文档库 最新最全的文档下载
当前位置:文档库 › 电磁搅拌技术在焊接中的应用

电磁搅拌技术在焊接中的应用

电磁搅拌技术在焊接中的应用
电磁搅拌技术在焊接中的应用

2018年特种作业焊接考试真题一

1.厚度小于1.6mm的铝合金,采用小孔法和熔透法焊接时,都必须使用Ar作为保护气。(x) 2.引起油脂自燃的内因是有较大的氧化表面(如浸油的纤维物质)有空气,具备蓄热的条件。(x ) 3.熔化极氩弧焊时,熔滴喷射过渡会产生很大的飞溅。(x) 4.室内焊接作业应避免可燃易燃气体(或蒸汽)的滞留积聚,除必要的 通风措施外,还应装设气体分析仪器和报警器。(V) 5.熔透型等离子弧焊主要用于薄板加单面焊双面成形及厚板的多层焊。(V) 6. 气体保护电弧焊存在着气瓶爆炸危险性。(V ) 7.在焊接过程中加入的二氧化碳对母材可能产生渗碳作用。(V) 8. 焊接作业处,应把乙炔瓶和氧气瓶安放在15m以外。(X)9.二氧化碳焊不能焊接管道。(X) 10.一个人在皮肤干燥状态下,接触的电压越高,人体电阻越小。X 11. 铝粉和镁粉的自燃点是一个较高的温度值,不是一个范围。(X) 12. 压缩空气的作用不包括对碳棒电极起冷却作用。(X) 13. 屈服强度越高,金属材料的抗拉强度也会越大。(V ) 14. 钎焊作业的安全生产可以保障人身安全与健康。(V) 15. 气割时,由于割炬内采用高压氧气,因此使用前要特别注意检查割炬各接头的密封性。(V) 16. 低碳钢焊接时,对焊接电源没有特殊要求,可采用交、直流弧焊机进行全位置焊接,工艺简单。(V)

17. 氩弧焊可以焊接化学活泼性强和已形成高熔点氧化膜的镁、铝、钛及其合金。(V) 18. 碳弧气刨不能清理铸件的毛边、飞边、浇铸冒口及铸件中的缺陷。(X ) 19. 氢氧化钠可以腐蚀塑料。(X ) 20. 割炬按可燃气体与氧气混合的方式不同可分为射吸式割炬和等 压式割炬两种,其中等压式割炬使用较多。(X ) 21.电流对人体的伤害有电击、电伤与灼伤。(X ) 22.安全生产工作应当做在生产活动过程中,尽量避免事故发生。(X ) 23. 割炬是气割工作的主要工具。(V ) 24. 碱性焊条的塑性、韧性和抗裂性能均比酸性的焊条好,所以在焊接重要结构时一般均采用碱性焊条。(V ) 25. 弧焊时会产生强烈的烟尘。(X ) 26. 操作激光切割机时,要严格按照激光器启动程序启动激光器。 (V ) 27. 在钎焊作业生产过程中,气瓶不会发生泄漏。(X ) 28. 置换焊补时,若隔绝工作不可靠,不得焊割。(V) 29. 劳动者无权了解所从事的工作对他们的健康可能产生的影响和 危害。(X ) 30. 铝比铜的密度小,熔点也低。(V ) 31. 熔化焊机中不与地相连接的电气回路,在试验时对个别元件,由于特性限制,允许从电路中拆除或短接。(v)

电磁搅拌

板坯电磁搅拌的现状 摘要:介绍了电磁搅拌技术的原理、电磁搅拌器的分类、电磁搅拌装置的应用条件 关键词:电磁搅拌技术; 板坯; 连铸; 应用 Electromagnetic Stirring of Slabs Abstract: It is introduced the principle of electromagnetic stirring technique as well as types and application condition of stirrer. Key words: electromagnetic stirring; continuous casting of slab; multi-mode EMS 1前言 在连续铸钢发展初期, 钢铁制造者们已认识到钢液的凝固及铸坯质量受液相穴钢液的运动和诸如对流、传热、收缩等基本物理现象的影响。毫无疑问, 电磁搅拌的研究是以优化上述运动和现象以提高钢的质量和消除不利因素等为目标的[1]。 电磁搅拌装置(Electro – Magnetic Stirring)英语缩写为EMS。目前采用电磁搅拌装置已经成为板坯连铸设备为提高铸坯产品质量的重要途径,其作用就是在铸线扇形段上安装多段电磁搅拌用的电磁线圈, 在各段辊内的电磁线圈上施加低压、低频、大电流的交流电源, 电磁力线贯穿铸坯的凝固相(即坯壳部分),在将要冷却凝固的钢水内部产生强磁场,通过钢水内流动的感应电流相互作用, 使液向部分能定向移动及旋转运动,从而对铸坯内的液相钢水进行搅拌,使铸坯内部结晶组织均匀, 提高了板坯的质量[2]。 2 电磁搅拌技术原理及作用 2.1 电磁搅拌技术原理 与已普及的长材产品生产中采用的转式电磁搅拌有所不同, 针对大断面的矩形, 板坯连铸生产采用独特的线形电磁搅拌。其原理十分简单, 如同由两相或三相电流驱动的, 能产生交变磁场的线性感应马达。电流发生相变时磁场从一极到达另一极, 并同时产生电磁推力, 将液态钢水向磁场运动的方向推动。通过电流相位变化选择方向, 通过电流密度和频率调整推力大小[3]。

