD

==∴⊥

,,.

BO DO BC CD CO BD

==∴⊥

在A O C

?中,由已知得1,

AO C O

==

而2,

AC=222,

AO CO AC

∴+=90,o

AOC

∴∠=即.

A O O C

,

BD OC O

=

A O

∴⊥平面BC D

(II )取AC 的中点M ,连结OM 、ME 、OE ,由E 为BC 的中点知ME ∥AB,OE ∥DC ∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角 在O M E ?中,

111,222

EM AB O E D C =

=

=

=

O M 是直角A O C ?斜边AC 上的中线,11,2

O M A C ∴=

=

cos ,4

O EM ∴∠=

∴异面直线AB 与CD

所成角的大小为arccos

4

(III )设点E 到平面ACD 的距离为.h

,E AC D A C D E V V --=

11

....33A C D C D E h S A O S ??∴= 在A C D ?中

,2,C A C D AD ===

12

2

ACD S ?∴=

?=

而2

11,22

4

2

C D E AO S ?==

?

=

1.7

2

C D E

AC D

AO S h S ???

∴=

=

=

∴点E 到平面ACD

的距离为

7

★★★高考要考什么

【考点透视】

判断线线、线面、面面的平行与垂直,求点到平面的距离及多面体的体积。 【热点透析】 1. 转化思想:

① ??⊥?⊥?⊥线线平行线面平行面面平行,线线线面面面 ; ② 异面直线间的距离转化为平行线面之间的距离,

平行线面、平行面面之间的距离转化为点与面的距离。 2.空间距离则主要是求点到面的距离主要方法:

①体积法; ②直接法,找出点在平面内的射影

★★★高考将考什么

【范例1】如图,在五面体ABC D EF 中,点O 是矩形A B C D 的对角线的交点,面

C D E 是等边三角形,棱//

12

E F B C =.

(1)证明F O //平面C D E ;

(2

)设BC D =,

证明E O ⊥平面C D F . 解析:(Ⅰ)取CD 中点M ,连结OM. 在矩形ABCD 中,1//

2

O M B C ,又1//

2

E F B C ,则//O M E F ,

M

连结EM ,于是四边形EFOM 为平行四边形. //F O E M ∴ 又F O ? 平面CDE , EM ?平面CDE , ∴ FO ∥平面CDE (Ⅱ)证明:连结FM ,由(Ⅰ)和已知条件,在等边△CDE 中,

,CM DM EM CD =⊥

且122

EM C D BC EF =

=

=.

因此平行四边形EFOM 为菱形,从而EO ⊥FM 而FM∩CD=M ,

∴CD ⊥平面EOM ,从而CD ⊥EO. 而F M C D M ?=,所以EO ⊥平面CDF. 【点晴】本小题考查直线与平面平行、直线与平面垂直等基础知识,注意线面平行和线面垂直判定定理的使用,考查空间想象能力和推理论证能力。

【文】如图,在四棱锥P-ABCD 中,底面为直角梯形, AD ∥BC ,∠BAD=90°,PA ⊥底面ABCD ,且PA =AD=AB =2BC ,M 、N 分别为PC 、PB 的中点。

(Ⅰ)求证:PB ⊥DM;

(Ⅱ)求CD 与平面ADMN 所成的角 解析:方法一:

(I )因为N 是P B 的中点,PA PB =,所以AN PB ⊥.

因为AD ⊥平面P A B ,所以AD PB ⊥,从而PB ⊥平面A D M N . 因为D M ?平面A D M N ,所以P B D M ⊥.

(II )取A D 的中点G ,连结B G 、N G ,则//B G C D ,

所以B G 与平面A D M N 所成的角和C D 与平面A D M N 所成的角相等. 因为PB ⊥平面A D M N ,所以B G N ∠是B G 与平面A D M N 所成的角.

在R t B G N ?

中,sin 5

BN BN G BG

∠=

=

.

故C D 与平面A D M N

所成的角是arcsin 5

.

方法二:

以A 为坐标原点建立空间直角坐标系A xyz -,设1B C =,则

1(0,0,0),(0,0,2),(2,0,0),(2,1,0),(1,

,1),(0,2,0)2

A P

B

C M

D .

(I ) 因为3

(2,0,2)(1,,1)2

P B D M ?=-?- 0=,所以.P B D M ⊥

(II ) 因为(2,0,2)(0,2,0)PB AD ?=-?

0=,所以PB AD ⊥,

又因为P B D M ⊥,所以PB ⊥平面.A D M N

因此,P B D C <>

的余角即是C D 与平面A D M N 所成的角.

因为cos ,||||

PB D C

PB D C PB D C ?<>=?

5=,

所以C D 与平面A D M N

所成的角为arcsin

5

.

【点晴】注意线线垂直常使用线面垂直得到解决,线面角关键是找到射影,遵循一

作二证三计算的步骤。同时使用空间向量能降低对空间想象能力的要求。

【范例2】如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.

(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 解析:(Ⅰ)如图,取AD 的中点E , 连结PE ,则PE ⊥AD.

作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD ,

所以∠PEO 为侧面PAD 与底面所成的二面角 的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,

四棱锥P —ABCD 的体积V P —ABCD =

.96333483

1=???

(Ⅱ)法1 如图,以O 为原点建立空间直角坐标系.通过计算可得P(0,0,33), A(23,-3,0),B(23,5,0),D(-23,-3,0)

所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=?BD PA 所以PA ⊥BD.

法2:连结AO ,延长AO 交BD 于点F.通过计算 可得EO=3,AE=23,又知AD=43,AB=8, 得

.AB

AD AE

EO =所以Rt △AEO ∽Rt △BAD.得∠EAO=∠ABD.

所以∠EAO+∠ADF=90° 所以 AF ⊥BD.

因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.

【点晴】本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力,解题的关键是二面角的使用。使用空间向量能降低对空间想象能力的要求,但坐标系的位置不规则,注意点坐标的表示。

【文】在直三棱柱A B C A B C -中,90,1ABC AB BC ∠===

.

(1)求异面直线11B C 与A C 所成的角的大小;

(2)若1A C 与平面ABC 所成角为45

,求三棱锥1A ABC -的体积。

解析 (1) ∵ BC ∥B 1C 1, ∴∠ACB 为异面直线B 1C 1与AC 所成角(或它的补角) ∵∠ABC=90°, AB=BC=1, ∴∠ACB=45°, ∴ 异面直线B 1C 1与AC 所成角为45°.

