文档库 最新最全的文档下载
当前位置:文档库 › 概率论答案第二册

概率论答案第二册

概率论答案第二册
概率论答案第二册

华东理工大学

概率论与数理统计

作业簿(第二册)

学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________

第四次作业

一. 填空题:

1.设事件A,B 相互独立,且5.0)(,2.0)(==B P A P ,则)(B A B P ∪= 4/9

2. 设A 、B 、C 两两独立,且ABC=Φ, P(A)=P(B)=P(C)<

21, 16

9)(=∪∪C B A P 则P(C)= 0.25

3. 已知事件A,B 的概率()0.4,()0.6P A P B ==且()0.8P A B ∪=,则(|)P A B =

13,(|)P B A =1

2

。 4. 已知()0.3,()0.5P A P B ==,(|)0.4P A B =,则()P AB = 0.2,()P A B ∪= 0.6,

(|)P B A =

2

3

二. 选择题:

1. 设袋中有a 只黑球,b 只白球,每次从中取出一球,取后不放回,从中取两次,则第二次取出黑球的概率为( A );若已知第一次取到的球为黑球,那么第二次取到的球仍为黑球的概率为( B )

A.)(b a a + B.11?+?b a a C. )1)(()

1(?++?b a b a a a D.2

2)(b a a +

2.已知()0.7,()0.6,()0.6,P A P B P B A ===则下列结论正确的为( B )。

A .A

B 与互不相容; B .A B 与独立;

C .A B ?;

D .()0.4P B A =.

3.对于任意两事件A 和B ,则下列结论正确的是( C )

A.一定不独立,,则若B A AB ?=; B.一定独立,,则若B A AB ?≠; C.有可能独立,,则若B A AB ?≠; D.一定独立,,则若B A AB ?= 4.设事件,,,A B C D 相互独立,则下列事件对中不相互独立的是( C )

)(A A 与BC D ∪; )(B AC D ∪与BC ; )(C BC 与A D ?; )(D C A ?与BD .

三. 计算题:

1.设有2台机床加工同样的零件,第一台机床出废品的概率为0.03,第二台机床出废品的概率为0.06,加工出来的零件混放在一起,并且已知第一台机床加工的零件比第二台机床多一倍。 (1) 求任取一个零件是废品的概率

(2) 若任取的一个零件经检查后发现是废品,则它是第二台机床加工的

概率。 解:(1)设B ={取出的零件是废品},1A ={零件是第一台机床生产的}, 2A ={零件是第二台机床生产的},则1221(),()33

P A P A ==, 由全概率公式得:

112221()(|)()(|)()0.030.060.0433

P B P B A P A P B A P A =+=×+×= (2)222(|)()0.02

(|)0.5()0.04

P B A P A P A B P B ===

2.某工厂的车床、钻床、磨床、刨床的台数之比为 1:2:3:9,它们在一定时间内需要修理的概率之比为 1:3:2:1,当一台机床需要修理时,求这台机床是车床的概率。

解:设1234,,,A A A A 分别表示车床、钻床、磨床、刨床,而B 表示“机床需要修理”,利用贝

叶斯公式,得

1114

1

()()

179159

(|)17352715372151711522

(|)()

i

i

i P A B P A P A B P B A P A =×=

=

=×+×+×+×∑

3.三个元件串联的电路中,每个元件发生断电的概率依次为0.1,0.2,0.5,且各元件是否断电相互独立,求电路断电的概率是多少?

解:设321A A A ,,分别表示第1,2,3个元件断电,A 表示电路断电, 则321A A A ,,相互独立,321A A A A ++=,

4.有甲、乙、丙三个盒子,其中分别有一个白球和两个黑球、一个黑球和两个白球、三个白球和三个黑球。掷一枚骰子,若出现1,2,3点则选甲盒,若出现4点则选乙盒,否则选丙盒。然后从所选的中盒子中任取一球。求: (1)取出的球是白球的概率;

(2)当取出的球为白球时,此球来自甲盒的概率。

解: 设A={选中的为甲盒}, B={选中的为乙盒}, C={选中的为丙盒},

D={取出一球为白球},则 312

(),(),()666P A P B P C ===

123

(|),(|),(|)336P D A P D B P D C ===

3112234

()6363669P D =×+×+×=

31363(|)489P A D ×==

第五次作业

一.填空题:

1.某班级12名女生毕业后第一年的平均月薪分别为

18002000 3300185015002900 4100

3000

5000

2300

3000

2500

则样本均值为2770.8 ,样本中位数为2700 ,众数为3000 ,极差为 3500 ,

样本方差为1039299

2.设随机变量ξ的分布函数为()F x ,则

{}P a ξ≥=1(0)F a ??,

{}P a ξ==()(0)F a F a ??

