文档库 最新最全的文档下载
当前位置:文档库 › 第四章钢丝的拉拔

第四章钢丝的拉拔

第四章钢丝的拉拔
第四章钢丝的拉拔

第四章 钢丝的拉拔

钢帘线的单丝,从Ф5.5mm 的盘条经过干式的粗拉、中拉和湿式的细拉,一直拉到ФO.15~ФO.38mm ,所以钢丝的拉拔是钢帘线生产最基本的工艺。

自1880年制成了“纵列式拉丝机”实现了拉丝生产连续化,到本世纪20年代发明了硬质合金拉丝模以及润滑剂的改善,拉拔工艺日趋成熟,实现了稳定的连续化拉丝生产。近一、二十年,国内外拉丝技术又有很大发展。出线速度已高达25M /s 和30M /s 。随着微机技术的普及应用,拉丝机的自动化水平大为提高,例如KOCH 公司的直线式拉丝机配备的电脑专家系统中,可储存100套拉丝工艺参数,随时可以调用,实现了监控,故障诊断,在线调整一体化。由于线材的质量和性能不断提高,可将Ф5.5线材一次拉拔为Ф1.3mm 的半成品钢丝,总压缩率达94.41%,并可减少一次热处理。另外在拉丝模和润滑剂方面也相应地有了很大发展。

第一节 钢丝拉拔基本原理

钢丝拉拔理论是金属压力加工原理的一部分,拉拔的目的是将粗截面的线材通过模孔拉制成所需形状和尺寸的钢丝,同时要满足标准规定的性能和质量的要求,尤其是力学性能的要求。 众所周知,金属所以能够进行拉拔是因为各种金属都具有不同程度的塑性。所谓塑性即金属在外力作用下,产生永久变形而不破裂的能力。

由于金属的组织和化学成分的不同,金属能够承受的拉拔变形程度也不尽相同。拉拔理论研究不同组织和成分的金属,在拉拔中产生变形和应力分布的特点,拉拔过程中不均匀变形产生的原因和残余应力造成的后果,拉拔后金属组织和性能的变化规律,拉拔力和抗拔功率的计算方法并分析其影响因素,从而利用金属塑性,正确拟定拉拔工艺,合理使用拉丝设备,改革旧的工 艺制度,提高产品质量,降低成本,提高生产率。

限于篇幅,本章只能对上述有关内容作一些简单的阐述。

应 力

一、金属的塑性变形 σ

1.金属的变形和断裂

金属在外力作用下,随着应力的增加,可先后发

生弹性变形、塑性变形,直至断裂。图4—1所示为低

碳钢在拉伸试验时的应力一应变曲线。在应力(σ)低

于弹性极限(σe )时,钢所发生的变形为弹性变形,其

特点是外力去除后,其变形可以完全恢复,并且,应力 .45.

应变ε

4—1低碳钢在拉伸试验时的应力一应变曲线

.45.

(σ)与应变(ε)成比例:σ=E·ε,其中比例常数E称为“弹性模量”,它反应金属对弹性变形的抗力,代表材料的“刚度”。弹性变形的实质是在应力的作用下,金属内部的晶格发生了弹性的伸长和歪扭,但未超过其原子之间的结合力。

当应力大于弹性极限时,钢不但发生弹性变形,而且还发生塑性变形,即在外力去除后,其变形不能得到完全恢复,存在残留变形或永久变形。不能恢复的变形称为塑性变形,通常用屈服极限(σs)表示金属对开始发生微量塑性变形的抗力,而塑性则是指金属能够发生塑性变形的量或能力,用伸长率(δ%)或断面收缩率(ψ%)表示。塑性变形的实质是金属内部的晶粒发生了压扁或拉长的不可恢复的变形。

随着应力的增加,钢的塑性变形逐渐增大,应力达到强度极限(σb)后,试样将开始发生

不均匀的塑性变形,产生缩颈,变形量迅速增大到K点而发生断裂。故强度极限是表示金属对产生不均匀塑性变形的抗力。断裂通常分为两种,有明显塑性变形而发生的断裂,称为“塑性断裂”,其内部的晶粒都拉长成为细条状,故这种断裂的断口呈纤维状,灰暗无光;另一种断裂通常发生在一些脆性材料中,断裂前并未经过明显的塑性变形,其断口常具有闪烁的光辉,这种断裂称为“脆性断裂”。

2.金属单晶体的塑性变形

金属一般都是由无数单个晶粒构成的多晶体。

金属单晶体的塑性变形主要有“滑移”、“双晶”两种形式,在大多数情况下是以滑移方式进行的。

所谓滑移即晶体的一部分相对于另一部分沿一定晶面发生相对的滑动。如图4--2所示,当一单晶体试样受到拉伸时,外力(P)将在晶内一定的晶面上分解为两种应力,一种是平行于该晶面的切应力(τ),一种是垂直于该晶面的正应力(σ)。正应力只能引起晶格的弹性伸长,或进一步把晶体拉断;而切应力则可使晶格在发生弹性歪扭之后,进一步造成滑移。通过大量晶面的滑移,最终便使试样被拉长变细。

.46.

对于滑移变形的要点可以概括如下:

第一,滑移只能在切应力的作用下发生。

第二,滑移常沿晶体中原子密度最大的晶面(称为“滑移面”)和晶向(称为“滑移方向”)

发生。

第三,滑移时晶体的一部分相对于另一部分沿滑移方向位移的距离为原子间距的整数倍。

第四,滑移的同时必然伴随有晶体的转动。如图4—2(a)所示,切应力使晶体产生滑移,而正

应力组成一力偶,使晶体在滑移的同时向外力方向发生转动。

最后要强调的是,滑移不是晶体的一部分相对于另一部分的刚性滑移。近数十年来的理论研

究证明,滑移是由于滑移面上的位错运动而造成的。如图4—3所示即为一刃型位错在切应力的作

用下在滑移面上的运动过程,通过一根位错线从滑移面的一侧到另一侧的运动便造成一个原子间

距的滑移。

表现在宏观上则产生塑性变形。

塑性变形的另一形式是双晶,又称孪晶、孪生。只有当晶体不

易进行滑移时,在切应力作用下则以孪生方式进行塑性变形,即晶

体的一部分以一定的晶面(挛晶面)为对称面,与晶体的另一部分

发生了均匀切变,结果使晶体变形部分与未变形部分构成镜面对

称的位向关系,如图4—4所示。

3.多晶体的塑性变形

实际使用的金属材料几乎都是多晶体,由许多单晶体集合而成。

构成多晶体的这些单晶体就是晶粒。在多晶体进行塑性变形时,每 4—4晶体的孪生示意图

个晶粒的基本变形方式与单晶体的塑性变形基本相同,也主要是以

滑移和双晶的方式进行的。多晶体的塑性变形可视为许多晶粒变形

过程的综合结果。但是由于在多晶体中各个晶粒的晶格位向不同,而且有大量晶界存在,使得各

个晶粒的塑性变形彼此受到阻碍与制约,所以多晶体的塑性变形比单晶体的情况要复杂得多。

第一,各个晶粒的位向不同,将使各个晶粒的变形有先有后,并且在变形时有的互相配合,

.47.

