文档库 最新最全的文档下载
当前位置:文档库 › 交流异步电动机的矢量控制系统设计原理

交流异步电动机的矢量控制系统设计原理

交流异步电动机的矢量控制系统设计原理
交流异步电动机的矢量控制系统设计原理

交流异步电动机的矢量控制系统设计原理

本文主要利用电机矢量控制系统原理,提出了一种异步电机矢量控制系统及其控制策略总体设计方案,采用Simulink工具构建了矢量变频调速系统数学模型,详细介绍了各个子模块的构建方法和功能。通过仿真可得系统的动态及稳态性能,表明系统具有较高的响应能力和鲁棒性,为矢量控制技术提供了一种前期检验方法和研究手段。

0引言

异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,矢量控制是电机控制系统的一种先进控制方法,由于其交流调速时的优越性被广泛应用到异步电机调速系统中。基于Simulink的交流异步电机仿真可以验证系统设计方案的有效性,在实验室应用过程中可能遇到系统设计难题。

本文以双闭环矢量控制系统为研究对象,在Simu-link中进行仿真来验证控制系统的有效性。通过分析仿真结果得到矢量控制系统的动静态特性,从而证实了本设计方案的可行性。

1矢量控制原理

矢量控制系统,简称VC系统,坐标变换是核心思想。矢量控制的基本思想是以产生同样的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流等效成两相静止坐标系上的交流电流,在通过坐标旋转变换将其等效成同步旋转坐标系上的直流电流,等效过程中实现磁通和转矩的解耦控制,达到直流电机的控制效果,得到直流电动机的控制量。便可将三相异步电动机等效为直流电动机来控制,获得与直流调速系统接近的动、静态性能。

矢量控制中矢量变换包括三相-两相变换和同步旋转变换,将d轴沿着转子总磁链矢量φr的方向称为M轴,将q轴逆时针转90°,即垂直于矢量φr的方向称为T轴,经过变换电压-电流方程改写为式(1),磁链方程为式(2):

化简可得转矩方程为:

由式(2)可得转子磁链φr仅由定子电流励磁分量isM产生,与转矩分量isT无关,而isM和isT是相互垂直的,这两者是解耦的。矢量控制变频调速系统结构如图1所示,从图1上可以看出系统采用了转速、磁链的闭环控制。图中标*的量为给定量,其余为实际测量值。

2基于Simulink的异步电机矢量控制系统仿真模型

2.1系统总体模型

根据矢量控制系统原理,利用Matlab/Simlink软件中的电气系统工具箱SimPowerSystems对系统进行仿真。

整体系统的仿真模型如图2所示。

2.2仿真模型中主要部分

2.2.1异步电动机与逆变模块

异步电动机选用SimPowerSystem模块库中的Asyn-chronous Machine SI Uints,选择在同步旋转坐标系的笼式异步电动机数学模型。模块的A,B,C是异步电动机定子绕组输入端,与IGBT逆变器的输出相连。逆变部分由SimPowerSystem模块库中的Power Electronic下的Universal Bridge 模块形成,逆变器的输入pulse端为PWM控制信号(6路),输出为三相ABC 交流电压。

2.2.2矢量控制模块

矢量控制模块的内部结构如图3所示。子模块输入角速度给定和实际角速度值求偏差,并送入转速调节器(PI调节器);磁链给定的偏差信号用来作为磁链调节器(PI调节器)的输入,dq-abc、各计算环节及abc-dq实现转速和磁链的解耦控制,pulses generator单元产生脉冲信号控制IGBT逆变器达到变频调速的目的。转子磁链相位角和励磁、转矩电流计算均根据矢量控制原理采用Simulink下的Fun模块设置函数,本文不再给出它们的具体仿真模型。

2.2.3脉冲发生器模块

脉冲发生器模块由滞环控制器和逻辑非运算器组成。模块的输入信号是三相给定电流和三相实测电流,输出信号是由六路IGBT逆变器逆变来的六相脉冲信号。模块将给定信号和实际测量信号进行比较,当实测电流小于给定电流且偏差大于滞环宽度时,输出为1,逆变器相正向导通,负向关断;当实际电流大于给定电流且偏差小于滞环宽度时,输出为0,逆变器相负向导通,正向关断。采用逆变器通与断来调节逆变器输出线电压的频率,实现变频调速。电流滞环控制器模型如图4所示。