64

0501201101111321321321.).)(.)(.()()()()()()(=????=?=++?=++=A P A P A P A A A P A A A P A P

20,0(),

011,1

x F x Ax x x ≤??=<≤??>?

则常数A 的范围为 [0,1],{0.50.8}P ξ≤≤=_0.39A ____

二. 选择题:

1. 描述样本数据“中心”的统计量有(A,B,C ),描述样本数据“离散程度”的统计量有(D,E )

A .样本均值 B. 中位数 C. 众数 D. 极差 E. 样本方差 2. 下列表述为错误的有(C )

A .分布函数一定是有界函数 B. 分布函数一定是单调函数

C .分布函数一定是连续函数 D. 不同的随机变量也可能有相同的分布函数 3.下列函数中,可作为某一随机变量的分布函数是( A )

(A )x x F arctan 121)(π+= (B ) 1(1),0

()20,0x

e x F x x ???>?=??≤?

(C )21

()1F x x

=+ (D ) ()()x F x f t dt ?∞=∫,其中()1f t dt +∞?∞=∫

4.设概率β≥>)(1x X P ,α≥≤)(2x X P ,且21x x <,则)(21x X x P ≤< ( C )

)(A 1?+≤βα; )(B )(1βα+?≤;

)(C 1?+≥βα; )(D )(1βα+?≥。

三. 计算题:

1. 利用EXCEL 的数据分析工具验算填空题1. 的计算结果,

并把样本数据分为四组画出频率直方图(本题可选做)

6

6331100

,

,,

,,12131410)(≥<≤<≤<≤ξP ,)1(≥ξP

解:由公式()()(0)P x F x F x ξ==??,得

1

(3)(30)3P F ξ<=?=,

1

(3)(3)2

P F ξ≤==,

12

(1)1(1)133P F ξ>=?=?=,

13

(1)1(10)144

P F ξ≥=??=?=

3.已知随机变量ξ只能取-2,0,2,4四个值,概率依次为,,,,2643c

c c c 求常数c ,

并计算(1|1)P ξξ<>?

解:利用规范性,有.12546

43=?=+++c c c c c

因此,)(,)(,)(,)(1524512154052

2=======?=ξξξξP P P P

{(1)(1)}(0)

4(1|1)=

=(1)(0)(2)(4)9

P P P P P P P ξξξξξξξξξ>?<=<>?=>?=+=+=I .

第六次作业

一. 填空题:

1. 若随机变量~[1,6]U ξ,则方程210x x ξ++=有实根的概率为0.8

2. 设随机变量X 的概率密度为??

?≤≤=其它

10)(2

x Ax x f , 则A =__3__

3. 设离散型随机变量ξ的分布函数为

??

?

??≥<≤??<=0

10107

0100x x x x F .)(

则ξ的分布律为7.0)10(=?=ξP ,3.0)0(==ξP 4. 设连续型随机变量X 的概率密度函数为

(0,1)()0,(0,1)x f x x ∈=???

则分布函数3/20,0

(),011,1x F x x x x

=≤

二. 选择题:

1.在下列函数中,可以作为随机变量的概率密度函数的是(A ) A. 2,01

()0,x x f x <

B .2

,01()0

,

x x f x ?<<=?

?其他

C .cos ,0()0,x x f x π

≤≤?=??其他

D .2,0

()0

,0x e x f x x ??>=?≤?

2.下列表述中不正确有(A ,D )

A .()F x 为离散型随机变量的分布函数的充要条件是()F x 为阶梯型函数

B . 连续型随机变量的分布函数一定是连续函数

C . 连续型随机变量取任一单点值的概率为零

D . 密度函数就是分布函数的导数 三. 计算题 1. (柯西分布)设连续随机变量ξ的分布函数为

x B A x F arctan )(+= +∞<<∞?x 求:(1)系数A 及B ;

(2) 随机变量ξ落在区间)1,1(?内的概率;

(3)随机变量ξ的概率密度。 解: (1) 按照分布函数的定义,有

()lim arctan 0,

2

()lim arctan 1,

2

x x F A B x A B F A B x A B π

π

→?∞

→+∞

?∞=+=?