有的彼此干扰。当多晶体中某些晶粒的位向有利于滑移时,将首先发生滑移变形。但因已变形晶粒周围的晶粒尚处于弹性变形阶段,对已变形的晶粒起着阻碍变形的作用,使那些位向有利的晶粒或晶面滑移进行到一定程度后自行停止。同时,当某些晶粒变形至一定程度时,由于对未变形晶粒造成足够大的应力集中,使原来处于不利位向的晶粒也产生滑移。致使应力重新分布。也就是说,随着外力的增加,晶粒将一批一批地逐次进行滑移,而不是一齐滑移。各晶粒间的不均匀变形,将使晶粒间存在不均匀的应力,而不均匀应力又将造成不均匀变形。

第二、多晶体的塑性变形抗力要比同类金属的单晶体高得多,这是由于多晶体存在着晶界和晶粒的位向差别造成的。晶界实际上是由许多位错、空位、夹杂堆积而成的,晶界上原子排列是很不规律的,它是相邻晶粒的原子排列的过渡层。滑移变形时位错移动到晶界附近便会受到严重阻碍而停止前进,因而使位错在晶界前堆积起来,若要位错穿过晶界则需要更大的外力。相邻晶粒的位向差愈大,晶界处原子排列愈紊乱,滑移抗力就愈大。多晶体的晶粒愈细,其晶界的面积和不同方位的晶粒数目就愈多,因而塑性变形的抗力也愈大。

细晶粒金属不仅强度高,而且塑性、韧性也好。这是因为晶粒愈细,在一定体积内的晶粒数目也愈大,故在同样变形量下同时参与变形的晶粒数目也愈多,而且每个晶粒内部变形也较

均匀,不致产生过分的应力集中现象。同时,晶粒愈细晶界就愈多愈曲折愈不利于裂纹的传递,从而在断裂前可以承受较大的塑性变形,即表现出较高的塑性和韧性。因此,生产上通常总是设法使金属获得细晶粒。、

4.塑性变形对金属组织和性能的影响

经过塑性变形,可使金属组织和性能发生一系列重大变化,这些变化大致可分为四个方面:

第一,晶粒沿变形方向拉长,性能处于各向异性。在外力的作用下,随着金属外形的变化,其内部晶粒的形状也会发生相应的变化,即随着金属外形的压扁或拉长,其内部晶粒的形状也会被压扁或拉长,一般大致与金属外形的改变成比例。当形变量很大时,各晶粒将会被拉长成为细条状或纤维状,晶界变得模糊不清。此时,金属的性能也将会具有明显的方向性,如纵向的强度和塑性远大于横向等。这种组织通常称为“纤维组织”。

第二,晶粒破碎,位错密度增加,产生加工硬化。随着变形的发生,不仅晶粒的外形会发生变化,而且晶粒内部的亚结构也会发生显著的变化。在未变形的晶粒内部经常存在大量的位错,在形变量不大时,先是在变形晶粒的晶界附近出现位借的堆积,随着形变量的增大,由于位错与位错相遇,首先便会出现位错的缠结现象,继而随着变形的进一步发展,便会使各晶粒破碎成为细碎的亚晶粒。形变量愈大,晶粒的细碎程度便愈大,亚晶界的量便愈多,位错密度便显著增大;同时,细碎的亚晶粒也随着晶粒的拉长而被拉长。因此,随着形变量的增大,由于晶粒破碎和位错密度增加,金属的塑形变形抗力将迅速增大,即硬度和强度显著上升,塑性和韧性下降,产生所谓“加工硬化”现象。

金属的加工硬化会给金属的进一步加工带来困难。例如盘条经过粗拉后,一般要经过热

处理消除其加工硬化现象,恢复其进一步塑性变形的能力,然后进行中丝拉拔。

加工硬化现象虽然会给金属的进一步加工造成困难,但它却是工业上用以提高金属强度、硬度和耐磨性的重要手段之一。例如钢帘线的单丝是热处理后的钢丝经过约95%的形变量之后,强度由1200MPa左右上升到2600一3000MPa而保持必要的韧性,方能满足最终产品的要求。

.48.

钢丝绳规格解读

更多 >>> 6*37 6*7 6*19S 6*19W 6*25Fi6*29Fi 6*36 通用绳(软丝)镀锌钢丝绳,渔业防腐矿用,行车门机起重机,汽车吊车,塔机塔吊汽车吊车,塔机塔吊,起重机,电动葫芦行车 35w*7 35Wx7K 6K*36SW+IWRC 4V*39S+5FC 8*19S-8*7 8*19S-FC 层股不旋转绳多层股面接触绳打桩机专用(模拉锻打)三角股(锻打工艺)高速电梯专用绳电梯用绳

数字字母解释:第一个数字代表股、第二数字每股的钢丝数量、fc代表绳芯填充物(一般是麻、合成纤维) w代表间隔性的粗细搭配,s代表层状粗细搭配,sw全面粗细搭配,iws代表单股绳芯,iwrc(7x7)多股绳芯序号名称代表结构级别耐用度一: 一: 点接触钢丝绳(6x7 6x19 6x37) 线接触钢丝绳(6x9w 6x19s 6x19w6x36sw) 普通型 中档 规格型号 三:四:五:面接触钢丝绳(6kx19w 6kx36) 多层股钢丝绳(18x7 18x1934x7)(18x19s 35wx7)线接触多层股 多层股面接触(18kx7 35kwx7) 高 高 极高 表面处理一:光面钢丝绳涂油二:冷镀锌钢丝绳(空气中三年不腐蚀)三:热镀锌钢丝绳(空气中十五年以上 S、W、SW、Fi 都是代表钢丝绳小股钢丝粗细丝搭配, S:西鲁式的小股捻制方法,W:瓦伦吞式的小股捻制方法, SW:专业术语叫西瓦式(西鲁式和瓦伦吞式相结合的),很多用户叫粗包细钢丝绳 Fi:代表填充式小股捻制方法。请看下表小股的区别。 S 和W基本都是在18盘上一次捻制成型的。常用的结构有6*19S,6*19W,8*19S(电梯 钢丝绳),那么SW 和Fi 基本都是36盘上捻制的。SW有6*26SW,6*31SW,6*36SW。 而Fi 基本有两种:6*25Fi,6*29Fi,当然这种绳子也可以做8股的。国外一般生产 8*26SW类似于这样的结构。如果里面再加7*7(iwrc)钢芯,比如6*31SW+iwrc 的钢丝 绳。 钢丝绳绳芯分为钢芯和麻芯,钢芯主要有1*7,1*19,1*37,7*7。而麻芯统称FC,国家标准主 要有两种,一种为天然麻芯,一种是合成纤维芯PPC,也叫PP,天然麻芯也叫NF,主要 分为两种:黄麻和剑麻,黄麻成本低,但是剑麻的支撑力和韧性比黄麻好,电梯钢丝绳里 面基本用剑麻芯或者PPC,锻打钢丝绳中间绳芯基本用高品质的PPC。 但是现在南通钢丝绳厂制造一般用途的钢丝绳中,用的纱麻芯。这种绳芯成本相对比黄麻 还要低,但是没有黄麻好,但是比纯的纱芯好。南通很多小规格钢丝绳基本都是用纱芯作 为绳芯。其柔软,支撑力差,成本低。有些钢丝绳厂11mm的甚至也用纯纱芯,这是严重 偷工减料。

钢丝绳字母代号解析

钢丝绳标记代号 本标准适用于钢丝绳结构及基本特性的标记代号. 本标准等同采用ISO 3578-80《钢丝绳一标记代号》. 1 总则 1.1 钢丝绳标记代号采用英文字母与数字相结合的方法表示. 1.1.1 钢丝绳的结构及特性一般采用英文单字的第一个字母作标记代号,标记特性既可使用大写字母,也可使用小写字母, 但不可二者混用. 1.1.2 钢丝绳中股数及钢丝数用阿拉伯数字表示. 1.1.3 根据习惯和通用性,有时采用国际通用代号. 1.2 本标准未规定的标记代号,必要时,可按上述原则在产品 标准中予以规定. 2 钢丝绳标记项目及顺序 钢丝绳标记代号应按下列顺序标明: a. 尺寸(见3.1); b. 钢丝的表面状态(见3.2); c. 结构型式(见3.3及3.4); d. 钢丝的抗拉强度(见3.5); e. 捻向(见3.6); f. 最小破断拉力(见3.7); g. 单位长度重量(见3.8); h. 产品标准号.