2.2.4abc-dq,dq-abc坐标变换模块

abc-dq变换模块实现三相定子坐标到dq坐标的变换,变换模块模型如图5所示;dq-abc变换模块实现dq坐标到三相定子坐标的变换,变换模块仿真模型如图6所示。采用三相到两相或两相到三相变换表达式设置变换模块中相应的函数表达式。仿真采用的Simu-link/User-Defined Function/Matlab Fcn 模块实现不同形式的函数运算。

3仿真结果及分析

3.1参数设置

在启动仿真之前,首先要设置交流异步电机参数:

额定线电压220V、交变频率50Hz、磁极对数2,转动惯量J=1.662;阻尼系数D=0.1;定子内阻Rs=0.087Ω,定子漏感Ls=0.8mH;转子内阻Rr=0.028Ω,转子漏感Lr=0.8mH;定转子互感Lm=34.7mH.

逆变器参数:逆变器设置为三电平桥式电路IGBT,逆变器直流电源VDC= 780V,给定磁通值φ*r=0.96Wb;转速控制器(PI调节器)参数kp=13,ki

=26,限幅为300;电流控制器的滞环宽度H=20A.负载转矩为10N-m,给定角速度为20rad/s.

3.2仿真分析

通过选择适当的PID参数,采用不同的PID参数对电机的空载、负载及正常运行过程进行仿真,本仿真采用试凑的方法完成两个调节器PID参数选择。结果得系统响应平稳、动静态性能都较好,转速超调小且稳态误差小。仿真结果验证了该建模方法的有效性和正确性。

4结语

异步电机矢量控制系统一直都是系统原理和系统设计方案的重点和难点,基于Simulink的异步电机矢量控制系统模型为设计良好的矢量控制系统提供了完善的系统验证方法。本文根据矢量控制原理完成了结构简明的按转子磁链定向的矢量控制系统,经过仿真实验,结果表明该矢量控制系统能有效控制异步电机的启动和调速,证明了本文所提出的设计方案具有很强的实用性。

异步电机工作原理易懂介绍

当向三相定子绕组中通入对称的三相交流电时,就产生了一个以转速1n 沿定子和转子内圆空间作顺时针方向旋转的旋转磁场。转子导体开始时是静止的,由于旋转磁场以1n 转速旋转,故转子导体将切割定子旋转磁场而产生感应电动势(感应电动势的方向用右手定则判定)。由于转子导体两端被短路环短接,在感应电动势的作用下,转子导体中将产生与感应电动势方向一致的感生电流。转子的载流导体在定子磁场中受到电磁力的作用(力的方向用左手定则判定)。电磁力对转子轴产生电磁转矩,驱动转子沿着旋转磁场方向旋转,转速为n 。 异步电机所谓异步,是指定子旋转磁场转速1n 和转子转速n 的不同。定子旋转磁场 的转速和电网频率严格对应,我们把定子旋转磁场转速与转子转速之差除以定子旋转磁 场转速定义为转差率s。 对于异步电机来说,电机学里没有像直流电机那样利用理想空载转速和转速降来对 转速进行描述,而是借助于定子旋转磁场转速1n 和转差率s 来完成对转速的刻化 。 电动机的转子转速不会与旋转磁场同步,更不会超过旋转磁场的速度。因为三相异步电动机转子线圈中的感应电流是由于转子导体与磁场有相对运动而产生的。如果三相异步电动机转子的转速与旋转磁场的转速成大小相等,那么,磁场与转子之间就没有相对运动,导体不能切割磁力线,因之转子线圈中也就不会产生感应电势和电流,三相异步电动机转子导体在磁场中也就不会受到电磁力的作用而使转子转动。因而三相异步电动机的转子旋转速度不可能与旋转磁场相同,总是小于旋转磁场的同步转速。但在特殊运行方式下(如发电制动),三相异步电动机转子转速可以大于同步转速。 由于三相异步电动机的转子与定子旋转磁场以相同的方向、不同的转速成旋转,所以叫三相异步电动机而不叫三相同步电动机。 三相异步电动机与三相同步电动机之间区别是三相异步电动机存在转差率,而三相同步电动机没有。 同步电动机的转子是固定磁场,转速与旋转磁场同步; 三相异步电动机的转子是鼠笼形短路环(或线圈),靠切割旋转磁场的磁力线产生旋转力矩 三相异步电动机定子磁场旋转,导致转子切割磁场产生电流,为了减小电流(想像这样),转子跟着旋转,但是速度总是比定子磁场慢些,这样才保持转动

永磁同步电机矢量控制简要原理

关于1.5KW永磁同步电机控制器的初步方案 基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。 矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流 电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。 根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。 其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。 电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。 输入输出部分用来输入控制量,显示实时信息等。