=+∞=+=+

=

得11,2

A B π=

=.

(2) 1

(11)(11)(1)(1)2

P P F F ξξ?<<=?<≤=??=

. (3) 2

111()()arctan ,2(1)p x F x x x x ππ′??

′==+=?∞<<+∞??+??

2.学生完成一道作业的时间Χ是一个随机变量,单位为小时,它的密度函数为

其他

5

.000

)(2≤≤??

?+=x x

cx x p

(1) 确定常数c ;

(2) 写出Χ的分布函数;

(3) 试求在20min 内完成一道作业的概率; (4) 试求10min 以上完成一道作业的概率。 解:

(1)利用规范性,有

0.5

20

1

1()()21248

c p x dx cx x dx c +∞

?∞

==+=

+?=∫

∫. (2)当0x <时,()()00x

x F x p t dt dt ?∞

?∞

=

==∫

∫,

当00.5x ≤<时,23201()()(21)72

x

x

F x p t dt t t dt x x ?∞

==+=+

∫, 当0.5x ≥时,0.520

()()(21)1x

F x p t dt t t dt ?∞

==+=∫

∫,

综上所述,

320, 0,1()7, 00.5,21, 0.5.

x F x x x x x

=+≤

(3)1117

0()(0)3354

P F F ξ??<≤

=?=????. (4)12216111031031()((21)66108108

P F or x x dx ξ??>

=?=+=???

?∫

3. 袋内有5个黑球3个白球,每次抽取一个不放回,直到取得黑球为至。记Y 为抽取次数,求Y 的概率分布及至少抽取3次的概率。

解: (1) Y 的可能取值为1,2,3,4 P(Y=1)=5/8,

P(Y=2)=3/8×5/7=15/56,

P(Y=3)= 3/8×2/7×5/6=5/56, P(Y=4)= 3/8×2/7×1/6=1/56。 所以Y 的概率分布为

(2) P(Y ≥4. 某种灯具的寿命ξ具有概率密度:

210

,10()0,10

x f x x x ?>?=??≤?

任取三只这种灯具,问150小时内,三只灯具全部完好的概率是多少?又问150

小时内,至少有两只损坏的概率又是多少?

解: 设p 表示150小时内,一只灯具完好的概率,η 表示损坏灯具的个数,

150

150

210

10101014{150}d 15

p P x x x ξ=<==?=∫

3

1{0}0.000315P η??

==≈????

2

3

2314114{2}0.987151515P C η????

≥=?+≈????????

概率论与数理统计习题集及答案

概率论与数理统计习题 集及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《概率论与数理统计》作业集及答 案 第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是: S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是: S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则A= ;B:数点大于2,则 B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: . 2. 设}4 =x B = x ≤ ≤ x < S:则 x A x 2: 1: 3 }, { { }, = {≤< 0: 5 ≤

(1)=?B A ,(2)=AB ,(3) =B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知, 3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则 =?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随 机地抽一个签,说明两人抽“中‘的概率相同。

概率统计-习题及答案-(1)

概率统计-习题及答案-(1)

习题一 1.1写出下列随机试验的样本空间,并把指定的事件表示为样本点的集合: (1)随机试验:考察某个班级的某次数学考试的平均成绩(以百分制记分,只取整数); 设事件A表示:平均得分在80分以上。 (2)随机试验:同时掷三颗骰子,记录三颗骰子点数之和; 设事件A表示:第一颗掷得5点; 设事件B表示:三颗骰子点数之和不超过8点。(3)随机试验:一个口袋中有5只球,编号分别为1,2,3,4,5,从中取三个球; 设事件A表示:取出的三个球中最小的号码为1。 (4)随机试验:某篮球运动员投篮练习,直至投中十次,考虑累计投篮的次数; 设事件A表示:至多只要投50次。 (5)随机试验:将长度为1的线段任意分为三段,依次观察各段的长度。 1.2在分别标有号码1~8的八张卡片中任抽一