如果按以上顺序标记则可以使用简略代号. 3 特性标记 3.1 尺寸 3.1.1 圆形钢丝绳,用毫米表示钢丝绳的公称外接圆直径. 3.1.2 编织钢丝绳:用毫米表示钢丝绳的公称外接圆直径. 3.1.3 扁钢丝绳:用毫米表示钢丝绳的公称外接矩形尺寸(宽 度×厚度). 3.2 钢丝的表面状态 钢丝的表面状态用下列代号标记: a. 光面钢丝:NAT; b. A级镀锌钢丝:ZAA; c. AB级镀锌钢丝:ZAB; d. B级镀锌钢丝:ZBB. 3.3 结构代号 3.3.1 绳(股)芯 钢丝绳(股)芯用下列代号标记: a. 纤维芯(天然或合成的):FC; b. 天然纤维芯:NF; c. 合成纤维芯:SF; d. 金属丝绳芯:IWR; e. 金属丝股芯:IWS. 3.3.2 钢丝

钢丝断裂原因分析

钢丝断裂原因分析

一、夹杂物引起断裂 线材中非金属夹杂物的存在,破坏了组织的连续性,起到了一个显微裂纹的作用。当受到外力作用时,在夹杂物的顶端首先产生附加的应力集中。尤其在原奥氏体晶粒交界处出现的大块状、条状或片状碳化物,这些异常碳化物在材料冷变形时,严重地阻塞了位错的移动,致使该处产生应力集中。当应力集中达到一定大小时便会使碳化物开裂,或在碳化物与基体交界处产生裂纹。当裂纹达到失稳状态尺寸,地瞬时产生断裂。 非金属夹杂物的多少是衡量帘线钢质量高低的一个重要因素。在用SEM对断口进行分析的过程中,经常发现非金属夹杂物。在典型的杯锥状断口上有时候就能发现夹杂物,SEM表明大多为三氧化二铝夹杂或其它高熔点脆性夹杂物。其避免主要是通过精炼,使夹杂物变为塑性低熔点夹杂物。 脆性夹杂物是引起钢丝断裂的重要原因之一,而夹杂物引起断裂分为以下几种形势: 1、夹杂物与钢基体之间界面脱开 拉伸过程中,在夹杂物周围的局部加剧了应力集中;裂纹优先在与拉应力垂直的夹杂物与基体的界面产生并沿着夹杂物与钢基体界面扩展,致使夹杂物与基体界面脱开。 2、夹杂物本身开裂

由于脆性较矮杂物本身具有缺陷,在拉伸过程中,在缺陷处产生严重的应力集中,由于局部应力升高而导致夹杂物本身开裂。; 3、混合开裂 钢中非金属夹杂物的形状、分布是没有规律的,因此夹杂物在钢中引起裂纹也是随机性的,取决于夹杂物的性质、尺寸、形状及分布,对于同类型的夹杂物,由于形状、分布和受力方向不同,往往产生断裂的情况也不尽相同,有时两种断裂方式同时存在,有时两种断裂方式交替进行。4、沿两种不同类型夹杂物的相界开裂 钢中经常出现几种夹杂物相共生在一起的复合夹杂物,由于各类夹杂物之间的力学性能和物理性质不同,相界结合力较弱,在拉应力作用下容易从相界开裂。 二、偏析引起的钢丝断裂 在一定程度上,中心偏析对钢丝拉断的危害必脆性夹杂物。因为偏析在更大程度上影响了钢丝的延伸性,从而使塑性变形不能在存在偏析的地方产生。在钢丝最初的拉拔过程中偏析导致小的裂纹的出现,等进入了最终拉拔时就导致了人字形断口(chevroncracks) 在连铸过程中减少中心偏析的途径有以下几个: 1、中心偏析随着中包过热度的降低而降低,因此中包的钢液温度应该尽可能的低;

钢丝绳术语(下)

接着上面一篇文章说一下 8.3 按用途分类 8.3.1 一般用途钢丝绳(含钢绞线) steel wire ropes for general purposes 除特殊用途钢丝绳外,用于一般用途如机械、运输等的钢丝绳。 8.3.2 电梯用钢丝绳 steel wire ropes for lifts 8.3.3 航空用钢丝绳 steel wire ropes for aerospace controls 8.3.4 钻深井设备用钢丝绳 steel wire ropes for deep drilling equipment 8.3.5 架空索道及缆车用钢丝绳 steel wire ropes for aerial ropeways and funiculars 8.3.6 起重用钢丝绳 steel wire ropes for cranes 8.3.7 预应力混凝土用钢绞线 steel wire strands for prestressed concrete 8.3.8 渔业用钢丝绳 steel wire ropes for fishing purpose 8.3.9 矿井提升用钢丝绳 steel wire ropes for mine hoisting purposes 8.3.10 轮胎用钢帘线 tyre cords 8.3.11 胶带用钢丝绳 rubberized cords 8.4 按捻制特性分类 8.4.1 点接触钢丝绳 point contact lay wire ropes 8.4.2 线接触钢丝绳 linear contact lay wire ropes 8.4.3 面接触钢丝绳 facial contacted wire ropes 8.5 按表面状态分类 8.5.1 光面钢丝绳 without coating wire ropes 8.5.2 镀锌钢丝绳 zinc coated wire ropes 8.5.3 涂塑钢丝绳 plastic coated wire ropes

钢丝绳规格解读

钢丝绳规格解读 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

>>>用绳(软丝)镀锌钢丝绳,渔业防腐矿用,行车门机起重机,汽车吊车,塔机塔吊汽车吊车,塔机塔吊,起重机,电动葫芦行车股不旋转绳多层股面接触绳打桩机专用(模拉锻打)三角股(锻打工艺)高速电梯专用绳电梯用绳

S、W、SW、Fi都是代表钢丝绳小股钢丝粗细丝搭配, S:西鲁式的小股捻制方法,W:瓦伦吞式的小股捻制方法, SW:专业术语叫西瓦式(西鲁式和瓦伦吞式相结合的),很多用户叫粗包细钢丝绳 Fi:代表填充式小股捻制方法。请看下表小股的区别。 S和W基本都是在18盘上一次捻制成型的。常用的结构有 6*19S,6*19W,8*19S(电梯钢丝绳),那么SW和Fi基本都是36盘上捻制的。SW有6*26SW,6*31SW, 6*36SW。而Fi基本有两种:6*25Fi,6*29Fi,当然这种绳子也可以做8股的。国外一般生产8*26SW类似于这样的结构。如果里面再加7*7(iwrc)钢芯,比如 6*31SW+iwrc的钢丝绳。 钢丝绳绳芯分为钢芯和麻芯,钢芯主要有1*7,1*19,1*37,7*7。而麻芯统称FC,国家标准主要有两种,一种为天然麻芯,一种是合成纤维芯PPC,也叫PP,天然麻芯也叫NF,主要分为两种:黄麻和剑麻,黄麻成本低,但是剑麻的支撑力和韧性比黄麻好,电梯钢丝绳里面基本用剑麻芯或者PPC,锻打钢丝绳中间绳芯基本用高品质的PPC。