原理框图如下: 基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref,用这个电流量作为电流控制器的给定信号。励磁分量Isd_ref由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。另一端通过电流采样得到三相定子电流,经过Clarke变换将其变为α-β两相静止坐标系下的电流,再通过park变换将其变为d-q两相旋转坐标系下电流Isq,Isd,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref 和Vsq_ref,再经过park逆变换,得到Vsa_ref和Vsb_ref作为SVPWM

三相异步电动机及其控制电路

第5章三相异步电动机及其控制线路 5.1 三相异步电动机 实现电能与机械能相互转换的电工设备总称为电机。电机是利用电磁感应原理实现电能与机械能的相互转换。把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。 在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。 对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何正确使用。 5.1.1 三相异步电动机的结构与工作原理 1.三相异步电动机的构造 三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。此外还有端盖、风扇等附属部分,如图5-1所示。 图5-1 三相电动机的结构示意图 1).定子 三相异步电动机的定子由三部分组成: 定子定子铁心由厚度为0.5mm的,相互绝缘的硅钢片叠成,硅钢片 内圆上有均匀分布的槽,其作用是嵌放定子三相绕组

AX、BY、CZ。 定子绕组三组用漆包线绕制好的,对称地嵌入定子铁心槽内的相同的线圈。这三相绕组可接成星形或三角形。 机座机座用铸铁或铸钢制成,其作用是固定铁心和绕组2).转子 三相异步电动机的转子由三部分组成: 转子转子铁心 由厚度为0.5mm的,相互绝缘的硅钢片叠成,硅钢片 外圆上有均匀分布的槽,其作用是嵌放转子三相绕组。 转子绕组 转子绕组有两种形式: 鼠笼式-- 鼠笼式异步电动机。 绕线式-- 绕线式异步电动机。 转轴转轴上加机械负载 鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用得最广泛的一种电动机。 为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm之间。 2.三相异步电动机的转动原理 1).基本原理 为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。 图5-2 三相异步电动机工作原理

异步电机矢量控制

目录 1引言 (1) 1.1 交流电机调速系统发展的现状 (1) 1.2 矢量控制的现状 (1) 1.3 课题的研究背景及意义 (2) 1.4 本课题的主要内容 (2) 2 矢量控制的基本原理 (4) 2.1 坐标变换的基本思路 (4) 2.2 矢量控制坐标变换 (5) 2.3 矢量控制系统结构 (8) 3 转子磁链定向的矢量控制方程及解耦控制 (10) 4 转速、磁链闭环控制的矢量控制系统 (13) 4.1 带磁链除法环节的直接矢量控制系统 (13) 4.2 带转矩内环的直接矢量控制系统 (13) 5 控制系统的设计与仿真 (15) 5.1 矢量控制系统的设计 (15) 5.2 异步电动机的重要子模块模型 (16) 5.3 系统仿真结果和分析 (18) 6 结论 (21) 参考文献 (22) 致谢.............................................................................................. 错误!未定义书签。

1引言 1.1 交流电机调速系统发展的现状 在当今用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、防、科技及社会生活的方方面面[1] [2] [3] [4]。电动机负荷约占总发电量的60%~70%,成为电量最多的电气设备。根据采用的电流制式不同,电动机分为直流电动机和交电动机两大类,交流电动机分为同步电动机和异步电动机两种。电动机作为把能转换为机械能的主要设备,在实际的应用中,一是要使电动机具有较高的机能量转换效率:二是要根据生产机械的工艺要求控制并调节电动机的转速。电动的调速性能直接影响着产品质量、劳动生产效率和节电性能。 但是直到20世纪70年代,凡是要求调速范围广、速度控制精度高和动态响性能好的场合,几乎全都采用直流电动机调速系统。其原因主要是:(1)不论异步电动机还是同步电动机,唯有改变定子供电频率调速是最为方便的,而且以获得优异的调速特性。但大容量的变频电源却在长时期内没有得到很好的解;(2)异步电动机和直流电动机不同,它只有一个供电回路—定子绕阻,致其速度控制比较困难,不像直流电动机那样通过控制电枢电压或控制励磁电流可方便地控制电动机的转速。但交流电机,特别是笼式异步电动机,拥有结构单、坚固耐用、价格便宜且不需要经常维修等优点,正是这些突出的优点使得气工程师们没有放弃对电力牵引交流传动技术的探索和发展。进入20世纪70代,由于电力电子器件制造技术和微电子技术的突破和发展,先进的控制理论矢量控制、直接转矩控制等具有高动态控制性能的新技术开始被采用,使得交传动进入一个崭新的阶段。 交流电动机的诞生已有一百多年的历史,时至今日已经研制出了形式、用途容量等各种不同的品种。交流电动机分为同步电动机和异步电动机两大类。同电动机的转子转速与定子电流的频率保持严格不变的关系:异步电动机则不保这种关系。其中交流异步电动机拥有量最多,提供给工业生产的电量多半是通交流电动机加以利用的。据统计,交流电动机用电量约占电机总用电量的85%。 1.2 矢量控制的现状 自20世纪70年代,德国西门子公司的EBlasehke提出了“磁场定向控制的理论”和美国的PC.Custmna与A.AQark申请了专利“感应电机定子电压的坐标交换控