浅谈焊接技术及应用

浅谈焊接技术及应用 摘要:焊接专业作为制造业中的重要一环,在生产和生活中的作用十分重要。在焊接教学中应用一体化教学,为社会主义建设培养高素质高技能的焊接人才,是现阶段中等职业教育的首要任务。一体化教学强调一体化的教学场地、“双师型”教师及一体化教材的有机结合。发展一套适应中等职业教育的教学模式。 关键词:一体化教学场地双师型”教师一体化教材 1、“一体化”教学的目标 1.1 人才培养方式和教学课程的改革 改进人才培养方案,制定适合中等职业教育焊接专业“一体化”教学的人才培养方案。在原有的的国家教育部和劳动部颁发的只有中级焊工的教学大纲的基础上,制定适合培养高级工甚至技师的焊接专业的人才培养方案。 “打破原有课程体系将其分为素质课程、专业基础课程和专门工艺课程”,我们认为在这三者中应区别对待,在“专门课程”内容的制定上要体现区域经济的生产特征,结合生产产品制定相关内容和重点,有利于生产性实习或企业的定岗实习的顺利过渡而实现学与用的成功对接。制定和完善人才培养方案和培养模式,培养能满足社会需求的技能型人才。 1.2 一体化教学场地的建设 从根本上建立起黑板+粉笔教学和电化多媒体教学相结合的理论教学模式,是学生从直观上理解和接受理论知识。 校内实训基地受场地、设备等生产要素的限制,与生产车间客观上差距存在,在大型工装的应用,成型加工工件的变形与矫正等方面尤为突出。在这方面通过校企合作,将部分一体化的教学设置在与学校项邻的企业车间。 深化校企合作办学模式和工学结合人才培养模式改革。按照专业与产业对接、企业与岗位对接,专业课程内容与职业标准对接,教学过程与生产过程对接的原则,以校企合作为平台,以系统化专业建设为载体,突出教学过程的实践性、开放性和职业性,引导专业设置、课程体系、教学内容和教学方法的改革,实现“教、学、做”一体化的人才培养模式。 1.3 关于“双师型”师资队伍建设 “双师型、专业化”是职业教师发展的必经之路,在这方面注重中、青年教师在实践环节动手能力的提高,创造条件使他们带着具体的问题、任务去企业学习实践。使中青年教师在学历和理论知识占优的情况下,大幅度提高自身的实操能力。着力加强师资队伍建设,采取“引进来、送出去”、学历进修和非学历学习相结合等方式,努力培养一支优秀的专业师资队伍,加强建设培养学生创新精神与实践能力的实训平台。 2、“一体化”教学的主要过程 2.1 开发制定一体化课程教学标准 2.1.1 重构课程标准 打破原有学科体系,将课程体系分为基本素质课程、专业基础课程、专门工艺课程。 2.1.2 开展项目教学和案例教学 根据铆焊专业岗位层次的不同要求,实现课程改革与课程建设上的重大突破,完善高级铆焊专业课程体系建设,制定高中起点3年制、初中起点5年制高级铆

2016-2017学年高中物理第3章电磁技术与社会发展第1节电磁技术的发展第2节电机的发明对能源利用

第一节电磁技术的发展 第二节电机的发明对能源利用的作用 课 标解读重点难点 1.简单了解古代对电和磁的认识. 2.知道近代电磁技术对生产和生活的影响. 3.了解现代电磁技术的发展. 4.知道能源的分类及其利用方式. 5.了解电机的发明对能源利用的作用. 1.对电和磁的认识.(重点) 2.能源的分类及利用方式.(重难点) 3.电机的发明对能源利用的作 用.(重点) 电磁技术的发展 1. (1)公元前585年,古希腊哲学家泰勒斯有对用木块摩擦过的琥珀能够吸引碎草等轻小物体的现象的描述. (2)①我国西汉末年,有对经过摩擦的玳瑁吸引微小物体的记载. ②东汉王充把琥珀被摩擦后可以吸引微小物体,与磁石吸引针的现象同时提出. ③我国古代利用磁石指南的特性发明的指南针,是电磁领域的第一个重大发明. (3)1800年,伏打发明了电池. (4)1820年,奥斯特发现电流的磁效应. (5)1831年,法拉第发现电磁感应定律. (6)1866年,西门子发明实用的自激式直流发电机. (7)19世纪80年代末,特斯拉等发明交流输电技术. (8)19世纪末期,莫尔斯发明的电报和贝尔发明的电话,开始改变人类的信息交流方式,随后马可尼发明了无线电通信.20世纪早期,出现了广播和电视,彻底改变了人们传递信息的方式. (9)20世纪末期出现的互联网是电磁技术对人类的又一重大贡献. 2.思考判断 (1)白炽灯是爱迪生发明的.(√) (2)亨利在1827年发明了实用的电磁铁.(√) 3.探究交流 发展电磁技术有何现实意义?

【提示】建立在电磁技术基础上的电力工业,信息产业,电子电器制造业等早已成为国民经济的支柱产业,没有电磁技术就没有现代化。 能源与电机 1. (1)按基本形态分类 能源可分为一次能源和二次能源.一次能源是指自然界天然存在、不改变其形态就可直接利用的能源,如煤炭、石油、天然气、水力、风力、太阳能等.二次能源是指由一次能源进行加工转换而得到的能源产品,如蒸汽、电力、煤气、石油制品等. (2)按再生性分类 可将能源分为再生能源和非再生能源.再生能源主要有水力、风力、太阳能等,非再生能源主要有煤炭、石油、天然气等. (3)按应用的广泛程度 能源又可分为常规能源和新能源,属于常规能源的有煤、石油、天然气等,而太阳能、核能等属于新能源. (4)发电机 发电机是把其他形式的能量转化成电能的装置. (5)电动机 电动机是把电能转变为机械能的装置. 2.思考判断 (1)电能是一次能源.(×) (2)电动机是将机械能转化为电能的装置.(×) 3.探究交流 随着电磁技术与社会的发展,就连在偏僻的农村,电动自行车也逐渐代替了笨重的摩托车.你知道二者的主要区别是什么吗?电动自行车有什么优点? 【提示】区别:摩托车由内燃机驱动,电动自行车由电动机驱动. 优点:轻便、清洁、高效、无污染. 能源及其利用 1.按再生性,能源分为哪几类? 2.按应用的广泛程度,能源分为哪几类?