(2) ∵ AA 1⊥平面ABC,∠ACA 1是A 1C 与平面ABC 所成的角, ∠ACA =45°.

∵ ∠ABC=90°, AB=BC=1, AC=2,∴AA 1=2.

∴ 三棱锥A 1-ABC 的体积V=

3

1S △ABC ×AA 1=2

6.

【点晴】画图是学好立体几何的基本要求,本题考查了线线角和体积等立几知识。 【范例3】如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1.

(Ⅰ)求BF 的长;

(Ⅱ)求点C 到平面AEC 1F 的距离.

解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. ∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1.

∴DF=C 1H=2. .6222=+=∴DF BD BF (Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,

由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC , 且AG ?面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.

在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到面AEC 1F 的距离.

.

11

33417

12

317123,17

1217

43cos 3cos 3,.

17,1,2

2

1

1

2

2

1

=

+

?=

?=

∴=?

===∠=∠=+=

==MC CC CM CQ GAB MCG CM MCG GAB BG

AB

AG BG CG

BG CC EB 知由从而可得由

解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0), A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ).

∵AEC 1F 为平行四边形, .

62,62||).

2,4,2().2,0,0(.2),2,0,2(),0,2(,,

11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴

(II )设1n 为面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然

???=+?+?-=+?+??????=?=?02020140,0,011y x y x AF n AE n 得由??

?

??-==∴???=+-=+.41,1,022,014y x x y 即

111),3,0,0(n CC CC 与设又=的夹角为a

,则1111cos 33||||

CC n CC n α?==?

∴C 到平面AEC 1F 的距离为.11

33433

3343cos ||1=

?

==αCC d

【点晴】本小题主要考查线面关系和空间距离的求法等基础知识,空间距离也遵循

一作二证三计算的步骤,但体积法是一种很好的求空间距离的方法,同学们不妨一试。

【文】正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。

(1)求点1B 到直线AC 的距离. (2)求直线1AB 到平面BD C 1的距离.

B

A

C

D

1

A

1

B 1

C

1

A

1

A 解:(1)连结BD ,D

B 1,由三垂线定A

C

D B ⊥1,

所以D B 1就是1B 点到直线AC 的距离。 在BD B Rt 1?中,68

10

2

2

2

2

11=-=-=

BC

C

B BB 34=BD .

2122

12

1=+=

∴B

B BD

D B .

(2)因为AC 与平面BD 1C 交于AC的中点D, 设E BC C B =?11,则1AB //DE ,所以1AB //平面BD C 1, 所以1AB 到平面BD 1C 的距离等于A点到平面BD 1C 的距离,等于C点到平面BD 1C 的距离,也就等于三棱 锥1BDC C -的高, B D C

C

B D

C C V V --=1

1

13

13

11

CC S hS BDC

BDC ??=

,13

1312=

∴h ,即直线1AB 到平面BD 1C 的距离是13

13

12. 【点晴】求空间距离注意三点:

1.常规遵循一作二证三计算的步骤; 2.多用转化的思想求线面和面面距离;

3.体积法是一种很好的求空间距离的方法.

【范例4】如图,在长方体AC 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.

(1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为4

π

.

解析:法1

(1)∵AE ⊥面AA 1DD 1,A 1D ⊥AD 1,∴A 1D ⊥D 1E

(2)设点E 到面ACD 1的距离为h ,在△ACD 1中,AC=CD 1=5,AD 1=

2,

故.2

12

1,2

32

1522

11

=

??=

=

-

??=

??BC AE S S ACE C AD 而

1

1

111131,1,.3

3

2

2

3D

AEC

AEC AD C V S DD S h h h -??∴=

?=?∴

?=

?∴=

(3)过D 作DH ⊥CE 于H ,连D 1H 、DE ,则D 1H ⊥CE

, ∴∠DHD 1为二面角D 1—EC —D 的平面角. 设AE=x ,则BE=2-x

11,, 1.

4

,,,

R t D D H D H D D H R t A D E D E R t D H E E H x π?∠=∴=?=

∴?= 在中在中在中

.

4,32.

32543.

54,312

2

π

的大小为

二面角时中在中在D EC D AE x x x

x x x

CE CBE Rt CH DHC Rt ---

=∴-

=?+-=

+

∴+-=

?=?

1

法2:以D 为坐标原点,直线DA 、DC 、DD 1分别为x 、y 、z 轴,建立空间直角坐标系,设AE=x ,则A 1(1,0,1),D 1(0,0,1),E(1,x ,0),A(1,0,0), C(0,2,0).

(1),0)1,,1(),1,0,1(,111DA x E D DA =-=所以因为

(2)因为E 为AB 的中点,则E (1,1,0), 从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1(1-=AD ,

设平面ACD 1的法向量为),,(c b a n =,

则??

???=?=?,0,

01AD n AC n 也即???=+-=+-002c a b a ,得???==c a b a 2,

从而)2,1,2(=n ,所以点E 到平面AD 1C 的距离为.3

13

2

12||1=

-+=

?=n E D h

(3)设平面D 1EC 的法向量),,(c b a n =, ∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD C D x CE

由???=-+=-??????=?=?.0)2(02,

0,

01x b a c b CE n C D n 令b =1, ∴c=2, a =2-x ,

∴).2,1,2(x n -=依题意.2

25

)2(22

2||4

cos 2

1=

+-?

=

?=

x DD n π

∴321+=x (不合,舍去)

,322-=x .

∴AE=32-

时,二面角D 1—EC —D 的大小为

4

π

.

【点晴】由线线、线面、面面的位置寻找满足某些条件的点的位置,是一种新型题

目,它能考查学生分析问题、解决问题的能力,应引起重视,解决这类问题,常用分析法寻找思路。

【文】如图,已知长方体1111

ABC D A B C D -,12,1AB AA ==,直线B D 与平

面11AA B B 所成的角为0

30,A E 垂直B D 于,E F 为11A B 的中点.

(Ⅰ)求异面直线A E 与B F 所成的角;

(Ⅱ)求平面B D F 与平面1A A B 所成二面角(锐角)的大小; (Ⅲ)求点A 到平面B D F 的距离

解(Ⅰ)连结11B D ,过F 作11B D 的垂线,垂足为K ,

∵1B B 与两底面ABCD ,1111A B C D 都垂直,

∴1

1111111FB BB FK B D FB B B D BB B ⊥?