#交流异步电动机制动的几种方式附原理案例

交流异步电动机制动的几种方式附原理案列 工业变频2009-06-16 16:00:42 阅读4628 评论1 字号:大中小订阅 一、再生回馈制动 再生回馈制动是在外加转矩的作用下,转子转速超过同步转速,电磁转矩改变方向成为制动转矩的运行状态。再生回馈制动与反接制动和能耗制动不同,再生回馈制动不能制动到停止状态。 二、反接制动 反接制动是在电机定子三根电源线中的任意两根对调而使电机输出转矩反向产生制动,或者在转子电路上串接较大附加电阻使转速反向,而产生制动。 三、能耗制动 电机在正常运行中,为了迅速停车,在电机定子线圈中接入直流电源,在定子线圈中通入直流电流,形成磁场,转子由于惯性继续旋转切割磁场,而在转子中形成感应电势和电流,产生的转矩方向与电机的转速方向相反,产生制动作用,最终使电机停止。于惯性继续旋转切割磁场,而在转子中形成感应电势和电流,产生的转矩方向与电机的转速方向相反,产生制动作用,最终使电机停止。 1.能耗制动的原理 如果三相异步电动机定子绕组断开三相电源后,则电机内无磁通势。从而电磁转矩=0, 电动机在负载转矩作用下,自然停车,这是自然制动过程。 能耗制动的电路原理图如图5.22所示,三相异步电动机定子绕组切断三相交流电源后(1K 断开),同时,在定子绕组任意两相上接入直流电流( 也称直流励磁电流),即接通开 关2K,从而在电机内形成一个不旋转的空间位置固定的磁通势,最大幅值为。在三相交流电源切断后的瞬间,电动机转子由于机械惯性其转速不能突变,而继续维持原 逆时针方向旋转。此时,直流电流产生的空间固定不转的磁通势相对于旋转的转子是一个旋转磁通势;旋转方向为顺时针,转速大小为。这种相对运动导致了转子绕组有 感应电动势,并产生电流和电磁转矩,根据左手定则可知,的方向与磁通势 相对于转子的旋转方向是一样的,但与转速的方向相反,电动机处于制动运行状态, 电机转速迅速下降,直到转速时,磁通势与转子相对静止,=0, =0, , 减速过程结束,电动机将停转,实现了快速制动停车。如果负载是反抗性负载,则 电机转速将停车。如果负载是位能性负载,则电机转速时必须立即用机械抱

三相异步电动机基本控制线路的安装与调试

三相异步电动机基本控制线路的安装与调试 任务1-1 三相异步电动机的单向运行控制 学习内容: 1、常用低压电器的基本结构、工作原理、图形符号和文字符号、主要技术参数及其应用; 2、三相异步电动机的启/停、点动/长动控制。 学习目标: 1、知道:常用低压电器的工作原理、图形符号和文字符号;常用低压电器的用途。 2、能根据控制要求正确选择低压电器。 3、了解:常用低压电器的基本结构;主要技术参数。 4、掌握三相异步电动机的启/停、点动/长动控制电路的原理。 学习重点:工作原理、图形符号、文字符号、选择使用。 学习难点:工作原理、选择使用 §1-1 机床电气控制中常用的低压电器 目标任务: 1、了解低压电器的基本知识,熟悉常用的低压电器种类; 2、熟悉常用的各种低压电器的结构及原理、符号、选用; 3、熟练掌握常用低压电器的使用。 相关知识: 1-1. 低压电器基本知识