电磁搅拌

电磁搅拌 科技名词定义 中文名称:电磁搅拌 英文名称:electromagnetic stirring,EMS 其他名称:EMS技术 定义:利用电磁效应实现熔体的搅拌,熔炼时使温度和成分均匀、连铸时控制凝固过程的工艺。 应用学科:材料科学技术(一级学科);材料科学技术基础(二级学科);材料合成、制备与加工(三级学科);特种冶金(四级学科) 以上内容由全国科学技术名词审定委员会审定公布 目录 定义 原理 模式 效果 编辑本段定义 任何通有电流的导体,都可以在其周围产生磁场的现象,称为电流的磁效应。 闭合电路的一部分导体在磁场里做切割磁力线的运动时,导体中就会产生电流这种现象叫电磁感应。 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。 三相交流电能够产生旋转磁场。 当旋转磁场半径很大时,就成了直线运动的行(xing)波磁场。 直线搅拌:由行波磁场产生的,使钢水以一定速度向磁场运动方向运动,故称直线搅拌。 钢水的流动方向始终和磁场的运动方向相一致。 编辑本段原理

电磁搅拌器(Electromagneticstirring:EMS)的实质是借助在铸坯液相穴中感生的电磁力,强化钢水的运动。具体地说,搅拌器激发的交变磁场渗透到铸坯的钢水内,就在其中感应起电流,该感应电流与当地磁场相互作用产生电磁力,电磁力是体积力,作用在钢水体积元上,从而能推动钢水运动。 编辑本段模式 根据电磁搅拌器在铸机冶金长度上的不同安装位置大致有以下几种模式 结晶器电磁搅拌:MoldElectromagneticstirring:MEMS搅拌器安装在结晶器铜管外面 二冷区电磁搅拌:StrandElectromagneticStirring:SEMS搅拌器安装在铸坯外面 凝固末端电磁搅拌:FinalElectromagneticstirring:FEMS用于方坯连铸搅拌器安装在铸坯外面 编辑本段效果 搅拌位置冶金效果适用钢种 MEMS 增加等轴晶率低合金钢 减少表面和皮下的气孔和针孔 弹簧钢 减少表面和皮下的夹杂物 冷轧钢 坯壳均匀化 中高碳钢等 稍稍改善中心偏析 SEMS扩大等轴晶率不锈钢 减少内裂 改善中心偏析工具钢 减少中心疏松 FEMS细化等轴晶弹簧钢 有效地改善中心偏析轴承钢 有效地改善中心缩孔和疏松特殊高碳钢

连铸电磁搅拌

1.什么叫电磁搅拌(简称EMS)? 大家知道,一个载流的导体处于磁场中,就受到电磁力的作用而发生运动。同样。载流钢水处于磁场中就会产生一个电磁力推动钢水运动,这就是电磁搅拌的原理。 电磁搅拌是改善金属凝固组织,提高产品质量的有效手段。应用于连续铸钢,已显示改善铸坯质量的良好效果。 早在1922年就提出了电磁搅拌的专利。论述了流动对金属结构、致密性、偏析和夹杂物等方面的影响。1952年开始在钢厂连铸机二次冷却区装置电磁搅拌的试验。随着连铸技术的发展,为改善连铸坯质量,人们对电磁搅拌结构、类型、搅拌方式和冶金效果进行广泛深入研究,使电磁搅拌技术日益成熟,得到了广泛的应用。 2.电磁搅拌器有哪几种类型? 电磁搅拌器型式和结构是多种多样的。根据铸机类型、铸坯断面和搅拌器安装位置的不同,目前处于实用阶段的有以下几种类型。 (1)按使用电源来分,有直流传导式和交流感应式。 (2)按激发的磁场形态来分,有:恒定磁场型,即磁场在空间恒定,不随时间变化;旋转磁场型,即磁场在空间绕轴以一定速度作旋转运动;行波磁场型,即磁场在空间以一定速度向一个方向作直线运动;螺旋磁场型,即磁场在空间以一定速度绕轴作螺旋运动。 目前,正在开发多功能组合式电磁搅拌器.即一台搅拌器具有旋转、行波或螺旋磁场等多种功能。 (3)按使用电源相数来分,有两相电磁搅拌器,三相电磁搅拌器。 (4)按搅拌器在连铸机安装位置来分,有结晶器电磁搅拌器、二次冷却区电磁搅拌器、凝固末端电磁搅拌器。 3.电磁搅拌技术有何特点? 与其他搅拌钢水方法(如振动、吹气)相比,电磁搅拌技术有以下特点: (1)通过电磁感应实现能量无接触转换,不和钢水接触就可将电磁能转换成钢水的动能。也有部分转变为热能。 (2)电磁搅拌器的磁场可以人为控制,因而电磁力也可人为控制,也就是钢水流动方向和形态也可以控制。钢水可以是旋转运动、直线运动或螺旋运动。可根据连铸钢钢种质量的要求,调节参数获得不同的搅拌效果。 (3)电磁搅拌是改善连铸坯质量、扩大连铸品种的一种有效手段。 4.什么叫结晶器电磁搅拌(简称M--EMS),有何作用? 结晶器电磁搅拌器特点:钢水在结晶器内,搅拌器置于结晶器外围。搅拌器内的铁芯所激发的磁场通过结晶器的钢质水套和铜板渗入钢水中,借助电磁感应产生的电磁力,促使钢水产生旋转运动或上下垂直运动。 结晶器铜板的高导电性,使用工频(50Hz)电源,由于集肤效应,磁场在铜层厚度由外向里穿透能力只有几毫米,小于铜壁的厚度,也就是磁场被结晶器铜壁屏蔽不能渗入钢水内,无法搅拌钢水。为此采用低电源频率(2~10Hz),使磁场穿过铜壁搅拌钢水。 结晶器电磁搅拌作用:1)钢水运动可清洗凝固壳表层区的气泡和夹杂物,改善了铸坯表面质量。2)钢水运动有利于过热度的降低,这样可适当提高钢水过热度,有利于去除夹杂物,提高铸坯清洁度。3)钢水运动可把树枝晶打碎,增加等轴晶核心,改善铸坯内部结构。4)结晶器钢-渣界面经常更新,有利于保护渣吸收上浮的夹杂物。