?⊥?⊥???=?

1平面BDD 又1

11A E B B A E B D A E B B B B D B ⊥?

?⊥?⊥???=?

1平面BDD

1

因此//F K A E ∴BFK <

为异面直线B F 与A E 所成的角

连结BK ,由FK ⊥面11BD D B 得FK BK ⊥,从而BK F ?为R t ?

在 1Rt B K F ?和111Rt B D A ?中,

由11111

A D FK

B F B D =得11111112AD AB

A D

B F FK B D BD === 又BF =

∴cos FK BFK BK

<==

∴异面直线B F 与

A E 所成的角为arccos

(Ⅱ)由于AD ⊥面

t A A B 由A

作B F 的垂线

A G ,垂足为G ,连结D G ,则BG D G ⊥

∴A G D <即为平面B D F 与平面1A A B 所成二

面角的平面角。且90DAG <=

,在平面1A A B 中,延长B F 与1A A ;交于点S 。

∵F 为11A B 的中点1111//

,,2

2A F A B A F A B =

∴1A 、F 分别为S A 、SB 的中点,即122SA A A AB

===。

∴ R t B A S ?为等腰直角三角形,垂足G 点实为斜边SB 的中点F ,即F 、

G 重合。

易得12A G A F SB ==

=

R t B A S ?中,A D =

∴tan 3

AD AG D AG

<=

==

,∴arctan

3

AG D <=,

即平面B D F 于平面1A A B 所成二面角(锐角)的大小为arctan

3

(Ⅲ)由(Ⅱ)知平面AFD 是平面BDF 与平面1AA B 所成二面角的平面角所在的平面 ∴面AFD BDF ⊥面在R t A D F ?中,由A作 AH ⊥DF 于H ,则AH 即为点A 到平面BDF 的距离. 由AH·DF=AD·AF ,得

AD AF AH D F === 所以点A 到平面BDF

【点晴】本题综合考查了立体几何的知识,异面直线之间的夹角,面面夹角及点与面的距离,考查学生的空间想象能力。

B 1

A B C A 1

B 1

C 1 M

N A

B D

★★★自我提升

1.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ?α,m ?β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么( D ) (A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题

2.设A 、B 、C 、D 是空间四个不同的点,在下列命题中,不正确...

的 (C ) (A )若AC 与BD 共面,则AD 与BC 共面 (B )若AC 与BD 是异面直线,则AD 与BC 是异面直线 (C) 若AB=AC ,DB=DC ,则AD=BC (D) 若AB=AC ,DB=DC ,则AD ⊥BC

3.一平面截一球得到直径是6cm 的圆面,球心到这个平 面的距离是4cm ,则该球的体积是( C )

(A)

3

3

π100cm

(B)

3

3

π208cm

(C)

3

3

π500cm

(D)

3

3

π

3416

cm

4.在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结

论中不成立...的是(C ) (A )BC//平面PDF (B )DF ⊥平面PA E

(C )平面PDF ⊥平面ABC (D )平面PAE ⊥平面 ABC

5.,m n 是空间两条不同直线,,αβ是两个不同平面,下面有四个命题:

①,//,//m n m n αβαβ⊥?⊥ ②,//,//m n m n αβαβ⊥⊥? ③,//,//m n m n αβαβ⊥?⊥ ④,//,//m m n n ααββ⊥?⊥ 其中真命题的编号是 ①、④ ;(写出所有真命题的编号)

6.已知平面α与平面β交于直线l ,P 是空间一点,PA ⊥α,垂足为A ,PB ⊥β,

垂足为B ,且PA=1,PB=2,若点A 在β内的射影与点B 在α内的射影重合,

则点

P 到l 7.如图,正三棱柱ABC —A 1B 1C 1的所有棱长都为a ,M 是BC 的中点,N 是CC 1

上一点,满足MN ⊥AB 1。

(1) 试确定点N 的位置;

(2) 求点C 1到平面AMN 的距离。

解 (1)∵M 是BC 中点,ABC —A 1B 1C 1为正三棱柱,

∴AM ⊥平面B 1BCC 1, ∴AM ⊥MN , ∵MN ⊥AB 1, ∴MN ⊥平面B 1AM , ∴MN ⊥B 1N ,

设NC =x ,在RtΔB 1BM 中,222

214541a a a M B =+=,

在RtΔNCM 中,22

24

1a x MN +=,

在RtΔB 1C 1N 中,2221)(x a a N B -+=, 在RtΔB 1MN 中,2

2

12

1MN M

B N B +=,

∴2

22

2

2

4

14

5)(x a a x a a ++

=

-+, ∴4

a x =

, ∴N 在CC 1的

4

1处。

(2)点C 1到平面AMN 的距离,即为三棱锥C 1—AMN 的高,

D B

A 设为h ,则AMN AMN C MNC A S h V V ?--?=

=3

111

,

∵11

3

1MNC MNC A S AM V ?-?=

,∴AMN

MNC S S AM h ???=

1

,

∵AM=

a 2

3,MN=

a 4

5, ∴2

16

154

523

21a a a S AMN =??=

?,

2

2

16

3

4

12

12

1212111a a a a S S S MCN MCC MNC =

?

?

-

?=

-=???, ∴a h 10

53=

.

8.如图,直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,AE=EB ,F 为CE 上的点,且BF ⊥平面ACE.

(Ⅰ)求证AE ⊥平面BCE ;

(Ⅱ)求二面角B —AC —E 的大小; (Ⅲ)求点D 到平面ACE 的距离. 解:(I ),,BF ACE BF AE ⊥∴⊥ 平面

D-AB-E 二面角为直二面角, ABCD ABE ∴⊥平面平面,

BC AB BC ABE BC ,AE ⊥∴⊥∴⊥又,平面,

BF BCE BF BC=B BCE AE ?∴⊥ 又平面,,平面。

(II )连结AC 、BD 交于G ,连结FG ,

∵ABCD 为正方形,∴BD ⊥AC , ∵BF ⊥平面ACE ,

∴FG ⊥AC ,∠FGB 为二面角B-AC-E 的平面角,由(I)可知,AE ⊥平面

BCE , ∴AE ⊥EB ,又AE=EB ,AB=2

AE=BE=,

在直角三角形BCE

中,

CE=

BC BE

BF C E

?=

=

==

在正方形中,

BG=BFG

中,sin 3

BF FG B BG

=

=

=

∴二面角B-AC-E 为arcsin

(III )由(II )可知,在正方形ABCD 中,BG=DG , D 到平面ACB 的距离等于B 到平面ACE 的距离,BF ⊥平 面ACE ,线段BF 的长度就是点B

到平面ACE 的距离,即 为

D 到平面AC

E 的距离.故D 3

=.