张。 (1)写出该随机试验的样本点和样本空间; (2)设事件A为“抽得一张标号不大于4的卡片”,事件B为“抽得一张标号为偶数的 卡片”,事件C为“抽得一张标号能被3整除的卡片”。 试将下列事件表示为样本点的集合,并说明分别表示什么事件? (a)AB;(b) B A+;(c) B;(d) B A-; (e) BC;(f) C B+。 1.3 设A、B、C是样本空间的事件,把下列事件用A、B、C表示出来: (1)A发生;(2)A不发生,但B、C至少有一个发生; (3)三个事件恰有一个发生;(4)三个事件中至少有两个发生; (5)三个事件都不发生;(6)三个事件最多有一个发生; (7)三个事件不都发生。 1.4 设}10,,3,2,1{ Ω,}5,3,2{=A,}7,5,3{=B,}7,4,3,1{=C,求 =

概率论与数理统计第四版第二章习题答案

概率论与数理统计 第二章习题 1 考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。 解 设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010; 2.(1)一袋中装有5只球,编号为1,2,3,4,5。在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律 (2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。 解 (1)在袋中同时取3个球,最大的号码是3,4,5。每次取3个球,其总取法: 3554 1021 C ?= =?,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。因而其概率为 2 2335511 {3}10 C P X C C ==== 若最大号码为4,则号码为有1,2,4;1,3,4; 2,3,4共3种取法, 其概率为23335533 {4}10 C P X C C ==== 若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法 其概率为 25335566 {5}10 C P X C C ==== 一般地 3 5 21 )(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为

(2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,则样本点为S={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件, X的取值为1,2,3,4,5,6, 最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11 {1} 36 P X==; 最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3), 9 {2} 36 P X==; 最小点数为3的共有7种, 7 {3} 36 P X==; 最小点数为4的共有5种, 5 {4} 36 P X==; 最小点数为5的共有3种, 3 {5} 36 P X==; 最小点数为6的共有1种, 1 {6} 36 P X== 于是其分布律为 3 设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品的次数, (1)求X的分布律; (2)画出分布律的图形。 解从15只产品中取3次每次任取1只,取到次品的次数为0,1,2。在不放回的情形下, 从15只产品中每次任取一只取3次,其总的取法为:3 15151413 P=??,其概率为 若取到的次品数为0,即3次取到的都是正品,其取法为3 13131211 P=?? 其概率为 13121122 {0} 15141335 p X ?? === ??

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

概率论第二章练习答案

《概率论》第二章练习答案 一、填空题: ”2x c S 1 1.设随机变量X的密度函数为f(x)= 则用丫表示对X的3次独立重复的 0 其匕 '- 观察中事件(X< -)出现的次数,则P (丫= 2)= ___________________ 。 2 2.设连续型随机变量的概率密度函数为: ax+b 0

4. 设为随机变量,E =3, E 2=11,则 E (4 10) = 4E TO =22 5. 已知X的密度为(x)二ax?"b Y 01 0 . x :: 1 1 1 (x ) =P(X?),则 3 3 6. 7. 1 1 (X〈一)= P ( X〉一)一 1 (ax b)dxjQx b) 联立解得: dx 若f(x)为连续型随机变量X的分布密度,则J[f(x)dx= ________ 1 ——'J 设连续型随机变量汕分布函数F(x)=x2/:, 丨1, x :: 0 0 岂 x ::: 1,则 P ( E =0.8 ) = _0_; P(0.2 :::: 6) = 0.99 8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度:(x)二 x _100 x2,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不0(其他) 需要更换的概率为_____ 厂100 8/27 _________ x> 100

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

第二章_概率论解析答案习题解答

第二章 随机变量及其分布 I 教学基本要求 1、了解随机变量的概念以及它与事件的联系; 2、理解随机变量的分布函数的概念与性质;理解离散型随机变量的分布列、连续型随机变量的密度函数及它们的性质; 3、掌握几种常用的重要分布:两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布,且能熟练运用; 4、会求简单随机变量函数的分布. II 习题解答 A 组 1、检查两个产品,用T 表示合格品,F 表示不合格品,则样本空间中的四个样本点为 1(,)F F ω=、2(,)T F ω=、3(,)F T ω=、4(,)T T ω= 以X 表示两个产品中的合格品数. (1) 写出X 与样本点之间的对应关系; (2) 若此产品的合格品率为p ,求(1)p X =? 解:(1) 10ω→、21ω→、31ω→、42ω→; (2) 1 2(1)(1)2(1)p X C p p p p ==-=-. 2、下列函数是否是某个随机变量的分布函数? (1) 021()2021 x F x x x <-??? =-≤

