文档库 最新最全的文档下载
当前位置:文档库 › 爱默生PCB设计规范

爱默生PCB设计规范

爱默生PCB设计规范
爱默生PCB设计规范

工艺设计规范艾默生网络能源规范编码:TS-S0E0202003

版本:V2.0 密级:机密

生效日期:2002/8/6 页数:共30 页

PCB工艺设计规范

拟制:许建永日期:2002.08.10 审核:陈贵林日期:2002.08.10 蔡卫东、罗从斌、操方星、赵景清、杨文斌、祖延津规范化审查:赵永刚日期:2002.08.10 批准:季明明日期:2002.08.10

更改信息登记表

规范名称: PCB工艺设计规范规范编码: TS-S0E0202003

版本更改原因更改说明

改人

更改

时间

V2.0 优化升级文档格式改为WORD,增加、修订规范

内容。

许建永2002/8/6

1.目的

规范产品的PCB工艺设计,规定PCB工艺设计的相关参数,使得PCB的设计满足可生产性、可测试性、安规、EMC、EMI等的技术规范要求,在产品设计过程中构建产品的工艺、技术、质量、成本优势。

2.适用范围

本规范适用于艾默生网络能源有限公司所有产品的PCB工艺设计,运用于但不限于PCB的设计、PCB投板工艺审查、单板工艺审查等活动。

本规范之前的相关标准、规范的内容如与本规范的规定相抵触的,以本规范为准。

3.定义

导通孔(via):一种用于内层连接的金属化孔,但其中并不用于插入元件引线或其它增强材料。

盲孔(Blind via):从印制板内仅延展到一个表层的导通孔。

埋孔(Buried via):未延伸到印制板表面的一种导通孔。

过孔(Through via):从印制板的一个表层延展到另一个表层的导通孔。

元件孔(Component hole):用于元件端子固定于印制板及导电图形电气联接的孔。

Stand off:表面贴器件的本体底部到引脚底部的垂直距离。

4.引用/参考标准或资料

TS-S0902010001 《信息技术设备PCB安规设计规范》

TS-SOE0199001 《电子设备的强迫风冷热设计规范》

TS-SOE0199002 《电子设备的自然冷却热设计规范》

DKBA3128-2001.10 《华为技术

IEC 60194 《印制板设计、制造与组装术语与定义》(Printed Circuit Board design manufacture and assembly-Terms and definitions )

IPC-A-600F 《印制板的验收条件》(Accetability of printed board)

5.规范内容

5.1 PCB 板材要求

5.1.1 确定PCB 使用板材以及TG 值

确定PCB 所选用的板材,例如FR-4、铝基板、陶瓷基板、纸芯板等,若选用高TG 值的板材,应在文件中注明厚度公差。 5.1.2 确定PCB 的表面处理镀层

确定PCB 铜箔的表面处理镀层,例如镀锡、镀镍金或OSP 等,并在文件中注明。 5.2 热设计要求

5.2.1 高热器件应考虑放于出风口或利于对流的位置

PCB 的布局中考虑将高热器件放于出风口或利于对流的位置。 5.2.2 较高的元件应考虑放于出风口,且不阻挡风路 5.2.3 散热器的放置应考虑利于对流 5.2.4 温度敏感器件应考虑远离热源

对于自身温升高于30℃的热源,一般要求:

a.在风冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于2.5mm ;

b.自然冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于4.0mm ; 若因为空间的原因不能达到要求距离,则应通过温度测试保证温度敏感器件的温升在降额范围内。

5.2.5 大面积铜箔要求用隔热带与焊盘相连

为了保证透锡良好,在大面积铜箔上的元件的焊盘要求用隔热带与焊盘相连,对于需过5A 以上大电流的焊盘不能采用隔热焊盘,如图1所示:

图1

5.2.6 过回流焊的0805以及0805以下片式元件两端焊盘的散热对称性

为了避免器件过回流焊后出现偏位、立碑现象,过回流焊

的0805以及0805 以下片式元件两端焊盘应保证散热

对称性,焊盘

与印制导线的连接部宽度不应大于0.3mm

(对

焊盘两端走线均匀或热容量相当

焊盘与铜箔间以“米”字或“十”字形连接

于不对称焊盘),如图1所示。

5.2.7 高热器件的安装方式及是否考虑带散热器

确定高热器件的安装方式易于操作和焊接,原则上当元器件的发热密度超过0.4W/cm3,单靠元器件的引线腿及元器件本身不足充分散热,应采用散热网、汇流条器等措施。若发热密度非常高,则应安装散热器,元件是否加散热器应综合考虑系统的要求,满足器件降额。

5.2.8 对于多层印制线路板内层散热考虑使用辅助铜箔和电镀通孔以利于散热

5.2.9汇流条易装配、焊接

对于需过大电流的铜箔,或宽度不能达到过电流要求的铜箔,采用搪锡和汇流条等措施来提高过电流能力,汇流条的支脚应采用多点连接,尽可能采用铆接后过波峰焊或直接过波峰焊接,以利于装配、焊接;对于较长的汇流条的使用,应考虑过波峰焊时受热汇流条与PCB热膨胀系数不匹配造成的PCB变形。