另法:过点E 作AB EO ⊥交AB 于点O. OE=1.

∵二面角D —AB —E 为直二面角,∴EO ⊥平面ABCD. 设D 到平面ACE 的距离为h ,,ACD E ACE D V V --= .3

13

1EO S h S ACD ACB ?=?∴

??

⊥AE 平面BCE , .EC AE ⊥∴

D

A

D

A

.3

326

22

11

2221212

1

=

?

???=???=∴EC

AE EO DC AD h

∴点D 到平面ACE 的距离为

.3

32

解法二:(Ⅰ)同解法一.

(Ⅱ)以线段AB 的中点为原点O ,OE 所在直线为x 轴,AB 所在直线为y 轴,过O 点平行于AD 的直线为z 轴,建立空间直角坐标系O —xyz ,如图.

⊥AE 面BCE ,BE ?面BCE , BE AE ⊥∴, 在AB O AB AEB Rt 为中,2,=?的中点,

).2,1,0(),0,0,1(),0,1,0(.

1C E A OE -∴=∴

).2,2,0(),0,1,1(==AC AE 设平面AEC 的一个法向量为),,(z y x n =, 则?

??=+=+?????=?=?.022,

0,0,0x y y x n AC n AE 即 解得???=-=,,x z x y

令,1=x 得)1,1,1(-=n 是平面AEC 的一个法向量. 又平面BAC 的一个法向量为)0,0,1(=m , .3331,),cos(=

==

∴n m n m

∴二面角B —AC —E 的大小为.3

3arccos

(III )∵AD//z 轴,AD=2,∴)2,0,0(=AD ,

∴点D 到平面ACE 的距离 .33

232||,cos |||==?>=

点线面之间的位置关系基础练习练习题复习.doc

精品 文 档 点、线、面之间的位置关系及线面平行应用练习 1、 平面L =?βα,点βαα∈∈∈C B A ,,,且L C ∈,又R L AB =?,过 A 、 B 、 C 三点确定的平面记作γ,则γβ?是( ) A .直线AC B .直线B C C .直线CR D .以上都不对 2、空间不共线的四点,可以确定平面的个数是( ) A .0 B .1 C .1或4 D .无法确定 3、在三角形、四边形、梯形和圆中,一定是平面图形的有 个 4、正方体1111D C B A ABCD -中,P 、Q 分别为11,CC AA 的中点,则四边形PBQ D 1是( ) A .正方形 B .菱形 C .矩形 D .空间四边形 5、在空间四边形ABCD 中,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若AC=BD , 且BD AC ⊥,则四边形EFGH 为 6、下列命题正确的是( ) A . 若βα??b a ,,则直线b a ,为异面直线 B . 若βα??b a ,,则直线b a ,为异面直线 C . 若?=?b a ,则直线b a ,为异面直线 D . 不同在任何一个平面内的两条直线叫异面直线 7、在空间中:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有 公共点,则这两条直线是异面直线,以上两个命题中为真命题的是 8、过直线L 外两点作与直线L 平行的平面,可以作( ) A .1个 B .1个或无数个 C .0个或无数个 D .0个、1个或无数个 9、b a //,且a 与平面α相交,那么直线b 与平面α的位置关系是( ) A .必相交 B .有可能平行 C .相交或平行 D .相交或在平面内 10、直线与平面平行的条件是这条直线与平面内的( ) A .一条直线不相交 B .两条直线不相交 C .任意一条直线不相交 D .无数条直线不相交 11、如果两直线b a //,且//a 平面α,则b 与平面α的位置关系是( ) A .相交 B .α//b C .α?b D .α//b 或α?b 12、已知直线a 与直线b 垂直,a 平行于平面α,则b 与平面α的位置关系是( ) A .α//b B .α?b C .b 与平面α相交 D .以上都有可能 13、若直线a 与直线b 是异面直线,且//a 平面α,则b 与平面α的位置关系是( ) A .α//b B .b 与平面α相交 C .α?b D .不能确定 14、已知//a 平面α,直线α?b ,则直线a 与直线b 的关系是( ) A .相交 B .平行 C .异面 D .平行或异面

空间两点之间的距离公式

空间两点间的距离公式 教学目标: 1、通过特殊到一般的情况推导出空间两点间的距离公式 2、感受空间两点间距离公式与平面两点间距离公式的联系与区别 教学重点 两点间距离公式的应用 教学难点 利用公式解决空间几何问题 教学过程 一、复习 1、空间点的坐标的特点 2、平面两点间的距离公式P 1(x 1,y 1),P 2(x 2,y 2) ________________ 线段P 1P 2中点坐标公式______________ 二、新课 1、设P 的坐标是(x,y,z),求|OP| |OP|=___________________________ 2、空间两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),求 |P 1P 2| |P 1P 2|=___________________________ 线段P 1P 2中点坐标公式_________________ 例:()()间的距离求空间两点1,0,6523 21--,P ,,P 练习:()()()513432251,,,C ,,,B ,,A ABC 的三个顶点已知? (1)求。ABC 中最短边的边长 ? (2)求边上中线的长度AC

例:试解释()()()365312222=-+++-z y x 的几何意义。 练习:1、已知()1,,222=++z y x z y x M 满足则M 点的轨迹为_________________ 2、求P ??? ? ??66,33,22到原点的距离。 3、()()。a AB a ,B ,,A 的值求设,4,,3,0210= 4、在长方体1111D C B A ABCD -,AD=2,AB=3,AA 1=2,E 为AC 中点,求D 1E 的长。 三、小结