塑料热风焊接技术及应用

塑料热风焊接技术及应 用 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

塑料热风焊接技术及应用 newmaker 在与化工相关的行业中,普遍 使用的塑料容器、储槽以及部 分管路系统,都需要借助热风 焊接工艺,才能达到理想的连 接牢度。而热风工艺本身也因其简单实用,而被行业内专业人士广泛接受,尤其是对于PE、PP、PVC和PVDF等塑料种类的焊接,更具有独特的优势。塑料焊接,实际上就是相容的塑料材料中相互缠绕的大分子链受热之后,由于具备了足够的能量和空间,在自身的分子热运动和外在压力的作用下,相互迁移和扩散到对方的熔融区中,并随着温度的下降和时间的推移,再次发生缠绕、冷却、结晶和定型的过程。在塑料制品的诸多连接技术中,热风焊接工艺是比较常见的一种,化工行业中普遍使用的塑料容器、储槽以及部分管路系统等均可以使用该工艺。本文对几种主要的热风焊接工艺进行了简单的介绍。圆嘴热风焊接技术通常,圆嘴热风焊的工艺过程包括5个阶段,分别是:待焊部件的表面处理、加热、加压、分子链间扩散和冷却。每个阶段的具体操作要求取决于待焊部件的具体外观形状和内部结构设计。其工作原理(如图所示)是:利用加热后的风或空气,同时预热焊条与待焊的母材相应部位;待其熔融之后,操作者通过对焊条垂直施加一定的压力,将焊条的熔融区与待焊母材的熔融区进行对接,并保持一定的焊接速度,使其具有足够的承压时间;最后,进行冷却定型。 圆嘴热风焊接的工作原理示 意图 在正式焊接之前,应先对待焊部件的表面进行相关处理,这样做的目的是:一方面,为了在焊接区域加工出焊缝所需要的破口或槽口,例如V形或X形槽口(如图所示);另一方面,为了去除材料表面的杂质、脏物或者氧化层等影响焊接质量的不利因素。

电磁技术的发展

第一节电磁技术的发展 一、教法建议 【抛砖引玉】 教师可向学生介绍人们对电磁现象的认识过程。 在古代,人们把电和磁当作是两种独立的自然现象。随着科学技术的发展人们又发现电和磁有某些现象很相似。例如:磁体能吸引铁磁性物质,带电体能吸引轻小物体;磁体间同名磁极互相推斥,异名磁极互相吸引,而同种电荷互相推斥,异种电荷互相吸引。把电和磁形成一个整体的学科的是丹麦物理学家奥斯特。 1820年、有一天奥斯特在大学讲课时,无意中把通电的直导线放到一个和小磁针平行的位置上,小磁针立即转动产生了出人意料的现象。就是这个现象揭示了电和磁的联系,后来人们把这个实验叫做奥斯特实验。 这个现象使奥斯特产生灵感,是在他丰富的学识的基础上诱发出顿悟思维,发现了电流的磁场。这个科学史实给人以深刻启迪。 【指点迷津】 本章的重点: ⑴对电流磁场的认识。 ⑵直线电流周围的磁感线分布的情况。 ⑶通电螺线管周围的磁感线分布的情况。 ⑷磁感线方向的确定。 本章的难点: ⑴安培定则的熟练掌握,并运用定则解决一些具体问题。 ⑵学生空间想象能力的提高和识图能力的提高。 二、学海导航 【思维基础】

⒈物体具有________铁钴镍的性质叫_________。 ⒉能够在水平方向自由转动的磁体,自由静止时,指南的一端叫______用符号_______表示。指北的一端叫_______用符号_________表示。 ⒊同名磁极相互_______,异名磁极相互__________。 ⒋我们把磁体周围存的一种特殊的物质叫_______。磁体的磁感线都从磁体 _______出来,回到磁体的________。 ⒌通电螺线管内插入铁心时,由于铁心被______,磁场大大增强。电磁铁的磁性强弱与_______和_______无关。 ⒍电磁铁的磁性有无可以由_______来控制,电磁铁的磁性强弱可以由_______来控制,电磁铁的南北极可以由_______来控制。 思维基础参考答案: ⒈吸引,磁性。 ⒉南极,S,北极,N。 ⒊排斥,吸引。 ⒋磁场,北极,南级。 ⒌磁化,电流大小,线圈匝数多少。 ⒍开关,滑动变阻器,电流方向。 【学法指要】 人们把物体能够吸引铁、钴、镍等物质的性质叫做磁性,具有磁性的物体叫做磁体。磁体上磁性最强的部分叫做磁极。一个磁体有两个磁极,分别叫南极(S 极)和北极(N极)。 磁极间的相互作用是同名磁极互相排斥,异名磁极互相吸引。要知道,使原来没有磁性的物体得到磁性的过程叫做磁化。能被磁化的有软磁性或硬磁性的磁性材料。 磁场的周围存在着磁场,磁场的基础性质是它对放入其中的磁体产生磁力的作用。磁场是有方向的。磁场中某一点的小磁针静止时北极的指向,规定为这一点的磁场方向。

特种设备焊接工艺评定标准

河南江河起重机有限公司 特 种 设 备 焊 接 工 艺 评 定 标 准 编制:日期: 审核:日期: 批准:日期: 河南江河起重机有限公司

特种设备焊接工艺标准 1、主要内容与适用范围 本标准规定了特种设备焊接的基本要求。 本标准适用于焊接、手弧焊、埋弧焊、气体保护焊、电渣焊焊接的特种设备。2、焊接材料 2.1 焊接材料包括焊条、焊丝、焊剂、气体保护焊、电渣焊焊接的钢制压力容器。 2.2 焊接材料选用原则 应根据板材的化学成分、力学性能、焊接性能结合特种设备的结构特点和使用条件综合考虑选用焊接材料,必要时通过试验确定。 焊缝金属的性能应高于或等于相应板材标准规定值的下限或满足图样规定的技术要求。对各类钢材的焊缝金属要求如下: 2.2.1 相同钢号相焊的焊缝金属。 2.2.1.1 碳素钢、碳锰低合金钢的焊缝金属应保证力学性能,且需控制抗拉度上限。 2.2.1.2 相低合金钢的焊缝金属应保证化学成分和力学性能,且需控制抗拉强度上限。 2.2.1.3 低温用低合金钢的焊缝金属应保证力学性能,特别应保证夏比(V型)低温冲击韧性。 2.2.1.4 高合金钢的焊缝金属应保证力学性能和耐腐蚀性能。 2.2.1.5 不锈钢复合钢板基层的焊缝金属应保证力学性能,且需控制抗拉强度的上限;复层的焊缝金属应保证耐腐蚀性能,当有力学性能要求时还应保证力学性能。 复层焊缝与基层焊缝,以及复层焊缝与基层钢板交界处推荐采用过渡层。 2.2.2 不同钢号相焊的焊缝金属 2.2.2.1 不同钢号的碳素钢、低合金钢之间的焊缝金属应保证力学性能。推荐采用与强度级别较低的板材相匹配的焊接材料。 2.2.2.2 碳素钢、低合金钢与奥氏体高合金钢之间的焊缝金属应保证抗裂性能,推荐采用铬镍含量较奥氏体高合金钢板材高的焊接材料。 2.3 焊接材料必须有产品质量证明书,并符合相应标准的规定,且满足图样的技术要求,进厂时按有关质保体系规定验收或复验,合格后方准使用。 3、焊接工艺评定和焊工