求常数A 及(13)p X <≤? 解:由()1F +∞=和lim (1)x x A e A -→+∞ -=得 1A =; (13)(3)(1)(3)(1)p X p X p X F F <≤=≤-≤=- 3113(1)(1)e e e e ----=---=-. 4、设随机变量X 的分布函数为 2 00()0111 x F x Ax x x ≤??=<≤??>? 求常数A 及(0.50.8)p X <≤? 解:由(10)(1)F F +=得 1A =; (0.50.8)(0.8)(0.5)(0.8)(0.5)p X p X p X F F <≤=≤-≤=- 220.80.50.39=-=. 5、设随机变量X 的分布列为 ()a p X k N == (1,2,,)k N =L 求常数a ? 解:由 1 1i i p +∞ ==∑得 1 1N k a N ==∑ 1a ?=. 6、一批产品共有100个,其中有10个次品,求任意取出的5个产品中次品数的分布列? 解:设X 表示5个产品中的次品数,则X 是离散型随机变量,其所有可能取值为0、1、…、 5,且 0510905100(0)C C p X C ==、1410905100(1)C C p X C ==、2310905100(2)C C p X C ==、321090 5100 (3)C C p X C ==、 4110905100(4)C C p X C ==、50 1090 5100 (5)C C p X C == 于是X 的分布列为

概率统计试题及答案

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则 A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a = ________ b =________ 8. 设X ~2 (2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80 81 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥= ,4 {0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分

概率论复习题答案

一、单项选择题 1 已知随机变量X 在(1,5)之间服从均匀分布,则其在此区间的概率密度为( C ) A. B. C. D 4 2 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<1)之间服从均匀分布,则其在此区间的概率密度为( B ) A. 0 B. 2 C. D 1 3 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<2)之间服从均匀分布,则其不在此区间的概率密度为( A ) A. 0 B. 2 C. 1 D 4 4 已知P(A)= ,则)(A A P ? 的值为( D ) (A) (B) (C) 0 (D) 1 5 已知P(A)= ,则)(A A P 的值为( C ) (A) 1 (B) (C) 0 (D) Φ 6.,,A B C 是任意事件,在下列各式中,成立的是( C ) A. A B =A ?B B. A ?B =AB C. A ?BC=(A ?B)(A ?C) D. (A ?B)(A ? B )=AB 7 设随机变量X~N(3,16), 则P{X+1>5}为( B ) A. Φ B. 1 - Φ C. Φ(4 ) D. Φ(-4) 8 设随机变量X~N(3,16), Y~N(2,1) ,且X 、Y 相互独立,则P{X+3Y<10}为( A ) A. Φ B. 1 - Φ C. Φ(0 ) D. Φ(1) 9. 已知随机变量X 在区间(0,2)的密度函数为, 则其在此区间的分布函数为( C ) A. 2x B. C. 2x D. x 10 已知随机变量X 在区间(1,3)的密度函数为, 则x>3区间的分布函数为( B ) A. 2x B. 1 C. 2x D. 0 11. 设离散型随机变量X 的分布律为 P{X=n}=! n e n λλ, n=0,1,2…… 则称随机变量X 服从( B ) A. 参数为λ的指数分布 B. 参数为λ的泊松分布 C. 参数为λ的二项式分布 D. 其它分布 12. 设f (x )为连续型随机变量X 的密度函数,则f (x )值的范围必须( B )。 (A) 0≤ f (x ) ≤1; (B) 0≤ f (x ); (C )f (x ) ≤1; (D) 没有限制

概率论与数理统计第二章答案

第二章 随机变量及其分布 1、解: 设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010 投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X 2、一袋中有5X 表示取出的三只球中的最大号码,写出随机变量X 的分布律 解:X 可以取值3,4,5,分布律为 10 61)4,3,2,1,5()5(1031)3,2,1,4()4(10 11)2,1,3()3(35 2 435 2 335 2 2=?= === ?==== ?= ==C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5 P :10 6, 103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。 解:任取三只,其中新含次品个数X 可能为0,1,2个。 35 22 )0(315313= ==C C X P 3512)1(3 15213 12=?==C C C X P 35 1)2(3 15 113 22= ?= =C C C X P 再列为下表 X : 0, 1, 2 P : 35 1, 3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0

概率统计试题及答案

西南石油大学《概率论与数理统计》考试题及答案 一、填空题(每小题3分,共30分) 1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 . 2、设()0.7,()0.3P A P AB ==,则()P A B =U ________________. 3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 . 4、设随机变量X 的分布律为(),(1,2,,8),8 a P X k k ===L 则a =_________. 5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= . 6、设随机变量X 的分布律为,则2Y X =的分布律是 . 7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ . 8、设129,,,X X X L 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是 . 二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件 是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率; (2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为 , 03()2,342 0, kx x x f x x ≤