高考数学分类专题复习之2425空间角与距离

O a b 600 第二十四、二十五讲 空间角与距离 ★★★高考在考什么 【考题回放】 1.如图,直线a 、b 相交与点O 且a 、b 成600 ,过点O 与a 、b 都成600角的直线有( C ) A .1 条 B .2条 C .3条 D .4条 2.(江苏?理)正三棱锥P-ABC 高为2,侧棱与底面所成角为45,则点A 到侧面PBC 的距离是( B ) A .54 B .56 C .6 D .64 3.(全国Ⅰ?理)如图,正四棱柱1111D C B A ABCD -中,AB AA 21=,则异面直线11AD B A 与所成角的余弦值为( D ) A .51 B .52 C .53 D .54 4.已知正四棱锥的体积为12,底面对角线的长为26,则侧面与底面所成的二面角等于 3 π . 5.(四川?理)如图,在正三棱柱ABC-A1B1C1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面 ACC 1A 1所成的角是 6π . 6.在棱长为a 的正方体ABCD —A 1B 1C 1D 1, E 、F 分别为BC 与A 1D 1的中点, (1) 求直线A 1C 与DE 所成的角; (2) 求直线AD 与平面B 1EDF 所成的角; (3) 求面B 1EDF 与 面ABCD 所成的角。 【专家解答】 (1)如图,在平面ABCD 内,过C 作CP//DE 交直 线AD 于P ,则CP A 1∠(或补角)为异面直线A 1C 与 DE 所成的角。在ΔCP A 1中,易得 a P A a DE CP a C A 2 13 ,25,311== ==,由余弦定理得1515cos 1=∠CP A 。 故异面直线A 1C 与DE 所成的角为15 15 arccos 。 (2)ADF ADE ∠=∠ , ∴AD 在面B 1EDF 内的射影在∠EDF 的平分线上。而B 1EDF 是菱形,∴DB 1 为∠EDF 的平分线。故直线 AD 与面B 1EDF 所成的角为∠ADB 1.在RtΔB 1AD 中, ,3,2,11a D B a AB a AD ===则3 3cos 1= ∠ADB 。 故直线AD 与平面B 1EDF 所成的角为3 3arccos 。 (3)连结EF 、B 1D ,交于点O ,显然O 为B 1D 的中点,从而O 为正方体ABCD —A 1B 1C 1D 1的中心,作OH⊥平面ABCD ,则H 为正方形ABCD 的中心。再作HM⊥DE,垂足为M ,连结OM ,则OM⊥DE(三垂线定理),故∠OMH 为二面角B 1-DE-A 的平面角。 在RtΔDOE 中,23,22a OD a OE ==a DE 2 5 =, 则由面积关系得a DE OE OD OM 1030 =?=。 在RtΔOHM 中6 30 sin = =∠OM OH OMH 。 O

(精编)点线面之间的位置关系测试题)

点、直线、平面之间的位置关系 一、选择题 1. 若是平面外一点,则下列命题正确的是( ) ( A )过只能作一条直线与平面相交 ( B )过可作无数条直线与平面 垂直 (C )过只能作一条直线与平面平行 (D )过可作无数条直线与平面平行 2.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题 ① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题... 的序号是 ( ) A.①②③ B.①②④ C.②③④ D.①③④ 3.设正四棱锥S —ABCD 的侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成的角是 ( ) A .30° B .45° C .60° D .90° 4.如图所示,在正方形ABCD 中, E 、 F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF 中,必有 ( ) 5.下列说法正确的是( ) A .若直线平行于平面内的无数条直线,则 B .若直线在平面外,则 C .若直线,,则 D .若直线,,则直线就平行于平面内的无数条直线 6.在下列条件中,可判断平面与平面平行的是( ) A .、都垂直于平面 B .内存在不共线的三点到平面的距离相等 C .、是内两条直线,且, D .、是两条异面直线,且,,, 7.已知直线a ∥平面α,直线b ?α,则a 与b 的关系为( ) A .相交 B .平行 C .异面 D .平行或异面1.设M 表示平面,a 、b 表示直线,给出下列四个命题: ①M b M a b a ⊥????⊥// ②b a M b M a //????⊥⊥ ③????⊥⊥b a M a b ∥M ④????⊥b a M a //b ⊥M . 其中正确的命题是 ( ) A.①② B.①②③ C.②③④ D.①②④ 8.把正方形ABCD 沿对角线AC 折起,当点D 到平面ABC 的距离最大时, 直线BD 和平面ABC 所成角的大小为 ( ) A . 90 B . 60 C . 45 D . 30 第4题图

空间点到直线的距离公式

空间点到直线的距离公式 y0, z0),平面:A*x+B*y+C*z+D=0,距离d。 d=|A*x0+B*y0+C*z0+D|/√(A*A+B*B+C*C)空间点到直线距离点(x0, y0, z0),直线L(点向式参数方程):(x-xl)/m=(y-yl)/n=(z- zl)/p=t。 (1)式(1)的注释:点(xl, yl, zl)是直线上已知的一点,向 量(m, n, p)为直线的方向向量,t为参数方程的参数。空间直线 的一般式方程(两个平面方程联立)转换为点向式方程的方法, 请参考《高等数学》空间几何部分。设点(x0, y0, z0)到直线L 的垂点坐标为(xc, yc, zc)。因为垂点在直线上,所以有:(xc-xl)/m=(yc-yl)/n=(zc-zl)/p=t (2)式(2)可变形为:xc=m*t+xl, yc=n*t+yl, zc=p*t+zl、 (3)且有垂线方向向量(x0-xc, y0-yc, z0-zc)和直线方向向量(m, n, p)的数量积等于0,即:m*(x0- xc)+n*(y0-yc)+p*(z0-zc)=0 (4)把式(3)代入式(4),可消去未知 数“xc, yc, zc”,得到t的表达式:t=[m*(x0-xl)+n*(y0- yl)+p*(z0-zl)]/(m*m+n*n+p*p) (5)点(x0, y0, z0)到直线的距离d就是该点和垂点(xc, yc, zc)的距离:d=√[(x0-xc)^2+(y0-yc)^2+(z0-zc)^2] (6)其中xc, yc, zc可以用式(3)和式(5)代入消去。 第 1 页共 1 页