但是现在南通钢丝绳厂制造一般用途的钢丝绳中,用的纱麻芯。这种绳芯成本相对比黄麻还要低,但是没有黄麻好,但是比纯的纱芯好。南通很多小规格钢丝绳基本都是用纱芯作为绳芯。其柔软,支撑力差,成本低。有些钢丝绳厂11mm的甚至也用纯纱芯,这是严重偷工减料。 NAT则代表光面钢丝绳,光面钢丝绳有光面涂油钢丝绳,光面不涂油钢丝绳,一般都是光面涂油钢丝绳。而镀锌钢丝绳是用Z来表示的。比如ZAA就是A级镀锌钢丝绳,ZAB就是AB级镀锌钢丝绳,ZBB就是B级镀锌钢丝绳。但是热镀锌钢丝绳和电镀锌钢丝绳没有明确的规定。本公司一直现货供应热镀锌钢丝绳,热镀锌钢丝绳性价比高,而我们南通力森用的麻芯基本都是全黄麻芯,电梯钢丝绳用的是剑麻芯。以便于保证过硬的质量。专业制造,卓越品质! 钢丝绳有麻芯,钢丝绳也有钢芯,而钢芯也分为iws和IWRC,IWS代表1x7或 1x19,1*37,1*61的小股单股钢芯,而iwrc代表7x7的钢芯。而小镀锌钢丝绳一般用IWS,并且是1*7小股钢芯,但是大部分的钢芯钢丝绳都是用IWRC7*7作为钢芯。而且钢芯要和绳小股反捻,这样还有防旋转的作用。经常有客户要7*19钢芯钢丝绳,我觉得这种钢芯钢丝绳性价比并不高,如果要钢芯钢丝绳请订购 6*19+iwrc,钢芯钢丝绳一般用于重型起重机,汽车吊车。但是钢芯也有缺点,它比麻芯钢丝绳要硬,操作的时候比麻芯困难。当然钢芯钢丝绳也可以是光面涂油钢丝绳,也可以是镀锌钢丝绳 钢丝绳直径毫米(mm)钢丝绳粗细,In表示英寸,1英寸=,钢丝绳直径分为公制和英制。公制主要有毫米(mm)。中国一些老工程师喜欢用分来表示,4分钢丝绳直径就是或者13mm,5分就是15mm或者16mm。但是在英制里他们用inch

中碳钢丝拉拔过程中的组织与性能研究

中碳钢丝拉拔过程中的组织与性能研究 钢丝具有强度高、自重轻的特点,钢丝绳是由多层钢丝捻制而成,因此工作平稳、可靠,所以钢丝绳被广泛应用于工业生产中。目前,钢丝工业生产要求产品高强度、生产高效率、低成本。 钢丝生产工艺以冷拔为主,所以现代钢丝生产逐渐转变为高速大应变的塑性变形问题。目前工业生产中,主要使用高碳钢丝,但是中碳钢丝生产成本更低廉具有发展空间。 通过对中碳钢丝拉拔变形过程中珠光体和铁素体相进行研究,为高碳钢丝的两相变形研究提供借鉴,也为中碳钢丝的研究提供一定的理论基础。本课题采用金相观察、SEM观察、TEM观察等多种手段,观察不同形变量下中碳钢的显微组织结构;并测量不同应变量中碳钢丝的强度、显微硬度、电阻率等性能。 此外,还通过显微观察和EBSD分析等方法,研究了热处理对中碳钢丝组织与性能的影响。本论文的主要研究成果如下:冷拔过程对中碳钢丝具有晶粒细化作用,并造成冷拔织构。 珠光体片层间距S与钢丝直径d线性相关。应变量ε<1.5时,钢丝强度与片层间距变化符合Hall-Petch关系;当应变量ε>1.5,钢丝片层间距与其强度不再符合Hall-Petch关系。 晶体内部位错密度随应变量的升高先升高后降低,晶粒内部有亚晶产生,应变量进一步升高,将导致大量位错规律排列形成了小角度晶界。EBSD分析表明退火对冷拔造成的晶体缺陷有明显的消除效果,晶粒取向不再一致,而趋于杂乱。 回复与再结晶作用使冷拔造成的条带状组织开始逐步转变成柱状晶组织。此外,应变量ε越大,钢丝抗拉强度越大,显微硬度越高,电阻率越大;但是退火处理

对钢丝显微硬度、抗拉强度以及电阻率的下降,这表明退火工艺显著消除钢丝内部组织缺陷。

钢丝生产工艺流程图

钢丝 百科名片 钢丝是钢材的板、管、型、丝四大品种之一,是用热轧盘条经冷拉制成的再加工产品。 目录 钢丝 钢丝的生产 烘干处理 热处理 镀层处理 钢丝的分类 编辑本段 钢丝 From 中国食品百科全书 Jump to: navigation, search [中文]: 钢丝

[英文]: steel wire [说明]: 钢丝是钢材的板、管、型、丝四大品种之一,是用热轧盘条经冷拉 钢丝 制成的再加工产品。按断面形状分类,主要有圆、方、矩、三角、椭圆、扁、梯形、Z字形等;按尺寸分类,有特细<0.1毫米、较细0.1~0.5毫米、细0.5~1.5毫米、中等1.5~3.0毫米、粗3.0~6.0毫米、较粗6.0~8.0毫米,特粗>8.0毫米;按强度分类,有低强度<390兆帕、较低强度390~785兆帕、普通强度785~1225兆帕、较高强度1225~1960兆帕、高强度1960~3135兆帕、特高强度>3135兆帕;按用途分类有:普通质量钢丝包括焊条、制钉、制网、包装和印刷业用钢丝,冷顶锻用钢丝供冷镦铆钉、螺钉等,电工用钢包括生产架空通讯线、钢芯铝绞线等用专用钢丝,纺织工业用钢丝包括粗梳子、综013、针布和针用钢丝,制绳钢丝专供生产钢丝绳和辐条,弹簧钢丝包括弹簧和弹簧垫圈用、琴用及轮胎、帘布和运输胶带用钢丝,结构钢丝指钟表工业、滚珠、自动机易切削用钢丝,不锈钢丝包括上述各用途的不锈钢丝及外科植入物钢丝,电阻合金丝供加热器元件、电阻元件用,工具钢丝包括钢筋钢丝和制鞋钢丝。 编辑本段 钢丝的生产 钢丝生产的主要工序包括原料选择、清除氧化铁皮、烘干、涂层处理、热处理、拉丝、镀层处理等。 原料选择见钢丝原料。 清除氧化铁皮指去除盘条或中间线坯表面的氧化铁皮,目的是防止拉拔时氧化铁皮损伤模具和钢丝表面,为后继的涂或镀层处理准备良好的表面条件以及减小拉拔时的摩擦降低拉拔力。清除氧化铁皮的方法有化学法和机械法两大类,见盘条化学除鳞和盘条机械除鳞。 编辑本段

QC T228.2-1997摩托车操作拉索钢丝绳

QC T228 QC/T 228.2-1997 摩托车和轻便摩托车操纵拉索钢丝绳 1范畴 本标准规定了摩托车和轻便摩托车操纵拉索用钢丝绳的产品分类、技术要求、试验方法、检验规则及标志、包装。 本标准适用于摩托车和轻便摩托车用操纵拉索的钢丝绳。 2引用标准 GB 228金属拉伸试验方法 GB 239金属线材扭转试验方法 GB 699优质碳素结构钢技术条件 GB 21041钢丝绳包装、标志及质量证明书的一样规定 GB 2973镀锌钢丝绳锌层重量试验方法 GB 8358钢丝绳破断拉伸试验方法 GB 8706钢丝绳术语 GB 8707钢丝绳标记代号 3产品分类 3.1钢丝绳按表面状态分为:镀锌钢丝绳和涂塑钢丝绳。 3.2钢丝绳按断面结构分为1×19和6×7+IWS两种。 3.2.11×l9钢丝绳的结构和尺寸见图1、表1。 3.2.26×7+IWS钢丝绳的结构和尺寸见图2、表2。 3.3钢丝绳单根长度不小于25m。 3.4标记示例 例1:公称直径1.6mm,结构为1×19的镀锌钢丝绳: 钢丝绳1.6-1×19QC/T 228.2一1997 例2:公称直径3.0mm,结构为6×7+IWS的涂塑钢丝绳:

钢丝绳T3一6×7十IWS QC/T 228.2一1997 4技术要求 4.1钢丝 4.1.1钢丝用GB 699规定的优质碳素结构钢制造。钢号由制造厂选择,但其硫、磷含量各不大于0.030%。 4.1.2钢丝须经镀锌处理,其镀层重量应符合表3的规定。 4.1.3钢丝直径承诺偏差和力学性能应符合表4的规定。 4.1.4钢丝应进行打结拉力试验,打结拉力应不低于该钢丝公称抗拉强度58%的载荷。 4.1.5钢丝表面不应有刮伤、压扁和锈蚀等缺陷。镀锌层应平均连续,无裂纹和剥落现象。 4.2钢丝绳 4.2.1钢丝绳中各股及股中各钢丝应捻制紧密,不得有叠痕,凸起、折断、压伤及错乱交叉的钢丝。 4.2.2钢丝绳中钢丝的接头应尽量减少,必须接头时,两接头之间距离不得小于8m。接头方式为对焊或插接。 4.2.3钢丝绳中股的捻距和股中钢丝的捻距在其全长上应平均,钢丝绳的捻距为绳径的6~8倍,绳股和单股钢丝绳中钢丝的捻距应不大于股径的12倍。 4.2.4钢丝绳的捻向为:1×19钢丝绳左向捻(S);6×7+IWS钢丝绳右交互捻(ZS)。 4.2.5钢丝绳应不松散,中心股和外层股中心丝承诺加粗。 4.2.6涂塑前的钢丝绳表面应清洁,无油污及其他杂质,承诺锌层表面有少量闪光点及白色簿层。 4.2.7涂塑钢丝绳涂塑层应色彩平均,无裂缝、凸起及阻碍使用性能的挤压痕迹。涂塑层与钢丝绳应紧密结合,不得有相互滑动,涂塑层不平均时,其局部最小壁厚应符合表1、表3的规定。

钢丝绳包装、标志及质量证明书的一般规定

钢丝绳包装标志及质量证明书的一般规定 GB 2104—88 中华人民共和国冶金工业部1988—02—02批准1989—03—01实施本标准适用于钢丝绳的包装、标志及质量证明书的一般规定。当产品标准有特殊规定时,按相应标准执行。 本标准参照采用ISO 3178—74《一般钢丝绳——验收条件》制定。 1 包装 1.1 一般情况下,每条钢丝绳都应单独包装。 1.2 包装分下列4种。包装种类应在合同中注明。若未注明,由供方选择。 1.2.1 方法一:无工字轮包装 钢丝绳应捆扎紧,横向捆扎不少于4处,内衬一层中性防潮纸或其他中性防潮材料包装后,用塑料编织布或其他相当材料包严缠紧,包装材料端部用金属丝(带)扎牢,最后用金属丝(带)或塑料包装带捆扎结实,横向捆扎不少于4处,纵向不少于1处(见图1),金属丝捆扎端头必须平伏。其重量不得大于500 kg。 图1 无工字轮包装 1—金属丝(带)或塑料包装带;2—外包装 1.2.2 方法二:工字轮包装 工字轮可选用木材、钢、钢木或其他适当材料制成,应有足够的强度,以保证正常运输中不受损坏。 工字轮不潮湿,木质工字轮中心轴孔必要时用金属材料加固。工字轮轮芯直径由供方选择,但要保证所卷钢丝绳拆卷后不变形。工字轮边缘应高出所卷钢丝绳的最外层:直径小于15mm的钢丝绳,其高出量不得小于钢丝绳直径的2倍;直径大于或等于15mm的钢丝绳,其高出量不得小于30mm。 卷绳前,轮芯应衬一层中性防潮纸或其他中性防潮材料。卷绳时,钢丝绳应排绕整齐。卷绳后,应切净绳头松散部分并将其固定结实。然后,在外层钢丝绳上紧密地包上一层中性防潮材料,再用金属丝(带)或塑料包装带在距轮缘内侧不大于150mm处捆扎二道(见图2),不得有明显外露的钢丝绳。如捆扎道的间距大于500mm,应在中间部位增加一道(见图2虚线部位),用金属丝捆扎的端头应平伏。 图2 工字轮包装 1—工字轮;2、3—金属丝(带)或塑料包装带;4—外包装 1.2.3 方法三:工字轮增加防护材料包装 按第1.2.2款包装,并增加轮内侧衬中性防潮材料,外层再用木板或其他相当的防护材料覆盖,最后用金属丝(带)捆扎。 1.2.4 方法四:桶(箱)包装 先按第1.2.2款包装,然后将工字轮装入有干燥剂(或防锈剂)的清洁的桶(箱)中,桶(箱)盖应封闭严实,以便防污防潮。 2 标志 钢丝绳包装外部必须附有牢固清晰的标牌,其上注明: a.供方名称或商标; b.钢丝绳名称; c.标准编号; d.钢丝绳的直径、结构、表面、捻法和长度; e.钢丝绳净重和毛重; f.钢丝公称抗拉强度; g.钢丝绳最小破断拉力或钢丝破断拉力总和; h.钢丝绳出厂编号; i.检查员印记; j.制造日期。 注:钢丝绳简称标记(按产品标准规定)。 3 质量证明书

钢丝的基本组织结构与使用性能

钢丝的基本组织结构与使用性能(壹佰钢铁网推荐)钢丝的组织结构除指显微组织、晶粒度外,还包括显微组织缺陷。显微组织缺陷指钢丝实际晶格结构与理想晶格结构之间存在的差异,按冶金学理论,金属材料的显微组织缺陷可以分为:点缺陷、线缺陷、面缺陷、体缺陷。显微组织结构的各种缺陷可用相应的技术参数去定义和度量,也可以借助各种检验方法去观察和研究。钢丝的性能完全取决于组织结构,而组织结构在很大程度上取决于热处理和冷加工工艺,要生产出顾客滿意的钢丝产品,必须搞清组织结构与使用性能的关系,以及组织结构与热处理工艺的关系。 1 钢丝的几种基本组织形态 钢铁材料有7种基本组织结构:奥氏体、铁素体和渗碳体、珠光体、贝氏体、马氏体和莱氏体,其中奥氏体、铁素体和渗碳体是基本相,珠光体、贝氏体、马氏体和莱氏体是多相混合物。钢丝具有的各种组织结构的表观特性及性能特点描述如下: 奥氏体:观察Mn13或奥氏体钢1Cr18Ni9Ti的钢丝金相组织可发现,奥氏体的晶界比较直,晶内有孪晶或滑移线。淬火钢中的残余奥氏体分布在马氏体的空隙处,颜色浅黄、发亮。 奥氏体钢丝具有优异的冷加工性能,在高低温条件下均可保持良好的强韧性。一般来说奥氏体钢的冷加工硬化速率远大于珠光体和索氏体钢,经大减面拉拔可以制备具有特殊性能的弹簧,高锰奥氏体钢具有优异的耐磨性能和减振性能,奥氏体不锈钢具有良好的耐蚀性能和耐热性能。固溶状态的奥氏体钢无磁,经深冷加工有微弱的磁性。 铁素体:铁素体晶界圆滑,晶内很少见孪晶或滑移线,颜色浅绿、发亮,深腐蚀后发暗。钢中铁素体以片状、块状、针状和网状存在。纯铁素体组织具有良好的塑性和韧性,但强度和硬度都很低;冷加工硬化缓慢,可以承受较大减面率拉拔,但成品钢丝抗拉强度很难超过1200MPa。常用铁素体钢丝有铁素体不锈钢丝(0Cr17)和铁-铬-铝电热合金丝(0Cr25Al5)等。 渗碳体:钢中渗碳体以各种形态存在,外形和成分有很大差异。一次渗碳体多在树枝晶间处析出,呈块状,角部不尖锐;共晶渗碳体呈骨骼状,破碎后呈多角形块状;二次渗碳体多在晶界处或晶内,可能是带状、网状或针状;共析渗碳体呈片状,退火、回火后呈球状或粒状。在金相图谱中渗碳体白亮,退火状态呈珠光色。一次渗碳体和破碎的共晶渗碳体只有在莱氏体钢丝,如9Cr18、Cr12、Cr12MoV和W18Cr4V中才能见到,只要热加工工艺得当,冷拉用盘条中的一次渗碳体块度应较小、无尖角,共晶碳化物应破碎成小块、角部要