概率论答案第三章测试题

第三章测试题 1箱子里装有12件产品,其中两件是次品.每次从箱子里任取1件产品,共取两次(取后不放回).定义随机变量X Y ,如下: 0X=1???,若第一次取出正品,若第一次取出次品 0Y=1??? ,若第二次取出正品,若第二次取出次品 (1)求出二维随机变量X Y (,)的联合分布律及边缘分布律; (2)求在Y=1的条件下,X 的条件分布律。 解 (2) 2 设二维随机变量 X Y (,)的概率密度Cy(2-x),0x 1,0y x, f(x,y)=0,.≤≤≤≤??? 其他 (1)试确定常数C ;(2)求边缘概率密度。 解 (1)1)(=??+∞∞-+∞∞-dy dx x f 即1)2(100=??-x dxdy x Cy x ,5 12 = ∴C 3设X Y (,)的联合分布律为: 求(1)Z X Y =+的分布律;(2)V min(X ,Y )=的分布律 (2)

4设X 和Y 是两个相互独立的随机变量,X 服从(0,1)上的均匀分布,Y 的概率密度为: y 212Y e ,y 0 f (y )0,y 0 -??>=? ≤?? (1)求X 和Y 的联合概率密度; (2)设含有a 的二次方程为2 a 2Xa Y 0++=,试求a 有实根的概率。 解 (1)X 1,0x 1 f (x )0,other <<<==∴-other y x e y f x f y x f y Y X , 00,10,21)()(),(2 (2)2 a 2Xa Y 0++=有实根,则0442≥-=?Y X ,即求02 ≥-Y X 的概率 ?-=??=??=≥---≥-1 01 00 20 2 2 22 121),(}0{dx e dy e dx dxdy y x f Y X P x x y y x 3413.0)0()1(211 2 2=Φ-Φ=?- dx e x π ,π23413.010 22=?∴-dx e x

概率论试题及答案

试卷一 一、填空(每小题2分,共10分) 1.设是三个随机事件,则至少发生两个可表示为______________________。 2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。 3.已知互斥的两个事件满足,则___________。 4.设为两个随机事件,,,则___________。 5.设是三个随机事件,,,、, 则至少发生一个的概率为___________。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分) 1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。 (A) 取到2只红球(B)取到1只白球 (C)没有取到白球(D)至少取到1只红球 2.对掷一枚硬币的试验, “出现正面”称为()。 (A)随机事件(B)必然事件 (C)不可能事件(D)样本空间 3. 设A、B为随机事件,则()。 (A) A (B) B (C) AB(D) φ 4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。 (A) 与互斥(B)与不互斥 (C)(D) 5. 设为两随机事件,且,则下列式子正确的是()。 (A) (B) (C)(D) 6. 设相互独立,则()。 (A) (B) (C)(D) 7.设是三个随机事件,且有,则 ()。 (A) 0.1 (B) 0.6 (C) 0.8 (D)0.7 8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。 (A) p2(1–p)3(B) 4 p (1–p)3 (C) 5 p2(1–p)3(D) 4 p2(1–p)3 9. 设A、B为两随机事件,且,则下列式子正确的是()。 (A) (B) (C) (D) 10. 设事件A与B同时发生时,事件C一定发生,则()。

概率论练习册答案第三章

习题3-1 1. 而且12{0}1P X X ==. 求X 1和X 2的联合分布律. 解 由12{0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布 于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律

(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04 P X P X =?== ≠, 所以X 1 和X 2不独立. 2. 一盒子中有3只黑球、2只红球和2只白球, 在其中任取4只球. 以X 表示取到黑球的只数, 以Y 表示取到红球的只数. 求X 和Y 的联合分布律. 解 从7只球中取4球只有354 7=C 种取法. 在4只球中, 黑球有i 只, 红 球有j 只(余下为白球4i j --只)的取法为 4322i j i j C C C --,0,1,2,3,0,1,2,i j i j ==+≤4. 于是有 022 322 1 {0,2}35 35P X Y C C C === = ,111 322 6 {1,1}3535 P X Y C C C === = , 1213226{1,2}3535P X Y C C C ====,2023223 {2,0}3535P X Y C C C ====, 21132212{2,1}3535P X Y C C C ====,220 3223 {2,2}3535P X Y C C C ====, 3013222{3,0}3535P X Y C C C ====, 3103222 {3,1}3535 P X Y C C C ====, {0,0}{0,1}{1,0}{3,2}0P X Y P X Y P X Y P X Y ============. 3. (,)(6),02,24, 0,.f x y k x y x y =--<<<