届高三数学第二轮复习空间角与距离

空间角与距离 ★★★高考考什么 【考点透视】 异面直线所成角,直线与平面所成角,求二面角每年必考,作为解答题可能性最大. 【热点透析】 1.转化思想: ① ??⊥?⊥?⊥线线平行线面平行面面平行,线线线面面面 ② 将异面直线所成的角,直线与平面所成的角转化为平面角,然后解三角形 2.求角的三个步骤:一猜,二证,三算.猜是关键,在作线面角时,利用空间图形的平行,垂直,对称关系,猜斜线上一点或斜线本身的射影一定落在平面的某个地方,然后再证 3.二面角的平面角的主要作法:①定义 ②三垂线定义 ③ 垂面法 距离 【考点透视】 判断线线、线面、面面的平行与垂直,求点到平面的距离及多面体的体积。 【热点透析】 转化思想: ① ??⊥?⊥?⊥线线平行线面平行面面平行,线线线面面面 ; ② 异面直线间的距离转化为平行线面之间的距离, 平行线面、平行面面之间的距离转化为点与面的距离。 2.空间距离则主要是求点到面的距离主要方法: ①体积法; ②直接法,找出点在平面内的射影 ★★★高考将考什么 【范例1】(07北京?理?16题)如图,在Rt AOB △中, π 6OAB ∠= ,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上. (I )求证:平面COD ⊥平面AOB ; (II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小; (III )求CD 与平面AOB 所成角的最大值. 解法一: (I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, 又二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =, CO ∴⊥平面AOB , 又CO ?平面COD . ∴平面COD ⊥平面AOB . (II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角. 在Rt COE △中,2CO BO ==,1 1 2OE BO ==, CE ∴== 又 12DE AO = =. ∴在Rt CDE △ 中, tan CE CDE DE ===.O C A D B E

点线面位置关系(知识点加典型例题)

2.1空间中点、直线、平面之间的位置关系 2.1空间点、直线、平面之间的位置关系 1、教学重点和难点 重点:空间直线、平面的位置关系。 难点:三种语言(文字语言、图形语言、符号语言)的转换 2、三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α ,A ∈α ,B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 推论:① 一条直线和其外一点可确定一个平面 ②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该 点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 (4)公理 4:平行于同一条直线的两条直线平行 等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么L A · α C · B · A · α P · α L β

2、空间两条不重合的直线有三种位置关系:相交、平行、异面 3、异面直线所成角θ的范围是 00<θ≤900 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0,); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 共面直线 =>a ∥c 2

点线面之间的位置关系的知识点总结

高中空间点线面之间位置关系知识点总结 第二章直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1平面含义:平面是无限延展的 2平面的画法及表示 (1)平面的画法:水平放置的平面 通常画成一个平行四边形,锐角画成45°,且横边画成邻边的 2倍长(如图) (2)平面通常用希腊字母a、B、Y等表示,如平面a、平面B等,也可以 用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC平面ABCD等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为 公理1作用:判断直线是否在平面内 (2)公理2 :过不在一条直线上的三点,有且只有一个平面。符号表示为:A B、C三点不共线=> 有且只有一个平面a, 使A€a、B€a、C€a。 公理2作用:确定一个平面的依据。 (3)公理3 :如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直 线。符号表示为:P€aQB => aPp =L,且P€ L 公理3作用:判定两个平面是否相交的依据 2.1.2空间中直线与直线之间的位置关系 1空间的两条直线有如下三种关系: f相交直线:同一平面内,有且只有一个公共点; 共面直线 Y l平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。 符号表示为:设a、b、c是三条直线 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用公理4作用:判断空间两条直线平行的依据。3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4注意点: ①a'与b'所成的角的大小只由a、b的相互位置来确定,与0的选择无关,为简便,点0 —般取在两直线中的一条上; ②两条异面直线所成的角(0,); ③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a丄b; a// b 2公理4:平行 =>a // c

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

空间角及空间距离的计算知识点

空间角及空间距离的计算 1.异面直线所成角:使异面直线平移后相交形成的夹角,通常在在两异面直线中的一条上取一点, 过该点作另一条直线平行线, 2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。如图:PA 是平面α的一条斜线,A 为斜足,O 为垂足,OA 叫斜线PA 在平面α上射影,PAO ∠为线面角。 3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角l αβ--,二面角的大小 指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直 用二面角的平面角的定义求二面角的大小的关键点是: ①明确构成二面角两个半平面和棱; ②明确二面角的平面角是哪个? 而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。(求空间角的三个步骤是“一 找”、“二证”、“三计算”) 4.异面直线间的距离:指夹在两异面直线之间的公垂线段的长度。如图PQ 是两异面直线间的 距离 (异面直线的公垂线是唯一的,指与两异面直线垂直且相交的直线) 5. 点到平面的距离:指该点与它在平面上的射影的连线段的长度。 如图:O 为P 在平面α上的射影, 线段OP 的长度为点P 到平面α的距离 长方体的“一角” 模型 在三棱锥P ABC -中,,,PA PB PB PC PC PA ⊥⊥⊥,且,,PA a PB b PC c ===. ①以P 为公共点的三个面两两垂直; ③P 在底面ABC 的射影是△ABC 的垂心 ----,,l OA OB l OA l OB l AOB αβαβαβ??⊥⊥∠如图:在二面角中,O 棱上一点,,, 的平面角。 且则为二面角 a b ''??如图:直线a 与b 异面,b//b ,直线a 与直线b 的夹角为两异 面直线与所成的角,异面直线所成角取值范围是(0,90] 求法通常有:定义法和等体积法 等体积法:就是将点到平面的距离看成是 三棱锥的一个高。 如图在三棱锥V ABC -中有: S ABC A SBC B SAC C SAB V V V V ----=== C A

点线面之间的位置关系的知识点汇总

点线面之间的位置关系的知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

高中空间点线面之间位置关系知识点总结 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥b 。 2 公理4:平行于 c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; D C B A α L A · α C · B · A · α P · α L β 共面=>a ∥2

最新高考数学专题复习立体几何重点题型空间距离空间角(师)

立体几何题型 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足, 当然别忘了转化法与等体积法的应用. 典型例题 例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证: 1AB ⊥ 平面 1A BD ; (Ⅱ)求二面角 1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的 A B C D 1 A 1 C 1 B

高中数学空间点线面之间的位置关系讲义

2.1空间点、直线、平面之间的位置关系 一、平面 1 平面含义: 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 二、三个公理: 三、空间直线、平面之间的位置关系 D C B A α