焊接技术的应用与前景

哈尔滨工业大学 金属工艺学课程论文 题目:焊接技术的应用与前景 院系:能源科学与工程学院 专业:核反应堆工程系 班级:1102301 学号:1110200724 姓名:刘平成

焊接技术的工艺应用与前景 作者:刘平成 (哈尔滨工业大学能源科学与工程学院核反应堆工程专业,哈尔滨150001) 摘要:制造业是现代国民经济和综合国力的重要支柱,金属工艺学是一门研究有关制造金属机件的工艺方法的综合性技术学科。本文主要介绍了焊接技术在金属工艺学中的应用,工艺特点,实践,背景与应用前景。 关键词:金属工艺学、学科交叉、工艺流程,焊接技术 Technology application and prospect of welding technology (Energy Science and Engineering, Nuclear Reactor Engineering of Harbin Institute of Technology, Harbin 150001) Abstract:The manufacturing industry is an important pillar of the modern national economy and overall national strength, Metal Technology is a comprehensive research process method for manufacturing metal parts technical disciplines. This paper describes the welding metal technology, process characteristics, practice, background and application prospects. 1 焊接技术的主要研究内容 焊接焊接是被焊工件的材质(同种或异种),通过加热或加压或两者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程。 1.1 焊接分类 在近代的金属加工中,焊接比铸造、锻压工艺发展较晚,但发展速度很快。焊接结构的重量约占钢材产量的45%,铝和铝合金焊接结构的比重也不断增加。焊接技术主要应用在金属母材上,常用的有电弧焊,氩弧焊,CO2保护焊,氧气-乙炔焊,激光焊接,电渣压力焊等多种,塑料等非金属材料亦可进行焊接。金属焊接方法有40种以上,主要分为熔焊、压焊和钎焊三大类。 金属的焊接,按其工艺过程的特点分有熔焊,压焊和钎焊三大类. 熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝

《焊接技术应用》

《焊接技术应用》 技师教学方案 一、编制说明 目前,随着中国经济的发展,中国作为“世界制造工厂”,人才的需求格局发生很大的变化:人才结构不合理,实用型人才奇缺,特别就是制造业,而作为制造业中重要的焊接专业更就是奇缺。面对这样的形势,省劳动社会保障厅决定在全省几所条件较好的高级技工学校试办焊接技术应用技师班,并组织有关专家制定焊接技师培训方案,现将培训方案编制依据与思路说明如下: 1、以就业为导向,坚持正确的办学指导思想 从根本上讲,职业教育就是就业教育,就是直接为就业服务的教育。 职业教育的发展应该从劳动市场的实际需要出发,以经济结构调整与人力资源需求分析为依据,坚持培养生产与服务一线高素质劳动者。 2、能力本位的职业教育在国际上具有广泛的共识,职业能力培养就是职业教育实施素质教育的核心。 坚持以能力为本位就是真正地办真正的职业教育的体现。 3、实行产教结合,“订单”培养等新型校企合作机制 企业的发展离不开职业教育,职业教育的发展离不开企业! 职业教育应该成为:反映企业需求;反映企业参与;反映企业满意。 4、以“必须”与“够用”为度,促进文化教育功能化 职业教育中的文化基础教育,要为提高学生的职业能力服务,要全面理解文化基础教育的涵义。职业院校要按照企业对技能型人才的实际要求安排文化基础课程,防止盲目加大普通文化基础课程的比重,削弱职业能力训练,片面追求对口升学考试的做法。 5、适应行业企业劳动组织与技术发展需要,促进专业教育实用化 要关注行业企业的最新发展,通过校企合作等形式,及时调整课程设置与教学内容; 按照职业活动的特点与要求设计(或整合)教学内容;按照实际的工作任务、工作过程与工作情境组织课程,形成围绕工作需求的新型教学与训练项目。 6、以学生为中心,实现教学过程行动化 推广“行动导向”的教学模式,为学生提供在“做”中“学”的学习机会; 让学生经历从确定任务—制定工作计划—实施计划—进行质量控制与检测—评估反馈整个工作过程。 7、促进质量评价的社会化,提高职业教育的质量与效益 衡量职业教育质量与效益最重要的标准就是能否满足经济发展的需要。 毕业生专业基本对口就业率就是质量评价的主要依据。用人单位、学生与学生家长共同参与学习评价。 二、培养目标与要求 现代社会条件下职业教育培养目标发生了重大变化,其职业能力如下:

特殊过程焊接工艺确认

1 / 6

根据确认的目的是能够满足策划的能力要求,因此,我们对过程确认的准则是否可考虑以下几点: 2 / 6

1、过程的质量要求。即产品的特性,这是确认的输入,是策划的出发点,是过程能力分析的依据。离开这一点,会使确认流于形式。 2、原材料的保证。规定使用的原材料必须满足产品的接收准则。 3、影响过程能力的主要因素。主要是工艺保证的条件,按照什么样的工艺条件进行生产。 4、设备和监视测量设备的完好。保证设备和监视测量设备可以适宜、充分。 5、操作人员经过培训,具备规定的操作技能,满足人员能力要求,并经过资格认可。 6、确定操作方法和程序。有规定的统一作业指导书,作业方法明确,程序清楚。 7、再确认的安排。规定过程变化大,材料、设备、作业方法调整、产品性能更改、操作人员的调整等,应当进行再确认。 研制过程控制 2.1总则 规定并执行产品生产过程质量控制的程序文件。编制的控制文件对影响质量的因素及其纠正措施进行有效控制,确保过程处于受控状态,保证产品符合规定的质量要求。 2.2职责 3 / 6