概率论第三版第2章答案详解

两人各投中两次的概率为: P(A ^ A 2B 1B 2^0.0784O 所以: 作业题解: 2.1掷一颗匀称的骰子两次,以X 表示前后两次出现的点数之和 ,求X 的概率分布,并验 证其满足(222) 式. 解: Q Q Q Q 根据 v P(X = k) =1,得 k =0 故 a 二 e 「1 2.3 甲、乙两人投篮时,命中率分别为0.7和0.4 ,今甲、乙各投篮两次,求下列事件的 概率: (1)两人投中的次数相同;(2) 甲比乙投中的次数多. 解:分别用A ,B j (i =1,2)表示甲乙第一、二次投中,则 P(A) = P(A 2)=0.7,P(A) = P(A 2)=0.3,P(B 1)= P(B 2)=0.4,P(B 1)= P(D) =0.6, 两人两次都未投中的概率为: P(A A 2 B^! B 2) = 0.3 0.3 0.6 0.6二0.0324, 两人各投中一次的概率为: 并且,P(X P(X P(X P(X = 12) = 1 36 =10) 煤 =8) 嗥; =k)=( =2) =P(X =4) =P(X =6) =P(X 2.2 2 P(X =3) =P(X =11)= ; 36 4 P(X =5) =P(X =9)= p (X =7)」。 36 k =2,3,4,5,6,7,8,9,10,11,12) P{X =k}二ae°,k =1,2…,试确定常数 解: k ae ae = 1 ,即 1=1。 k -0 1 - e

P(AA2BB2)P(AA2B2B1)P(A2AB1B2)P(AA2B2B1)= 4 0.7 0.3 0.4 0.6 = 0.2016两人各投中两次的概率为:P(A^ A2B1B2^0.0784O所以:

概率论与数理统计(第三版)课后答案习题1

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解 (1)}, 100,,1,0{n i n i ==Ω其中n 为班级 人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。

(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。 (5)=Ω{(x,y) 0

概率统计练习册答案

第一章参考答案: (一) 一、选择:1.D 2. A 3.B 4.D 二、填空:1. 出现点数恰好是5; 2. 0.3; 3. 0.6; 4. 1,0.75; 5. (1) ABC (2)ABC (3) AB AC BC ?? (4) A B C ?? (5) ABC ABC ABC ?? (6) A B C ?? 三、计算 (1),0.6A B ? (2),0.3A B ?=Ω (3)()=0.4P AB ,()=0.9P A B ?,()=0.3P B A -,()=0.1P AB (二) 一、填空:1.a a b + 2. 32,55 3. 11260 4. 815 5. 16 二、计算: 1. (1).4190 (2). 13 (3). 13 15 2. 11 ln 242+ 3. 391 81616 ;;(见教材第12页) 4. 111 1()k N N N --- 5. (1). 6121110987 112?????- (2). 2466 1112C ? (3). 61112- (4). 6 61112 (三) 一、填空:1. 0 2.0.9 3. 23 4. (1)(1)()(1) a a b b a b a b -+-++- 二、计算: 1. 1 4

2. (1). 0.85 (2). 0.941 3. 0.37(或 55149 ) 4. (1). 0.192 (或23120) (2). 0.391(或923 ) 5. (1). 2990 (2). 20 61 (四) 一、选择:1.D 2. B 3.C 4.B 二、计算: 1.(1) 2 3 (2) 11 2. 14 3. (1). 4 0.9 (2). 4 10.1- (3)4 3 0.90.40.9+? 三.证明。(略) 第二章参考答案: (一) 一. 填空 1. 31; 2. 0.95; 3. m n m m n p p C --)1(; 4. {}.,1,0,! == =-k k e k X P k λλ 二. 1.(1){};4,3,2,1,0,6 20 616 4===-k C C C k X P k k (2) {}.6,5,43,2,1,0,8.0)2.0(66,===-k C k X P k k k 2. {};,2,1,55.045.01 =?==-k k X P k {}.31 11 21 = =∑∞ =k k X P 3.