四、等角定理: 五、异面直线所成的角 1.定义: 2.范围: 3.图形表示 4.垂直: 六、典型例题

1.下面推理过程,错误的是( ) (A ) αα??∈A l A l ,// (B ) ααα??∈∈∈l B A l A ,, (C ) AB B B A A =??∈∈∈∈βαβαβα,,, (D ) βαβα=?∈∈不共线并且C B A C B A C B A ,,,,,,,, 2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( ) (A )1个或3个 (B )1个或4个 (C )3个或4个 (D )1个、3个或4个 3.以下命题正确的有( ) (1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面; (2)若a ∥α,则a 平行于平面α内的所有直线; (3)若平面α内的无数条直线都与β平行,则α∥β; (4)分别和两条异面直线都相交的两条直线必定异面。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( ) (A ) 2 (B ) 3 (C ) 6 (D ) 12 5.以下命题中为真命题的个数是( ) (1)若直线l 平行于平面α内的无数条直线,则直线l ∥α; (2)若直线a 在平面α外,则a ∥α; (3)若直线a ∥b ,α?b ,则a ∥α; (4)若直线a ∥b ,α?b ,则a 平行于平面α内的无数条直线。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 6.若三个平面两两相交,则它们的交线条数是( ) (A ) 1条 (B ) 2条 (C ) 3条 (D )1条或3条 7.若直线l 与平面α相交于点O ,l B A ∈,,α∈D C ,,且BD AC //,则O,C,D 三点的位置关系是 。 8.在空间中, ① 若四点不共面,则这四点中任何三点都不共线。② 若两条直线没有公共点,则这两条直线是异面直线。 以上两个命题中为真命题的是 (把符合要求的命题序号填上) 9.已知长方体1111D C B A ABCD -中,M 、N 分别是1BB 和BC 的中点,AB=4,AD=2,1521=BB ,求异面直线D B 1与MN 所成角的余弦值。 10.正方体1111ABCD A B C D -中,E 、F 分别为11D C 和11B C 的中点,P 、Q 分别为AC 与BD 、11A C 与EF 的交点. (1)求证:D 、B 、F 、E 四点共面;(2)若1A C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线.

空间中的距离(经典)

空间中的距离 一、知识梳理 ?异面直线间的距离:指夹在两异面直线之间的 公垂线段的长度。如图PQ 是两异面直线间的距离 (异面直线的公垂线是唯一的,指与两异面直线垂直且相交的直线) ?点到平面的距离:指该点与它在平面上的 射影的连线段的长度。 如图:O 为P 在平面α上的射影, 线段OP 的长度为点P 到平面α的距离 求法通常有:定义法和等体积法 等体积法:就是将点到平面的距离看成是 三棱锥的一个高。如图在三棱锥V ABC - 中有:S ABC A SBC B SA C C SAB V V V V ----=== 二、典例精析 【例1】如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线;(2)求AB 和CD 间的距离. 【练习】如图,在三棱柱111ABC A B C -中,AB ⊥侧面11BB C C ,E 为棱1CC 上异于C 、 1C 的一点,1EA EB ⊥,已知2AB =, 12 BB =,1BC =, 13 BCC π ∠=,求:异面直线AB 与1EB 的距离. A B C 1 A 1 B 1 C E

C A D B O E P B E D C A 【例2】菱形ABC D 中,∠BAD =60°,AB =10 cm,P A ⊥平面ABCD ,且P A =5 cm. 求(1)P 到AD 的距离;(2)P 到BD 的距离;(3)P 到CD 的距离. 【例3】如图,在底面是矩形的四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA AB ==,4BC =.E 是PD 的中点. (1)求证:平面PDC ⊥平面PAD ; (2)求B 点到平面EAC 的距离. 【例4】如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点CA=CB=CD=BD=2,AB=AD=2 (1)求证:⊥AO 平面BCD ; (2)求点E 到平面ACD 的距离.

2.4空间直角坐标系与空间两点的距离公式

2.4. 空间直角坐标系与空间两点的距离公式 课程学习目标 [课程目标] 目标重点:空间直角坐标系和点在空间直角坐标系中的坐标及空间两点距离公式.目标难点:确定点在空间直角坐标系中的坐标,以及空间距离公式的推导. [学法关键] 1.在平面直角坐标系中,过一点作一条轴的平行线交另一条轴于一点,交点在这个轴上的坐标,就是已知点相应的一个坐标,类似地,在空间直角坐标系中,过一点作两条轴确定的平面的平行平面交另一条轴于一点,交点在这条轴上的坐标就是已知点的一个相应的坐标. 2.通过类比平面内两点间的距离公式来理解空间两点的距离公式 研习点1.空间直角坐标系 为了确定空间点的位置,我们在空间中取一点O作为原点,过O点作三条两两垂直的数轴,通常用x、y、z表示. 轴的方向通常这样选择:从z轴的正方向看,x轴的半轴沿逆时针方向转90°能与y轴的半轴重合. 这时,我们在空间建立了一个直角坐标系O-xyz,O叫做坐标原点. 如何理解空间直角坐标系? 1.三条坐标轴两两垂直是建立空间直角坐标系的基础; 2.在空间直角坐标系中三条轴两两垂直,轴的方向通常这样选择:从z轴的正方向看,x轴的半轴沿逆时针方向转90°能与y轴的半轴重合; 3.如果让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,那么称这个坐标系为右手直角坐标系,一般情况下,建立的坐标系都是右手直角坐标系; 4.在平面上画空间直角坐标系O-xyz时,一般情况下使∠xOy=135°,∠yOz=90°. 研习点2.空间点的坐标 1.点P的x坐标:过点P作一个平面平行于平面yOz,这样构造的平面同样垂直于x轴,这个平面与x轴的交点记为P x,它在x轴上的坐标为x,这个数x就叫做点P的x坐标;2.点P的y坐标:过点P作一个平面平行于平面xOz,这样构造的平面同样垂直于y轴,这个平面与y轴的交点记为P y,它在y轴上的坐标为y,这个数y就叫做点P的y坐标;3.点P的z坐标:过点P作一个平面平行于平面xOy,这样构造的平面同样垂直于z轴,这个平面与z轴的交点记为P z,它在z轴上的坐标为z,这个数z就叫做点P的z坐标; 这样,我们对空间的一个点,定义了一组三个有序数作为它的坐标,记做P(x,y,z),其中x,y,z也可称为点P的坐标分量.