凡是对电能的生产、输送、分配和应用能起到切换、控制、调节、检测以及保护等作用的电工器械,均称为电器。低压电器通常是指在交流1200V及以下、直流1500V及以下的电路中使用的电器。机床电气控制线路中使用的电器多数属于低压电器。 一、低压电器的分类 低压电器是指工作在交流电压1200V 、直流电压1500V 以下的各种电器。生产机械上大多用低压电器。低压电器种类繁多,按其结构、用途及所控制对象的不同,可以有不同的分类方式。 1 .按用途和控制对象不同,可将低压电器分为配电电器和控制电器。 用于电能的输送和分配的电器称为低压配电电器,这类电器包括刀开关、转换开关、空气断路器和熔断器等。用于各种控制电路和控制系统的电器称为控制电器,这类电器包括接触器、起动器和各种控制继电器等。 2 .按操作方式不同,可将低压电器分为自动电器和手动电器。 通过电器本身参数变化或外来信号(如电、磁、光、热等)自动完成接通、分断、起动、反向和停止等动作的电器称为自动电器。常用的自动电器有接触器、继电器等。 通过人力直接操作来完成接通、分断、起动、反向和停止等动作的电器称为手动电器。常用的手动电器有刀开关、转换开关和主令电器等。 3 .按工作原理可分为电磁式电器和非电量控制电器 电磁式电器是依据电磁感应原理来工作的电器,如接触器、各类电磁式继电器等。非电量控制电器的工作是靠外力或某种非电量的变化而动作的电器,如行程开关、速度继电器等。 二、低压电器的作用 控制作用、保护作用、测量作用、调节作用、指示作用、转换作用 三、低压电器的基本结构 电磁式低压电器大都有两个主要组成部分,即:感测部分──电磁机构和执行部分──触头系统。 1 .电磁机构 电磁机构的主要作用是将电磁能量转换成机械能量,带动触头动作,从而完成接通或分断电路的功能。 电磁机构由吸引线圈、铁心和衔铁 3 个基本部分组成。常用的电磁机构如图所示,可分为 3 种形式。 2. 直流电磁铁和交流电磁铁

单相异步电动机的工作原理

单相鼠笼式异步电动机的工作原理 单相鼠笼式异步动机由单相电源供电,它直接接到220伏单相交流电源上就能工作,但要采取一定的措施,否则启动不起来。我们日常生活用的一些家用电器,如空调器、电冰箱、洗衣机、电扇等广泛应用着单相异步电动机。 单相异步电动机的工作原理 当给三相异步电动机的定子三相绕组通入三相交流电时,会形成一个旋转磁场,在旋转磁场的作用下,转子将获得启动转矩而自行启动。当三相异步电动机通入单相交流电时就不能产生旋转磁场。 下面来分析单相异步电动机定子绕组通入单相交流电时产生的磁场情况。如下图所示为一台简单的单相异步电动机原理图,定子铁心上布置有单相定子绕组,转子为鼠笼结构。 交流电流波形

电流正半周产生的磁场 电流负半周产生的磁场 当向单相异步电动机的定子绕组入单相交流电后,由上图可见,当电流在正半周及负半周不断交变时,其产生的磁场大小及方向也在不断变化(按正弦规律变化),但磁场的轴线则沿纵轴方向固定不动,这样的磁场称为脉动磁场。 当转子静止不动时转子导体的合成感应电动势和电流为0,合成转矩为0,因此转子没有启动转矩。故单相异步电动机如果不采取一定的措施,单相异步电动机不能自行启动,如果用一个外力使转子转动一下,则转子能沿该方向继续转动下去。 单相异步电动机根据其启动方法或运行方法的不同,可分为单相电容运行电动机;单相电容启动电动机;单相罩极式电动机等。下面分别介绍。单相异步电动机容量一般较小,运行性能较差。 t 45 90 135 180 225 270 360 315

图1 单相电容运行异步电动机原理图 (a)接线图 (b)电流相量图 图1是单相电容运行异步电动机工作原理图。单相电容式异步电动机的定子铁芯上嵌放两套绕组:主绕组U1—U2(主绕组又称工作绕组)和副绕组Z1—Z2(副绕组又称启动绕组)。两套绕组在空间的位置上互差90度电角度。在启动绕Z1—Z2中串入一个电容器C后再与工作绕组并联,然后接到单相电源上。设流过启动绕组Z1-Z2的电流为iz,流过工作绕组U1—U2的电流以为iu,当接上电源后,由于电容的充放电作用,iz落后于iu90度,流过两套绕组的电流iz与iu在相位上相差90度,如图2所示。 设电动机两个绕组接上交流电源后,电流为正值时,电流从绕组的头端进去尾端出来;电流为负值时,电流从绕组的尾端进去头端出来。 从图2可看到:在t=0瞬间,iz=0,绕组Z1—Z2中无电流流过;而这瞬时iu为负的最大值,绕组U1—U2中电流由U2进Ul出。用右手定则可判断,此时电动机中会产生如图2所示磁场,其合成磁场方向向下。 从图2可看到:在ωt=π/2瞬间,iu=0,绕组U1—U2中无电流流过;这瞬间iz为正的最大值,绕组Z1-Z2中电流从Z1进Z2出。此时电动机磁场分布如图2所示,其合成磁场方向较t=0时刻顺时针方向旋转了90角度。