钢丝绳有关术语的解释

钢丝绳最小破断拉力就是计算至少要用多大的力量可以将钢丝绳拉断。钢丝绳最小破断拉力的检测是判定此钢绳是否合格的重要依据;也是设计选用何种钢丝绳的重要依据;检测钢丝绳最小破断拉力的意义: 最直接了解被检钢丝绳的实际强度, 对此钢绳的实际使用提供最可靠的强度依据. 钢丝绳的最小破断拉力与钢丝破断拉力总和不是一个概念!钢丝绳的破断拉力——是整根钢丝绳在拉伸实验时测得的最大拉力。钢丝的破断拉力总和——钢丝绳中全部钢丝按规定的方法测得破断拉力总和(也有测定部分钢丝破断拉力,计算出全部钢丝破断拉力总和)。钢丝破断拉力总和大于钢丝绳的破断拉力,是因为在捻制成品过程中有拉伸、弯曲和集中应力的作用,而造成的,两者差值叫捻制损失。 抗拉强度是指材料在外力拉伸下抵抗破断的能力.试样拉断前承受的最大标称拉应力。 抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致上的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 公称抗拉强度:按标准拉伸试样的试件进行拉力试验得到公称抗拉强度。 破断力=50d2 破断力=(英寸)2/2

GBT8918—1996钢丝绳

钢丝绳GB/T 8918—1996 前言 本标准采用GB 8918—88(优质钢丝绳)标准体系,补充进扁钢丝绳品种,在主要技术内容上非等效采用国际标准ISO 2408:85(一般用途钢丝绳特性),ISO 3154:88(矿井提升用钢丝绳交货技术条件)和ISO 3178:88(一般用途钢丝绳验收条件)。 本标准在GB 8918—88(优质钢丝绳)的基础上,将6×19(b)类和6×37(b)类钢丝绳直径范围适当扩大;验收方法修改为由供需双方协商选定的方法1(测定整绳破断拉力)和方法2(测定钢丝破断拉力总和);增加了仲裁试验。 GB 8918于1988年2月首次发布。 本标准从实施之日起,同时代替GB 1102—74、YB 829—79、GB 8918—88。 本标准的附录A是提示的附录。 本标准由中华人民共和国冶金工业部提出。 本标准由冶金工业部信息标准研究院归口。 本标准起草单位:鞍山钢铁公司、宁夏石嘴山钢铁厂、冶金工业部金属制品研究院、天津第二钢丝绳厂、冶金工业部信息标准研究院。 本标准主要起草人:赵荣瑶、刘耀文、赵忠海、孙丽、张德英、王玉标、封文华、王平。 1 范围本标准规定了钢丝绳的分类、尺寸、重量、技术要求、试验方法、检验规则、包装标志及质量证明书。本标准适用于机械、冶金、建筑、船泊、海洋工程、渔业、林业、矿业、钻井、索道及缆车等用途使用的各种圆股钢丝绳、异型股钢丝绳,以及矿井用作平衡的扁钢丝绳。 2 引用标准下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 2104—88 钢丝绳包装、标志及质量证明书的一般规定 GB 8358—87 钢丝绳破断拉伸试验方法 GB 8707—88 钢丝绳标记代号 GB/T 8919—1996 制绳用钢丝 3 分类 3.1 钢丝绳按其绳和股的断面、股数和股外层钢丝的数目分类,见表1。在圆股和异型股钢丝绳中,如果需方没有明确要求某种结构的钢丝绳时,在同一组别内,结构的选择由供方自行确定。 表 1 钢丝绳分类

钢丝绳规格参数表模板

钢丝绳的规格与参数 一、谈一下钢丝绳生产所用的钢丝原材料 钢丝就是钢丝绳最根本的原材料,钢丝性能的好坏从根本上影响着钢丝绳质量的好坏,所以,不管你的钢丝绳技术和钢丝绳生产工艺如何,原材料过不了关,那后续工作做得再好也不能弥补这道坎! 钢丝绳原材料一般都是选用优硬线,有时也叫盘条或者盘元,而不是一般的普线或者高线什么的。有的普高线是用来生产铁丝的,这和钢丝的性质不一样。铁丝较软,钢丝较硬,生产铁丝原材料一般是Q195或者Q235之类的,而生产钢丝一般都要用到高碳钢,钢号多数集中在45#-85#之间。 钢丝绳生产中的钢丝直径一般从0.2mm-5mm,使用最多的是0.2mm-3mm,制绳钢丝抗拉强度从1470MPa-1960MPa,使用最多的是1570-1770MPa,制绳钢丝表面分镀锌、光面和不锈钢这几类,无非就是光面钢丝绳,镀锌钢丝绳,不锈钢钢丝绳。 二、钢丝绳的种类 钢丝绳是把很多根直径为0.3~3mm的高强度碳素钢钢丝先拧成股,再把若干股围绕着绳芯拧成绳的。钢丝绳种类很多,按绕捻方法不同可分为左同向捻、右同向捻、左交互捻、右交互捻四种,起重作业中常用右交互捻钢丝绳。 按钢丝绳芯材料不同可分为麻芯、石棉芯和金属绳芯三种,起重作业中常采用麻芯钢丝绳,麻芯中浸有润滑油,起减小绳股及钢丝之间的摩擦和防腐蚀的作用。 按钢丝绳绳股及丝数不同可分为6×19、6×37和6×61三种,起重作业中最常用的是6×19和6×37钢丝绳。 按钢丝表面处理不同又可分为光面和镀钵两种,起重作业中常用光面钢丝绳。 按钢丝绳股结构分类,又可分为点接触绳、线接触绳和面接触绳。 点接触绳的各层钢丝直径相同,但各层螺距不等,所以钢丝互相交叉形成点接触,在工作中接触应力很高,钢丝易磨损折断,但其制造工艺简单。 线接触绳的股内钢丝粗细不同,将细钢丝置于粗钢丝的沟槽内,粗细钢丝间成线接触状态。由于线接触钢丝绳接触应力较小,钢丝绳寿命长,同时挠性增加。由于线接触钢丝绳较为密实,所以相同直径的钢丝绳,线接触绳破断拉力大些。绳股内钢丝直径相同的同向捻钢丝绳也属线接触绳。 面接触绳的股内钢丝形状特殊,采用异形断面钢丝,钢丝间呈面状接触。其优点是外表光滑,抗腐蚀和耐磨性好,能承受较大的横向力;但价格昂贵,故只能在特殊场合下使用。