技术科应对整个生产过程制定工艺规范和其它必要的工艺文件,并发放到从事该活动所有场所,生产车间和质保科应按照《过程控制程序》和质量计划的要求进行生产,监督和验证。 2.3基本生产要素的控制 2.3.1生产.安装和服务过程的操作人员,检验人员均应具备相应素质,接受过专业培训和考核,并取得资格。 2.3.2用于生产.安装和服务过程的关键设备.仪器和计量器具应经过检定.校准合格,并处于良好状态。 2.3.3外协或外购件,应经入所检验或验证。 2.4关键件、重要件和特种工艺和控制 2.4.1制定并执行关键件、重要件、关键工序和特种工艺控制的程序文件。 2.4.2关键过程的控制应主要控制以下几点: 4 / 6

激光焊接技术应用及发展趋势

激光焊接技术应用及其发展趋势 摘要:本文论述了激光焊接工艺的特点、激光焊接在汽车工业、微电子工业、生物医学等领域的应用以及研究现状,激光焊接的智能化控制,论述激光焊接需进一步研究与探讨的问题。关键词:激光焊接;混合焊接;焊接装置;应用领域 引言 激光焊接是激光加工材料加工技术应用的重要方面之一。70年代主要用于焊接薄壁材料和低速焊接,焊接过程属于热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于激光焊接作为一种高质量、高精度、低变形、高效率和高速度的焊接方法,随着高功率CO2和高功率的Y AG激光器以及光纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其在机械制造、航空航天、汽车工业、粉末冶金、生物医学微电子行业等领域的应用越来越广。目前的研究主要集中于C02激光和YAG激光焊接各种金属材料时的理论,包括激光诱发的等离子体的分光、吸收、散射特性以及激光焊接智能化控制、复合焊接、激光焊接现象及小孔行为、焊接缺陷发生机理与防止方法等,并对镍基耐热合金、铝合金及镁合金的焊接性,焊接现象建模与数值模拟,钢铁材料、铜、铝合金与异种材料的连接,激光接头性能评价等方面做了一定的研究。 一、激光焊接的质量与特点 激光焊接原理:激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。图1显示在不同的辐射功率密度下熔化过程的演变阶段[2],激光焊接的机理有两种: 1、热传导焊接 当激光照射在材料表面时,一部分激光被反射,一部分被材料吸收,将光能转化为热能而加热熔化,材料表面层的热以热传导的方式继续向材料深处传递,最后将两焊件熔接在一起。 2、激光深熔焊 当功率密度比较大的激光束照射到材料表面时,材料吸收光能转化为热能,材料被加热熔化至汽化,产生大量的金属蒸汽,在蒸汽退出表面时产生的反作用力下,使熔化的金属液体向四周排挤,形成凹坑,随着激光的继续照射,凹坑穿人更深,当激光停止照射后,凹坑周边的熔液回流,冷却凝固后将两焊件焊接在—起。 这两种焊接机理根据实际的材料性质和焊接需要来选择,通过调节激光的各焊接工艺参数得到不同的焊接机理。这两种方式最基本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵入;而深熔焊时,小孔的不断关闭能导致气孔。传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。 1、激光焊接的焊缝形状 对于大功率深熔焊由于在焊缝熔池处的熔化金属,由于材料的瞬时汽化而形成深穿型的圆孔空腔,随着激光束与工件的相对运动使小孔周边金属不断熔化、流动、封闭、凝固而形成连续焊缝,其焊缝形状深而窄,即具有较大的熔深熔宽比,在高功率器件焊接时,深宽比可达5:l,最高可达10:1。图2显示四种焊法在316不锈钢及DUCOLW30钢上的焊缝截面形