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

三相异步电动机的控制电路图

三相异步电动机的控制电路 一、复习思路及要求 1. 题型:选择题、技能题、简答题。 2. 必须熟练分析各种控制电路的工作原理,只有熟悉了工作原理才能正确绘制控制电路;补画控制电路;识别电路图中的错误;对故障进行正确分析处理;设计一些简单的控制电路;并且对PLC中简单的程序设计也有帮助。 3. 该部分容是非常重要的,要熟悉电路形式及控制形式:自锁、联锁的作用及连接方式;点动、连续运转;具有过载保护的连续运转控制电路是基础。 4. 需要掌握的控制电路有:⑴点动单向运转控制电路;⑵连续单向运转控制电路;⑶点动与连续混合控制电路;⑷接触器联锁双向运转控制电路;⑸按钮联锁双向运转控制电路;⑹接触器按钮双重联锁双向运转控制电路;(7)降压起动控制电路。 二、控制电路的分析 1.单向点动转控制电路 2.单向连续运转控制电路 3.连续与点动混合控制电路(一) 4.连续与点动混合控制电路(二) 5.连续与点动混合控制电路(三)

该电路中使用了中间继电器。其电器符号是KA。作用是:当其他继电器的触点数量不够时,可借助中间继电器来扩展触头数和触点容量,起到信号中继作用。 注:通过以上控制电路明确自锁的作用及其连接方式.......................。 6.多地控制电路 该控制电路能实现电动机的两地控制。起动按钮并联,停止按钮串联。(图中如果SB1、SB2控制A地,则SB3、SB4控制B地。) 7.接触器联锁双向控制电路 该电路采用了接触器联锁优点是工作安全可靠。但电动机由正转变为反转时,必须先按下停止按钮,才能按反转按钮,否则由于接触器联锁作用,不能实现反转。 8.按钮联锁双向控制电路该线路的优点是操作方便,由正转变为反转时不必按下停止按钮,但容易产生电源两相短路故障。 9.接触器按钮双重联锁双向控制电路 该线路工作安全可靠、操作方便。 注:通过以上三个线路要明确联锁的作用及连接方式.......................。 10.定子绕组串电阻降压起动控制线路(一)

异步电机的矢量控制系统

电力拖动课程结题报告 题目:异步电机的矢量控制系统 班级:K0312417 姓名:罗开元 学号:K031241723 老师:郎建勋老师 2015年 6月 22 日

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke 和W .Flotor 提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink 中SimPowerSystems 模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步 电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的 VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标 系上的定子交流电机A i 、B i 、C i ,通过3/2变换可以等效成两相静止坐标系上的交流电流 α i 和 β i ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流 d i 和q i 。如果观察 者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。 把上述等效关系用结构图的形式画出来,得到图l 。从整体上看,输人为A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。从结构图内部看,经过3/2变换和按转子磁链

异步电动机的结构和工作原理

第五章异步电动机 前言:①定义:异步电机(也叫感应电机)是一种交流旋转电机,它的转速除与电网频率有关外,还随负载而变。 ②应用:主要作电动机使用,如:机床;水泵;家用电器; ③它的功率因数永远是滞后的。 5.1异步电动机的结构和工作原理 一、异步电动机的主要用途和分类1、异步电机主要用作电动机,去拖动各种生产机械。 异步电动机的优点:结构简单、容易制造、价格低廉、运行可靠、坚固耐用、运行效率较高和具有适用的工作特征。 异步电动机的缺点:功率因数较差。异步电动机运行时,必须从电网里吸收落后性的无功功率,它的功率因数总是小于1。 2、异步电动机的种类很多,从不同角度看,有不同的分类法: (1)按定子相数分有 ①单相异步电动机; ②两相异步电动机; ③三相异步电动机。 (2)按转子结构分有 ①绕线式异步电动机; ②鼠笼式异步电动机。 又包括单鼠笼异步电动机、双鼠笼异步电动机和深槽式异步电动机。 此外,根据电机定子绕组上所加电压的大小,又有高压异步电动机、低压异步电动机之分。从其它角度看,还有高起动转矩异步电机、高转差率异步电机、高转速异步电机等等。 二、异步电动机的结构