第四章钢丝的拉拔

第四章 钢丝的拉拔 钢帘线的单丝,从Ф5.5mm 的盘条经过干式的粗拉、中拉和湿式的细拉,一直拉到ФO.15~ФO.38mm ,所以钢丝的拉拔是钢帘线生产最基本的工艺。 自1880年制成了“纵列式拉丝机”实现了拉丝生产连续化,到本世纪20年代发明了硬质合金拉丝模以及润滑剂的改善,拉拔工艺日趋成熟,实现了稳定的连续化拉丝生产。近一、二十年,国内外拉丝技术又有很大发展。出线速度已高达25M /s 和30M /s 。随着微机技术的普及应用,拉丝机的自动化水平大为提高,例如KOCH 公司的直线式拉丝机配备的电脑专家系统中,可储存100套拉丝工艺参数,随时可以调用,实现了监控,故障诊断,在线调整一体化。由于线材的质量和性能不断提高,可将Ф5.5线材一次拉拔为Ф1.3mm 的半成品钢丝,总压缩率达94.41%,并可减少一次热处理。另外在拉丝模和润滑剂方面也相应地有了很大发展。 第一节 钢丝拉拔基本原理 钢丝拉拔理论是金属压力加工原理的一部分,拉拔的目的是将粗截面的线材通过模孔拉制成所需形状和尺寸的钢丝,同时要满足标准规定的性能和质量的要求,尤其是力学性能的要求。 众所周知,金属所以能够进行拉拔是因为各种金属都具有不同程度的塑性。所谓塑性即金属在外力作用下,产生永久变形而不破裂的能力。 由于金属的组织和化学成分的不同,金属能够承受的拉拔变形程度也不尽相同。拉拔理论研究不同组织和成分的金属,在拉拔中产生变形和应力分布的特点,拉拔过程中不均匀变形产生的原因和残余应力造成的后果,拉拔后金属组织和性能的变化规律,拉拔力和抗拔功率的计算方法并分析其影响因素,从而利用金属塑性,正确拟定拉拔工艺,合理使用拉丝设备,改革旧的工 艺制度,提高产品质量,降低成本,提高生产率。 限于篇幅,本章只能对上述有关内容作一些简单的阐述。 应 力 一、金属的塑性变形 σ 1.金属的变形和断裂 金属在外力作用下,随着应力的增加,可先后发 生弹性变形、塑性变形,直至断裂。图4—1所示为低 碳钢在拉伸试验时的应力一应变曲线。在应力(σ)低 于弹性极限(σe )时,钢所发生的变形为弹性变形,其 特点是外力去除后,其变形可以完全恢复,并且,应力 .45. 应变ε 4—1低碳钢在拉伸试验时的应力一应变曲线 .45.

异型钢丝生产工艺技术

第十六篇 异型钢丝生产工艺技术

第一章概述 第一章概述 第一节异型钢丝生产现状 异型钢丝亦即非圆断面钢丝,由于其断面形状复杂、尺寸精度高、形状免切削和长度无限长等特性,因而具有广泛的用途,如机械弹簧和垫圈用方形(或梯形)钢丝、汽车及摩托车用高档化油器及活塞环钢丝、玻璃升降器与座椅调角器用大规格扁钢丝、纺织行业用针布钢丝和儿童玩具及钟表用发条钢丝、万吨压力机缠绕用高强度低松弛扁钢丝、航天、军工用其他特殊合金异型钢丝等。国外20世纪60 年代就能生产各种复杂断面异型钢丝,并形成了系列。 我国异型钢丝起步较晚,20世纪70年代末和80年代初,仅有陕西钢厂、首钢特钢厂、江西新余钢厂等几个大厂依靠本单位技术力量组织生产一些简单断面异型钢丝,而且还存在尺寸公差大、通条性差等问题,材料主要为碳素钢、不锈钢等。年产量多者上千吨,少者不过几百吨、几十吨。由于其量小、生产难度大、质量差、效益不明显,因此,没有引起厂家的重视。进入80年代末,由于国民经济发展的需要和市场经济的逐步形成,异型钢丝生产在我国得到迅猛发展,设备引进步伐也在加快,如某厂引进的意大利三辊冷轧钢丝机组(型号为76/14 型)、郑州金属制品研究院从英国引进的四辊滚拉模SGL65等,都为异型钢丝生产的技术进步做出了贡献。 异型钢丝形状复杂,品种规格多,我国生产企业采取拉拔、轧制和拉轧结合的方式,已能生产多种形状的异型钢丝,如图 16—1—1 所示。材料也从普碳钢发展为碳素结构

标准分享网 https://www.wendangku.net/doc/6518660874.html, 免费下载 第十六篇 异型钢丝生产工艺技术 1208 钢、碳素弹簧钢、合金工具钢、不锈钢、耐热耐蚀合金钢、高铬轴承钢和有色金属等。交货状态有退火状态、冷拉状态和油淬火回火状态,有成盘交货,也有直条交货。规格从0.4~14mm 不等,基本满足了市场的需要,但在钢丝形状尺寸、公差、通条性和表面处理上仍与国外发达国家有一定差距。 图16—1—1 钢丝截面示意图 第二节 异型钢丝的特点与分类 一、形状特点 异型钢丝形状有多种多样,既有方形、矩形,也有三角形、六角形,还有扁形和其他多边不规则形等,由于其独特的轮廓形状,因而有以下特性: (1)形状功能性。异型钢丝依形状和用途不同,有密封、定位、导向、稳定、实用等功能,如机械用的键、卡簧、轴承保持架、半圆销用异型钢丝等就起到很好的定位作用;化油器针阀、汽车活塞环就有很好的密封稳定性;六角螺母用钢丝、弹簧用方、矩形钢丝等,很多特殊用途的异型钢丝都有很好的实用性。 (2)免切削和节省材料。现在生产的异型钢丝已能直接用于生产使用,不需要用户再

钢丝绳术语(上)

大家都知道钢丝绳,可是他的一些专业术语可能不是很清楚,下面我来说一下。 钢丝绳术语 GB 8706-88 本标准适用于钢丝绳产品及使用标准常用的术语。在制(修)订钢丝绳产品标准和实际应用中,应采用本标准规定的术语。 本标准等效采用国际标准ISO 2532—74《钢丝绳——词汇》。 第一篇钢丝绳及其构件的制造 1 钢丝 wires 由碳素钢或合金钢通过冷拉或冷轧而成的圆形(或异形)丝材;它是构成股的基本单元。 1.1 制造方法 method of manufacture 1.1.1 冷拉 cold drawing a. 干拉:拉拔钢丝时,采用固态(或胶状)润滑剂; b. 湿拉:拉拔钢丝时,采用液态润滑剂。 1.1.2 冷轧 cold rolling 1.1.3 淬火——焙炖或派登脱 patenting a. 铅淬火; b. 其他介质(水、盐、空气等)淬火。 1.2 横截面形状 shape of cross-section 1.2.1 圆形 round 1.2.2 异形 shaped 除圆形以外的其他形状,如z型、V型、H型等。 1.3 材料 material

1.3.1 碳素钢 carbon steel a. 低碳钢; b. 中碳钢; c. 高碳钢。 1.3.2 合金钢 alloy steel 1.4 表面状态 condition of surface 1.4.1 光面——无镀层 without coating 1.4.2 镀(涂)层 protective coating 1.4. 2.1 镀锌层 zinc galvanized a. 热镀层:将钢丝浸到熔融的锌液中形成的镀层; b. 电镀层:镀层金属(锌)离子通过电化学作用沉积在钢丝表面上形成的镀层。 1.4. 2.2 镀铝层 aluminium coated 1.4. 2.3 镀铜层 copper coated 1.4. 2.4 镀镉层 cadmium coated 1.4. 2.5 塑料涂层 plastic coated 1.4. 2.6 其他镀(涂)层 other coatings 1.4.3 镀层方法 method of coating a. 先拉后镀:钢丝拉到成品尺寸后进行镀制; b. 先镀后拉:对半成品钢丝进行镀制,然后再拉到成品尺寸。 1.5 钢丝的位置 position of wires 1.5.1 中心钢丝 core wire or king wire 股或单股绳中处于中心位置且被包捻的单根钢丝。