电磁搅拌技术的发展_吴存有

世 界 钢 铁2010年第2期 电磁搅拌技术的发展 吴存有,周月明,侯晓光 (宝山钢铁股份有限公司,上海201900) 摘要:主要介绍了电磁搅拌技术的发展历史、在国内的应用现状,探讨了该技术未来的发展方向,特别以辊式搅拌器为例着重介绍了电磁搅拌技术在宝钢的研究进展。根据电磁搅拌的技术特点,探讨了电磁搅拌技术应用过程中设备与工艺之间的相互关系,以及影响电磁搅拌最终使用效果的关键因素。 关键词:电磁搅拌;辊式搅拌器;连铸 A p p l i c a t i o na n dd e v e l o p m e n t o f E MS t e c h n o l o g y W UC u n y o u ,Z H O UY u e m i n g ,H O UX i a o G u a n g (B a o s h a n I r o n &S t e e l C o .,L t d .,S h a n g h a i 201900,C h i n a ) A b s t r a c t :T h e d e v e l o p m e n t o f e l e c t r o m a g n e t i c s t i r r i n g t e c h n o l o g y a n d i t s a p p l i c a t i o ni n C h i n a a r e i n t r o d u c e d ,a n d t h e f u t u r e d e v e l o p m e n t d i r e c t i o n o f t h e t e c h n o l o g y i s d i s c u s s e d .T h e E M S r o l l e r s i n B a o s t e e l a s w e l l a s s i m i l a r E M St e c h n o l o g i e s a n dt h e i r a p p l i c a t i o na r e s t u d i e d .A c c o r d i n g t ot h e c h a r a c t e r i s t i c s o f E M S t e c h n o l o g y ,t h e r e l a t i o n s h i p b e t w e e n E M S e q u i p m e n t a n d p r o c e s s ,a s w e l l a s t h e k e y f a c t o r s t h a t i n f l u e n c e t h e f i n a l e f f e c t s o f E M S t e c h n o l o g y a r e d i s c u s s e d .K e y w o r d s :e l e c t r o m a g n e t i c s t i r r i n g ;E M S r o l l e r ;c o n t i n u o u s c a s t i n g 0 前言 高质量、高附加值钢铁产品的生产离不开特殊冶金装备的使用,连铸电磁搅拌装置就是其中之一。电磁搅拌技术的研究历史可以追溯到20世纪20或30年代,经过多年的发展,电磁搅拌技术日趋成熟,但时至今日国外大型钢铁公司对这一技术仍然在开展持续研究,例如日本J F E 就有将近15人左右的研发团队专门从事电磁搅拌等电磁冶金学科相关的研究工作。同时,电磁搅拌技术也还是国际及国内E P M (E l e c t r o m a g n e t i c P r o -c e s s i n go f M a t e r i a l s )学术研究的重要内容之一 [1-3] 。近年来,通过企业与高校及科研机构的 合作研究,国内在这一技术领域也取得了长足发展,特别是装备制造能力方面逐渐缩短了与国际先进水平的差距。目前已经具备了如方圆坯结晶器、凝固末端电磁搅拌器及板坯二冷区电磁搅拌辊的设计制造能力。但是,如板坯结晶器电磁搅拌器/电磁制动、板坯电磁加速/减速器等较为大型和复杂的设备,相关技术实力相对还比较薄弱,特别是当今世界最为先进的多模式电磁搅拌,国 内钢厂还没有使用的先例。其次,在使用参数的优化方面,即电磁搅拌工艺方面的研究还略显不足 [4-8] 。随着钢铁行业竞争日益激烈,国外钢厂 开始加紧了对我国实行技术封锁。因此,针对电磁搅拌相关的设备、工艺等相关技术开展深入的系统研究已变得日益迫切。本文着重介绍了电磁搅拌技术的发展历史、在国内以及宝钢的应用现状和研究成果,并探讨了该技术的特点、关键问题和未来的发展方向。1 电磁搅拌的发展 1.1 电磁搅拌的特点与发展历史 [9-14] 电磁搅拌的本质是根据工艺要求改变铸坯凝固过程中钢液的流场,从而最终改善产品的质量。电磁搅拌的重要优点在于非接触和无污染,前一优点也造就了电磁搅拌设备在使用过程中比起一般的冶金设备更具有复杂性和专业性。实际生产过程中,电磁搅拌的冶金效果受多种因素的影响,包括钢水过热度、拉速、搅拌位置、搅拌强度和钢种等等,是一个和设备及工艺都密切相关的系统问题。 ·36·

机床行业焊接技术的应用

机床行业焊接技术的应用 机床行业的焊接技术的应用是随着国外引进产品技术发展起来的。同时,国内焊接技术的发展也促进了机床行业焊接技术的应用。目前,在机床行业中应用的主要焊接技术有以下几个方面: 1.钢板预处理技术应用 机床行业的钢板预处理生产线,是1993年由济南第二机床厂开始使用的,它是在造船行业、重机行业、矿山行业使用的基础上开始的。该预处理生产线是由该厂和青岛第三铸造机械厂联合开发制造,其主要工艺流程为:钢板校平、预热、抛丸除锈、自动喷漆、烘干,全长60米。主要技术参数为:钢板校平厚度8~40mm,校平宽度3m;预处理钢板厚度8~160mm,有效宽度3m;处理结构件最大规格为1500(宽)×800(高);预处理速度为0~4m/min;年处理能力为4万吨/年;采用了PC自动控制和手动控制两种方式。该钢板预处理生产线,解决了原材料的锈蚀、氧化皮等不良因素,提高了数控切割落料质量和机床产品的外观质量。 2.数控切割技术应用 1982年由济南第二机床厂开始将国产数控切割机应用于钢板零件的切割落料之中,1988年开始应用了计算机自动编程套料技术,使钢板利用率由70%提高到74%;1992年济南第一机床厂引进了美国等离子数控切割机和激光数控切割机,开始了机床行业数控等离子和激光切割的应用,使厚度为0.5~8mm的薄钢板切割精度达到了0.5~1mm。"七五"期间,济南第二机床厂开发研究了厚钢板数控精密切割技术,使厚钢板数控精密切割厚度达到了275mm,该项目获得了机械部机床行业"七五"工艺成果一等奖。1993年,济南第二机床厂通过引进数控水下氧气等离子切割机,使机床行业数控等离子碳钢切割厚度由8mm提高到了25mm,减少了中厚板的切割变形,提高了中厚钢板零件的切割精度和切割质量。

电磁炮的原理与技术发展

电磁炮的原理与技术发展 电磁炮是一种无需火药瞬间爆发出冲击能量的一种最新火炮。美国己试验成功。电磁炮的主要工作原理雷同磁悬浮列车的直线平面电机。但在电磁炮里用的是多个大功率聚能偏转线圈将磁弹发送出去。比炮好处是无汚染。优奌是电磁炮能做到连续发射,如同机枪、航炮。每分钟可发N次到数千次。某种意义上耒讲一门电磁炮将大于一个炮兵团以上发送的能量。电磁炮耗能非常可观。 目前,以美国为代表的许多发达国家正在针对电磁炮研究中存在的问题,有计划地开展电磁炮实用性研究和野外试验。具体的研究方向有以下几个。 能源小型化 体积和重量是电磁炮武器化和战术应用的主要障碍之一,而这两者主要由脉冲功率源及功率调节装置的能量密度和功率密度所决定。要减小体积、降低重量,必须实现能源小型化。因此,今后将进一步开发高能量密度和高功率密度材料,以研制小型轻质脉冲功率源。 采用高新技术、提高系统效率 高新技术的发展为电磁炮的研制提供了条件,将超导材料用于电磁炮是新的发展趋势。超导材料的电流密度和储能密度极高,储能效率达60%~90%,将其用于储能线圈、发电机、磁体和开关等,不仅有利于电磁炮小型化、提高射速,而且可减小能量损失、大大提高系统效率。另外,采用多级、多层、多段(节)和分布电源多模块结构的导轨也是一条重要途径。多模块结构可以减小导轨的能量损失,提高系统的能量转换效率至两倍左右。 加紧新材料的研究、提高系统寿命与性能 新型材料的研究主要有:电池用新型电化学材料,电容器用聚合物电介质材料,脉冲发电机储能用石墨-环氧等复合材料,耐高温、高强度、高能量密度电感储能材料;高强度、耐烧蚀、耐腐蚀的导轨、电枢和电极材料,石墨、陶瓷等耐高温、耐烧蚀炮管绝缘材料;大载流、高强度、高频率开关和大功率脉冲固态开关材料。 经过近20年的研究,电磁炮技术在理论上已基本成熟,开始向武器化、实用化发展。电磁炮的穿甲能力已被实验所证实,武器化的电磁炮可以击毁火炮所不能击毁的新型坦克装甲。预计在不远的将来电磁炮将会作为新一代重要的穿甲武器出现在战场上,在未来战争中起到极其重要的作用,并产生深远的影响。 自动化2班0905010213 夏博洋