1. 定子:定子铁心:0.5mm厚硅钢片叠压而成,磁路的一部分 定子绕组:电磁线制而成,电路一部分 机座:铸铁或钢板焊接而成 (1)定子铁心是电动机磁路的一部分,装在机座里。为了降低定子铁心里的铁损耗,定子铁心用用0.5mm厚的硅钢片叠压而成的,在硅钢片的两面还应途上绝缘漆。下图所示为定子槽,其中(a)是开口槽,用于大、中型容量的高压异步电动机中;(b)是半开口槽,用于中型500V以下的异步电动机中;(c)是半闭口槽,用于低压小型异步电动机中。 (2)定子绕组:高压大、中型容量的异步电动机定子绕组常采用Y 接,只有三根引出线,如图(a)所示。对中、小容量低压异步电动机,通常把定子三相绕组的六根出线头都引出来,根据需要可接成Y形或△形,如图(b)所示。定子绕组用绝缘的铜(或铝)导线绕成,嵌在定子槽内。

异步电机矢量控制Matlab仿真实验

基于Matlab/Simulink异步电机矢量控制系统仿真 一.理论基础 矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。其中等效的直流电动机模型如图1-1所示,在三相坐标系上的定子交流电流iA、iB、iC ,通过3/2变换可以等效成两相静止正交坐标系上的交流isα和isβ,再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流ism和ist。 图1-1 异步电动机矢量变换及等效直流电动机模型 从图1-1的输入输出端口看进去,输入为A、B、C三相电流,输出为转速ω,是一台异步电动机。从内部看,经过3/2变换和旋转变换2s/2r,变成一台以ism和ist为输入、ω为输出的直流电动机。m绕组相当于直流电动机的励磁绕组,ism相当于励磁电流,t绕组相当于电枢绕组,ist相当于与转矩成正比的电枢电流。 按转子磁链定向仅仅实现了定子电流两个分量的解耦,电流的微分方程中仍存在非线性和交叉耦合。采用电流闭环控制,可有效抑制这一现象,使实际电流快速跟随给定值,图1-2是基于电流跟随控制变频器的矢量控制系统示意图。

图1-2矢量控制系统原理结构图 通过转子磁链定向,将定子电流分量分解为励磁分量i sm 和转矩分量i st ,转子磁链r ψ仅由定子电流分量i sm 产生,而电磁转矩e T 正比与转子磁链和定子电流转矩分量的乘积,实现了定子电流的两个分量的解耦。简化后的等效直流调速系统如图1-3所示。 图1-3简化后的等效直流调速系统 二.设计方法 1.电流模型设计 转子磁链在实用的系统中多采用按模型计算的方法,即利用容易测得的电压、电流或转速等信号,借助于转子磁链模型,实时计算磁链的幅值与空间位置。转子磁链模型可以从电动机数学模型中推导出来,也可以利用专题观测器或状态估计理论得到闭环的观测模型。在计算模型中,由于主要实测信号的不同,又分为电流模型和电压模型两种。本设计采用在αβ坐标系上计算转子磁链的电流模型。 由实测的三相定子电流通过3/2变换得到静止两相正交坐标系上的电流i sα和i sβ,在利用αβ坐标系中的数学模型式计算转子磁链在αβ轴上的分量 ?? ? ?? ?? ++-=+--=β αβχαβααωψψψωψψψs r r r s r r r i Tr Lm Tr dt d i Tr Lm Tr dt d 11 (2-1-1) 也可表述为:

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

异步电机矢量控制设计

异步电机的矢量控制设计及仿真

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke和W .Flotor提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink中SimPowerSystems模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势 为准则,在三相坐标系上的定子交流电机A i、B i、C i,通过3/2变换可以等效成