钢丝绳国家标准

钢丝绳 GB/T 8918-1996 国家技术监督局1996-04-05批准1996-10-01实施 前言 本标准采用GB 8918—88(优质钢丝绳)标准体系,补充进扁钢丝绳品种,在主要技术内容上非等效采用国际标准ISO 2408:85(一般用途钢丝绳特性),ISO 3154:88(矿井提升用钢丝绳交货技术条件)和ISO 3178:88(一般用途钢丝绳验收条件)。 本标准在GB 8918—88(优质钢丝绳)的基础上,将6×19(b)类和6×37(b)类钢丝绳直径范围适当扩大;验收方法修改为由供需双方协商选定的方法1(测定整绳破断拉力)和方法2(测定钢丝破断拉力总和);增加了仲裁试验。 GB 8918于1988年2月首次发布。 本标准从实施之日起,同时代替GB 1102—74、YB 829—79、GB 8918—88。 本标准的附录A是提示的附录。 本标准由中华人民共和国冶金工业部提出。 本标准由冶金工业部信息标准研究院归口。 本标准起草单位:鞍山钢铁公司、宁夏石嘴山钢铁厂、冶金工业部金属制品研究院、天津第二钢丝绳厂、冶金工业部信息标准研究院。 本标准主要起草人:赵荣瑶、刘耀文、赵忠海、孙丽、张德英、王玉标、封文华、王平。 1 范围 本标准规定了钢丝绳的分类、尺寸、重量、技术要求、试验方法、检验规则、包装标志及质量证明书。 本标准适用于机械、冶金、建筑、船泊、海洋工程、渔业、林业、矿业、钻井、索道及缆车等用途使用的各种圆股钢丝绳、异型股钢丝绳,以及矿井用作平衡的扁钢丝绳。 2 引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 2104—88 钢丝绳包装、标志及质量证明书的一般规定 GB 8358—87 钢丝绳破断拉伸试验方法。 GB 8707—88 钢丝绳标记代号 GB/T 8919—1996 制绳用钢丝 3 分类 3.1 钢丝绳按其绳和股的断面、股数和股外层钢丝的数目分类,见表1。在圆股和异型股钢丝绳中,如果需方没有明确要求某种结构的钢丝绳时,在同一组别内,结构的选择由供方自行确定。 表1 钢丝绳分类

钢丝拉拔后性能讲解

8. 拉拔时钢丝性能变化的一般规律 信息来源:金属制品网日期:2013-12-27 点击:32 文字大小:[大][中][小] 8.1. 力学性能 在显微组织结构相同的前提下,钢丝冷加 工强化

系数随含碳量增大而增大,是一个大家普遍认知 的基本规律。实际上,氮与碳具有完全相同的特性,往往被人们忽视了,氮对冷加工强化的贡献几乎与等量碳相同。因此对气体保护焊丝(08Mn2Si)和帘线用钢丝(72A)等,希望从盘条用最少循环道次直接拉拔到成品的钢丝,必须控制钢中氮含量(≤60ppm或≤40ppm)才能保证拉拔顺利进行。氮含量的增加还会导致钢丝的应变时效脆化效应增强。 显微组织结构对冷加工强化系数有决定性的影响,从表11可以看出,不同组织结构的碳素钢丝中,索氏体钢的冷加工强化系数最大,粒状珠光体钢的冷加工强化系数最低。广而言之,奥氏体钢的冷加工强化系数最大,铁素体钢的冷加工强化系数最低。对于同一炉号的钢,只要其组织结构相同,冷加工强化系数一般是衡定的。 表11 不同牌号、不同组织结构钢丝的冷加工强化系数(K) 8.2. 工艺性能 8.2.1. 成形性能 反复弯曲、缠绕和扭转是弹簧成形和服役时必须承受的应力状态,通称为韧性指标,是弹簧钢丝的重要考核指标。 图31显示,反复弯曲次数、缠绕性能和扭转次数是随拉拔减面率的增加而缓慢下降的,但又并非完全如此。因为这三项指标除受冷加工强化影响外,还受钢的化学成分、纯净度、

组织结构的均匀性、气体含量(尤其是[H]含量)、钢丝残余应力的分布状况、以及应变时效脆化效应的影响,而且后者的作用往往远大于前者。通过调整化学成分和拉拔工艺,钢丝在获得预定抗拉强度的同时,可以得到不同等级的韧性指标。图32给出了生产Φ2.0mm,抗拉强度160~185kg/mm2级制绳钢丝的几种工艺方案,方案a选用60钢、Φ5.5mm热轧盘条,表面处理后直接拉拔到Φ2.0mm,此时抗拉强度刚达到下限要求,考虑到性能的波动,必须加大投料尺寸,但钢丝断后伸长率已降到很低水平,扭转值已超过最高点并开始下降,显然是不合适的。正确的方法是选用含碳量为0.65%的盘条。 方案b选用70钢盘条预拉到Φ5.0mm,然后铅淬火,再拉拔到Φ2.0mm,钢丝的抗拉强度达到了上限要求,尽管断后伸长率较低,但断面收缩率和扭转值处于较好水平。 方案c选用80钢、Φ5.5mm盘条,首先进行铅淬火,预拉到Φ3.45mm,再经铅淬火后拉拔到Φ2.0mm。钢丝在获得期望的抗拉强度的同时,断面收缩率处于高水平,扭转值也处于上升阶段。 从图31和图32两事例中可以看出碳素钢丝冷拉过程中扭转值、塑性和强度变化的某些规律: a. 图31和图32中显示的扭转值随减面率变化的规律不一致,其中图32方案c显示的规律与生产实践相吻合,即扭转值在前一两道次拉拔时稍有下降,然后随减面率加大逐步回升,总减面率72%~86%(碳含量越高,峰值出现的越早)时达到最高值,并稳定一个阶段,然后又急剧下降,出现后一种情况,通常称为冷加工过度。扭转值出现图31的情况估计与拉丝机冷却效果不太好有关,相比较图32的冷却效果明显好点。 b.在拉拔工艺相同,模具、润滑和冷却亦相同条件下,索氏体钢的扭转值最高;钢丝索氏体化程度越高,索氏体片间距越细,组织均匀性越好,扭转值越高。两次铅淬火的钢丝索氏体度更高,均匀性更好,扭转值自然偏高。此外,奥氏晶粒度偏大,索氏体团偏大的钢丝,扭转值也明显偏高。 c.碳素钢丝不管组织结构如何,也不管碳含量高低,在冷拔初期(减面率35%左右)断后伸长率很快降到很低水平(6%以下);而断面收缩率因组织结构不同,拉拔过程中出现很大差距,索氏体钢随减面率增加先减后升,变化幅度不大。分析起来,断后伸长率反映钢丝均匀变形能力,断面收缩率反映钢丝局部变形能力,由此推论:能体现钢丝可拉拔性,或拉拔塑性的指标是断面收缩率,而不是断后伸长率。 e.屈服极限在拉拔初期增加的幅度比抗拉强度的增幅大得多了,当总减面率继续加大时,屈服极限与抗拉强度同步增长,直到拉断时屈服极限已非常接近抗拉强度了。

相关文档