概率论习题答案

第一章 随机事件与概率 1.对立事件与互不相容事件有何联系与区别? 它们的联系与区别是: (1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。 (2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。 (3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。特别地,A A =、?=A A U 、φ=A A I 。 2.两事件相互独立与两事件互不相容有何联系与区别? 两事件相互独立与两事件互不相容没有必然的联系。我们所说的两个事件相互独立,其实质是事件是否发生不影响A B 、A 事件B 发生的概率。而说两个事件互不相容,则是指事件发生必然导致事件A B 、A B 不发生,或事件B 发生必然导致事件不发生,即A φ=AB ,这就是说事件是否发生对事件A B 发生的概率有影响。 3.随机事件与样本空间、样本点有何联系? 所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。其中基本事件也称为样本点。而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。在每次试验中,一定发生的事件叫做必然事件,记作。而一定不发生的事件叫做不可能事件,记作??φ。为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。这是由于事件的性质

随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。条件发生变化,事件的性质也发生变化。例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于3点”,都是随机事件。若同时抛掷4颗骰子,“出现的点数之和为3点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。而样本空间中的样本点是由试验目的所确定的。例如: (1)将一颗骰子连续抛掷三次,观察出现的点数之和,其样本空间为 ?={34}。 518,,,,L (2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ?={012}。 3,,, 在(1)、(2)中同是将一颗骰子连续抛掷三次,由于试验目的不同,其样本空间也就不一样。 4.频率与概率有何联系与区别? 事件的概率是指事件在一次试验中发生的可能性大小,其严格的定义为: A A 概率的公理化定义:设E 为随机试验,?为它的样本空间,对E 中的每一个事件都赋予一个实数,记为,且满足 A P A () (1)非负性:01≤≤P A (); (2)规范性:P ()?=1; (3)可加性:若两两互不相容,有。 A A A n 12,,,,L L )P A P A i i i i ()(=∞=∞ =∑11U 则称为事件的概率。 P A ()A 而事件的频率是指事件在次重复试验中出现的次数与总的试验次数n 之比,即A A n n A ()n A n )(为次试验中出现的频率。因此当试验次数n 为有限数时,频率只能在一定程度上反映了事件n A A 发生的可能性大小,并且在一定条件下做重复试验,其结果可能是不一样的,所以不能用频率代替概率。

概率论第二章练习答案概要

《概率论》第二章 练习答案 一、填空题: 1.设随机变量X 的密度函数为f(x)=?? ?0 2x 其它1???o 则用Y 表示对X 的3次独立重复 的观察中事件(X≤ 2 1 )出现的次数,则P (Y =2)= 。 ?==≤4120 21)21(xdx X P 64 9 )43()41()2(1223===C Y p 2. 设连续型随机变量的概率密度函数为: ax+b 03 1 ) , 则a = , b = ??? +=+?==+∞ ∞ -101 33 1 3 1311 dx b ax dx b ax x P x P dx x )()()〉()〈()(?联立解得: 4 723=-=b a ,

6.若f(x)为连续型随机变量X 的分布密度,则 ? +∞ ∞ -=dx x f )(__1____。 7. 设连续型随机变量ξ的分布函数?? ???≥<≤<=2,110, 4/0, 0)(2 x x x x x F ,则 P (ξ=0.8)= 0 ;)62.0(<<ξP = 0.99 。 8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ?= ()?????≥) (0100100 2其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。 2100 x x≥100 ∴ ?(x)= 0 其它 P (ξ≥150)=1-F(150)=1-??=-+=+=150 10015010023 2 132********x dx x [P(ξ≥150)]3=(32)3=27 8 9. 设随机变量X 服从B (n, p )分布,已知EX =1.6,DX =1.28,则参数n =___________, P =_________________。 EX = np = 1.6 DX = npq = 1.28 ,解之得:n = 8 ,p = 0.2 10. 设随机变量x 服从参数为(2,p )的二项分布,Y 服从参数为(4,p )的二项分布,若P (X ≥1)=9 5 ,则P (Y ≥1)=_65/81______。 解: 11. 随机变量X ~N (2, σ2) ,且P (2<X <4)=0.3,则P (X <0)=__0.2___ % 2.8081 65 811614014==-=-=q p C o ) 0(1)1(=-=≥Y P Y p 31,3294)0(94 )1(95)1(2 = =?=∴===??= ≥p q q X p X p X p

相关文档
相关文档 最新文档