电磁搅拌

电磁搅拌 电磁搅拌技术和应用效果目前已经比较成熟。对于大方坯和小方坯(>150mm,≤150mm)连铸,为了生产高质量铸坯和轧材,电磁搅拌是必须采取的措施,而且必须采取提高铸坯表面质量的结晶器电磁搅拌(M-EMS)和改善中心偏析的二冷电磁搅拌(S-EMS)的组合式搅拌。由于方圆坯断面积比板坯小,所以表面的清理损耗和工作量要比板坯大得多,因此提高方圆坯的表面质量的经济效益也比板坯大得多。M-EMS搅拌对提高铸坯表面质量有重要作用。其机理是:(1)液芯的运动均匀了内部钢水的温度,并使保护渣均匀熔化,因此形成振痕稳定和厚度均匀的坯壳并与结晶器壁接触良好;(2)液芯的流动冲洗使凝固壳内表层的夹杂和气泡上浮到液面中心,人工捞出可提高铸坯的表面质量和钢的纯净度。S-EMS搅拌的作用是大幅度减小铸坯表层细等轴晶内侧的柱状晶厚度,使其变成等轴晶,从而可以明显降低中心偏析和疏松。这对最终成品圆钢和线材的质量判定和二次加工性带有决定性。为了消除轧材的柱状晶,不使用S-EMS的铸坯压缩比约在10左右,而采取S-EMS的压缩比为5时就可以达到。因此采用S-EMS也可以使用较小尺寸的铸坯生产较大规格的成品,或在同等条件下进一步提高轧材的强度、塑性和冲击性。中心偏析产生的原因是铸坯在凝固过程中碳、硫、磷、锰等溶质(含非金属夹杂物及气相等轻质相)元素的浓度逐渐增高的结果,因此S-EMS的作用机理是铸坯出结晶器后,利用电磁的作用使液芯钢水在转动的过程中凝固,这样,一方面使溶质元素分布均匀,改善中心偏析度;另一方面,由于钢水的转动冲刷凝固的前沿,使已成固态的微粒变成新的结晶核,因此扩大了等轴晶比率,相对减少了柱状晶量。M-EMS与S-EMS组合式电磁搅拌可以适应优质钢和不锈钢的质量需要,但是对于碳含量>0.50%的高碳钢和弹簧钢等钢种,为了解决芯部碳的偏析,应在铸坯凝固末期对糊状钢液进行电磁搅拌,即F-EMS。 电磁搅拌的原理,以电磁感应原理为基础,闭合电路的一部分导体在磁场中运动会产生电流,带电的导体在磁场中运动会产生阻碍其运动的电磁力。在结晶器内安装电磁搅拌,使钢水形成与之运动相反方向的力。 电磁搅拌分为螺旋搅拌、直线搅拌、旋转搅拌。直线搅拌使钢水产生上下的运动;旋转搅拌使之产生水平方向的运动;螺旋搅拌即能产生水平方向也能产生竖直方向的运动。目前中小方坯使用旋转搅拌,板坯使用直线旋转和螺旋旋转。 连铸机上电磁搅拌安装的位置一般有三处:1、结晶器电磁搅拌(M-EMS或E-MBR)2、二冷区电磁搅拌(S-EMS)3、凝固末端电磁搅拌(F-EMS)。 结晶器电磁搅拌的安装,线圈位置安装偏下,防止旋转钢液将表面保护渣卷入钢中。有些结晶器还在搅拌线圈上安装一个能使钢液向相反方向运动的制动线圈(线圈通电方向与搅拌线圈方向相反)。为保证有足够的电磁力能穿透结晶器壁,使用低频电流,采用不锈钢或铝等非铁磁性物质作结晶器水套(铜)。结晶器电磁搅拌能够均匀钢水温度,减少钢水过热,促进气体和夹杂物的上浮,增加等轴晶晶核。 二冷区电磁搅拌安装在二冷区铸坯柱状晶“搭桥”之前,即坯壳厚度是铸坯的1/4处;其搅拌效果最好,也有利于减少中心疏松和中心偏析。一般情况下小方坯搅拌器安装在结晶器下口1.3-4m 处,采用旋转搅拌方式较多;大方坯和厚板坯可安装在离结晶器下口9-10m处,采用直线搅拌或旋转搅拌方式。当采用旋转搅拌时,为了防止在钢中产生负偏析白亮带,可采用正转-停止-反转(小方坯、大方坯、板坯、均采用此方法?)的间歇式搅拌技术。二冷区电磁搅拌主要用来获得中心宽大的等轴晶带,使晶粒细化,减少中心疏松和中心偏析,使夹杂物在横断面上分布均匀,从而使铸坯内部质量得到改善。 凝固末端电磁搅拌安装在连铸坯凝固末端,可根据液心长度计算出具体的安装位置。凝固末端电磁搅拌可使铸坯得到中心宽大的等轴晶带,消除或减少中心疏松和中心偏析。对于高碳钢效果尤其明显。 结晶器电磁制动:在板坯连铸中,结晶器内向下的流股将夹杂物带入铸坯液相穴深处难于上浮;同时热中心下移造成坯壳重熔和发生角裂,水口外壁附近钢液容易凝结,保护渣不能均匀流动等。为此在结晶器宽面加两个恒定磁场,产生于注流方向相反的电磁力,对流股起到制动作用,

相关文档
相关文档 最新文档