基于MTPA的永磁同步电动机矢量控制系统

基于MTPA的永磁同步电动机矢量控制系统 1 引言 永磁同步电动机由于自身结构的优点,再加上近年来永磁材料的发展,以及电力电子技术和控制技术的发展,永磁同步电动机的应用越来越广泛。而对于凸极式永磁同步电动机,由于具有更高的功率密度和更好的动态性能,在实际应用中越来越受到人们的重视[1]。 高性能的永磁同步电动机控制系统主要采用的矢量控制。交流电机的矢量控制由德国学者blaschke在1971年提出,从而在理论上解决了交流电动机转矩的高性能控制问题。该控制方法首先应用在感应电机上,但很快被移植到同步电机。事实上,在永磁同步电动机上更容易实现矢量控制。因为该类电机在矢量控制过程中不存在感应电机中的转差频率电流而且控制受参数(主要是转子参数)的影响也小。 永磁同步电动机的矢量控制从本质上讲,就是对定子电流在转子旋转坐标系(dq0坐标系)中的两个分量的控制。因为电机电磁转矩的大小取决于上述的两个定子电流分量。对于给定的输出转矩,可以有多个不同的d、q轴电流的控制组合。不同的组合将影响系统的效率、功率因数、电机端电压以及转矩输出能力,由此形成了各种永磁同步电动机的电流控制方法。[2]针对凸极式永磁同步

电动机的特点,本文采用最优转矩控制(mtpa),并用一种更符合实际应用的方法进行实现,并进行了仿真验证。

图1 电流id、iq和转矩te关系曲线 2 永磁同步电动机的数学模型 首先,需要建立永磁同步电动机在转子旋转dq0坐标系下的数学模型,这种模型不仅可用于分析电机的稳态运行性能,还可以用于分析电机的暂态性能。 为建立永磁同步电机的dq0轴系数学模型,首先假设: (1)忽略电动机铁芯的饱和; (2)不计电动机中的涡流和磁滞损耗; (3)转子上没有阻尼绕组; (4)电动机的反电动势是正弦的。 这样,就得到永磁同步电动机dq0轴系下数学模型的电压、磁链和电磁转矩方程,分别如下所示:

Simulink异步电机矢量控制(全文)

异步电动机矢量控制系统的仿真研究 摘要: 本文根据异步电动机矢量控制的基本原理,基于Matlab 软件构造了按转子磁场定向的矢量控制系统的仿真模型。通过仿真试验验证了模型的正确性,结果表明所建立的调速系统具有良好的动态性能,实现了系统的解耦控制。 关键词:异步电动机矢量控制Matlab 仿真 Simulation of Vector Control System for Asynchronous Motor Abstract: According to the basic principles of induction motor vector control,this paper constructssimulation model of rotor magnetic field oriented vector control system based on the MATLAB software.It verifies the accuracy of the model by simulation. Results show that it has good dynamic performance,andit realizes the decoupling control system. Key words: asynchronous-motor; vector control; matlab simulation 0 引言 异步电动机具有非线性、强耦合、多变量的性质,要获得良好的调速性能,必须从其动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。矢量控制就是基于动态模型的高性能的交流电动机调速系统的控制方案之一。所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。 1异步电动机矢量控制原理及基本方程式 1.1基本公式 矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。异步电动机在两相同步旋转坐标系上的数学模型包括电压方程、磁链方程和电磁转矩方程。分别如下: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? + - + - + - - + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? rq rd sq sd r r r s m m s r s r r m m m m s s s m m s s s rq rd sq sd i i i i P L R L P L L L P L R L P L P L L P L R L L P L L P L R u u u u ω ω ω ω ω ω ω ω 1 1 1 1 1 (1) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? rq rd sq sd r m r m m s m s rq rd sq sd i i i i L L L L L L L L ψ ψ ψ ψ (2) ) ( rq sd rd sq m p e i i i i L n T- =(3)当两相同步旋转坐标系按转子磁链定

交流异步电动机变频调速原理

交流异步电动机变频调速原理 交流异步电动机变频调速原理 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 交-直部分 整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。 (二)变频器元件作用 电容C1: 是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波, 变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。 压敏电阻: 有三个作用,一过电压保护,二耐雷击要求,三安规测试需要.

热敏电阻:过热保护 霍尔: 安装在UVW的其中二相,用于检测输出电流值。选用时额定电流约为电机额定电流的2倍左右。 充电电阻: 作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为 0V;所以在上电(开机)的瞬间电容对地为短路状态。如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。一般而言变频器的功率越大,充电电阻越小。充电电阻的选择范围一般为:10-300Ω。储能电容: 又叫电解电容,在充电电路中主要作用为储能和滤波。PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在 400VDC左右,为了满足耐压需要就必须是二个400VDC的电容串起来作800VDC。容量选择≥60uf/A 均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏 。

相关文档
相关文档 最新文档