:空间距离的各种计算

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23 ,∴CF =FD =2 1,∠EFC =90°,EF = 2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. 例1题图 例2题图

空间角与距离知识点与题型归纳总结

空间角与距离知识点与题型归纳总结 知识点精讲 一、 空间角的定义和范围 (1) 两条异面直线所成角θ的范围是0]2π(,,当θ=2 π 时,这两条异面直线互相垂直。 (2) 斜线AO 与它在平面α内的射影AB 所成角θ叫做直线与平面所成的角。 平面的斜线和平面所成的角,是这条斜线和这个平面内的任一直线所成角中最小的角,如果直线 和平面垂直,那么直线与平面所成的角为 2 π ;如果直线和平面平行或直线在平面内,那么就是直线和平面所成的角为0.直线和平面所成的角的范围为[0]2π,;斜线和平面所成的角的范围为(0,).2 π (3) 从一条直线出发的两个半平面所组成的角叫做二面角,这条直线叫做二面角的棱,这两个半平 面叫做二面角的面,棱为l ,两个平面分别为α,β的二面角记做α-l -β,二面角的范围是[0,]π (4) 一个平面垂直于二面角的公共棱l ,且与两个半平面的交线分别是射线OA ,OB ,则∠AOB 叫做二面角的平面角,平面角是直角的二面角叫做直二面角,相交成直二面角的两个平面垂直。 二、 点到平面距离的定义 点到平面的距离即点到它在平面内的正射影的距离。 题型归纳及思路提示 题型1 空间角的计算 思路提示 求解空间角如异面直线所成角,直线与平面所成角,二面角的平面角的大小;常用的方法有:(1)定义法;(2)选点平移法;(3)垂线法:(4)垂面法;(5)向量法。 一、异面直线所成的角 方法一:通过选点平移法将异面直线所成的角转化为共面相交的两直线的夹角来求解,但要注意 两条异面直线所成角的范围是0]2π (,。 方法二:向量法,设异面直线a 和b 的方向向量为a r 和b r ,利用夹角余弦公式可求得a 和b 的夹 角大小α,且|| cos cos ,|||| a b =|a b |a b α?<>=r u u r r r u r u u r 。 例8.59 直三棱柱111ABC A B C -中,若∠BAC =90°,AB =AC =1AA ,则异面直线1BA 与1AC 所成的角等于( ) A.30° B.45° C.60° D.90° 分析 通过选点平移法将异面直线所成的角转化为相交直线的夹角,在三角形中利用余弦定理来求解.

空间角与距离

空间角与距离 考点1 求异面直线所成的角 1.如图所示,在长方体ABCD -EFGH 中,AB =23,AD =23,AE =2,则BC 和EG 所成角的大小是________,AE 和BG 所成角的大小是________. 2空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,E 、F 分别为BC 、AD 的中点,求EF 与AB 所成角的大小. 3(2018·全国卷Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( ) A. 22 B.32 C.52 D.72 4.(2017·全国卷Ⅱ)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为(C) A.32 B.155 C.105 D.33 5.四棱锥P -ABCD 中,底面是边长为2的正方形,若四条侧棱相等,且该四棱锥的体积V =46 3 ,则直线PA 与底面ABCD 所成角的大小为( ) A .30° B .45° C .60° D .90°

6棱长都为2的直平行六面体ABCD -A 1B 1C 1D 1中,∠BAD =60°,则对角线A 1C 与侧面DCC 1D 1所成的角的正弦值为 . 7已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为9 4 ,底面是边长为3的正三角形.若P 为底面A 1B 1C 1 的中心,则PA 与平面ABC 所成角的大小为( ) A.5π12 B.π3 C.π4 D.π6 8已知四棱锥P -ABCD ,底面ABCD 是菱形,PD ⊥平面ABCD ,∠DAB =60°,E 为AB 中点,F 为PD 中点,PD =AD. (1)证明:平面PED ⊥平面PAB ; (2)求二面角P -AB -F 的平面角的余弦值. 9如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上. (1)证明:AP ⊥BC ; (2)已知BC =8,PO =4,AO =3,OD =2.求二面角B -AP -C 的大小.

点 线 面之间的位置关系知识易错点及例题合集

点、线、面之间的位置关系知识易错点及例题合集 最近许多高二的同学问必修二点线面之间的知识点,普遍感觉这块非常难学,小数老师今天整理了易错点和例题给大家,作为参考! [整合·网络构建]

[警示·易错提醒] 1、不要随意推广平面几何中的结论 平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”、“垂直于同一条直线的两条直线平行”等性质在空间中就不成立. 2、弄清楚空间点、线、面的位置关系 解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,要注意定理应用准确、考虑问题全面细致。 3、不要忽略异面直线所成的角的范围 求异面直线所成的角的时候,要注意它的取值范围是(0°,90°]。 两异面直线所成的角转化为一个三角形的内角时,容易忽略这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角. 4、透彻理解直线与平面的关系 直线与平面位置关系的分类要清晰,一种分法是直线在平面内与直线在平面外(包括直线与平面平行和相交);另一种分法是直线与平面平行(无公共点)和直线与平面不平行(直线在平面内和直线与平面相交)。 5、使用判定定理时不要忽略条件 应用直线与平面垂直的判定定理时,要熟记定理的应用条件,不能忽略“两条相交直线”这一关键点。 专题1共点、共线、共面问题 (1)、证明共面问题

证明共面问题,一般有两种证法:一是先由某些元素确定一个平面,再证明其余元素在这个平面内;二是先分别由不同元素确定若干个平面,再证明这些平面重合。 (2)、证明三点共线问题 证明空间三点共线问题,通常证明这些点都在两个面的交线上,即先确定出某两点在某两个平面的交线上,再证明第三个点是两个平面的公共点,当然必在两个平面的交线上。 (3)、证明三线共点问题 证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过该点,把问题转化为证明点在直线上的问题。 [例1]如图所示,在空间四边形ABCD中,E,F 分别为AB,AD 的中点,G,H分别在BC,CD上,且 BG∶GC=DH∶HC=1∶2,求证: (1)、E,F,G,H四点共面; (2)、EG与HF的交点在直线AC上。 证明:(1)、因为BG∶GC=DH∶HC,所以GH∥BD。 又因为E,F分别为AB,AD的中点,所以EF∥BD,所以EF∥GH,所以E,F,G,H四点共面。 (2)、因为G,H不是BC,CD的中点,所以EF∥GH,且EF≠GH,所以EG 与FH必相交。 设交点为M,而EG?平面ABC,HF?平面ACD,所以M∈平面ABC,且M ∈平面ACD。 因为平面ABC∩平面ACD=AC,所以M∈AC,即EG与HF的交点在直线AC 上。 归纳升华:证明共点、共线、共面问题的关键是合理地利用三个公理,做

相关文档
相关文档 最新文档