为了保证搪锡易于操作,锡道宽度应大于等于2.0mm,锡道边缘间距大于1.5mm。5.3 器件库选型要求

5.3.1 已有PCB元件封装库的选用应确认无误

PCB上已有元件库器件的选用应保证封装库与元器件实物外形轮廓、引脚间距、通孔直径等相符合。

插装器件管脚应与通孔公差配合良好(通孔直径大于管脚直径8--20mil),考虑公差可适当增加,确保透锡良好。

元件的孔径形成序列化,40mil以上按5mil递加,即40mil、45mil、50mil、55mil…;40mil以下按4mil递减,即36mil、32mil、28mil、24mil、20mil、16mil、12mil、8mil。

器件引脚直径与PCB焊盘孔径的对应关系,以及二次电源插针焊脚与通孔回流焊的焊盘孔径对应关系如表1:

器件引脚直径(D)PCB焊盘孔径/插针通孔回流焊焊盘孔径

D≦1.0mm D+0.3mm/+0.15mm

1.0mm<D≦

2.0mm D+0.4mm/+0.2mm

D>2.0mm D+0.5mm/+0.2mm

表1

建立元件封装库时应将孔径的单位换算为英制(mil),并使孔径满足序列化要求。

5.3.2 新器件的PCB元件封装库应确定无误

PCB上尚无元件封装库的器件,应根据器件资料建立新的元件封装库,并保证丝印库与实物相符合,特别是新建的电磁元件、自制结构件等的元件库是否与元件的资料(承认书、图纸)相符合。新器件应建立能够满足不同工艺(回流焊、波峰焊、通孔回流焊)要求的元件库。

5.3.3 需过波峰焊的SMT器件要求使用表面贴波峰焊盘库

5.3.4 轴向器件和跳线的引脚间距的种类应该尽量少,以减少器件的成型和安装工具.

5.3.5 不同PIN间距的兼容器件要有单独的焊盘孔,特别是封装兼容的继电器的各兼容焊盘之间要连线.

5.3.6 锰铜丝等作为测量用的跳线的焊盘要做成非金属化,若是金属化焊盘,那么焊接后,焊盘内的那段电阻将被短路,电阻的有效长度将变小而且不一致,从而导致测试结果不准确.

5.3.7 不能用表贴器件作为手工焊的调测器件,表贴器件在手工焊接时容易受热冲击而损坏.

5.3.8 除非实验验证没有问题,否则不能选用和PCB热膨胀系数差别太大的无引脚表贴器件,这容易引起焊盘拉脱现象.

5.3.9 除非实验验证没有问题,否则不能选非表贴器件作为表贴器件使用。因为这样可能需要手工焊接,效率和可靠性都会很低.

5.3.10 多层PCB侧面局部镀铜作为用于焊接的引脚时,必须保证每层均有铜箔相连,以增加镀铜的附着强度,同时要有实验验证。除非实验验证没有问题,否则双面板不能采用侧面镀铜作为焊接引脚。

5.4 基本布局要求

5.4.1 PCBA的加工工序合理

制成板的元件布局应保证制成板的加工工序合理,以便于提高制成板加工效率和直通率。PCB布局选用的加工流程应使加工效率最高。

常用PCBA的6种主流加工流程如表2:

名称工艺流程特点适用范围

1 单面插装成型-插件-波峰焊接效率高,PCB组装加热次数

为一次

器件为THD

2 单面贴装焊膏印刷-贴片-回流焊接效率高,PCB组装加热次数

为一次器件为SMD

3 单面混装焊膏印刷-贴片-回流焊接-

THD-波峰焊接效率较高,PCB组装加热次

数为二次

器件为

SMD、THD

4 双面混装贴片胶印刷-贴片-固化-翻板

-THD-波峰焊接-翻板-手工

焊效率高,PCB组装加热次数

为二次

器件为

THD、SMD

5 双面贴装、

插装焊膏印刷-贴片-回流焊接-翻

板-焊膏印刷-贴片-回流焊接

-手工焊

效率高,PCB组装加热次数

为二次

器件为

SMD、THD

6 常规波峰焊

双面混装焊膏印刷-贴片-回流焊接-翻

板-贴片胶印刷-贴片-固化-

翻板-THD-波峰焊接-翻板-

手工焊

效率较低,PCB组装加热次

数为三次

器件为

SMD、THD

表2

5.4.2 波峰焊加工的制成板进板方向要求用丝印标明

波峰焊加工的制成板进板方向应在PCB上标明,并使进板方向合理,若PCB可以从两个方向进板,应采用双箭头的进板标识。(对于回流焊,可考虑采用工装夹具来确定其过回流焊的方向。)

5.4.3 两面过回流焊的PCB的BOTTOM 面要求无大体积、太重的表贴器件

需两面都过回流焊的PCB,第一次回流焊接器件重量限制如下:

A=器件重量/引脚与焊盘接触面积

片式器件:A≤0.075g/mm2

翼形引脚器件: A≤0.300g/mm2

J 形引脚器件:A≤0.200g/mm2

面阵列器件:A≤0.100g /mm2

若有超重的器件必须布在BOTTOM面,则应通过试验验证可行性。

5.4.4 需波峰焊加工的单板背面器件不形成阴影效应的安全距离已考虑

波峰焊工艺的SMT器件距离要求如下:

1)相同类型器件距离(见图2)

图2

相同类型器件的封装尺寸与距离关系(表3):

焊盘间距L(mm/mil)器件本体间距B(mm/mil)

最小间距推荐间距最小间距推荐间距0603 0.76/30 1.27/50 0.76/30 1.27/50 0805 0.89/35 1.27/50 0.89/35 1.27/50 1206 1.02/40 1.27/50 1.02/40 1.27/50 ≥1210 1.02/40 1.27/50 1.02/40 1.27/50 SOT封装 1.02/40 1.27/50 1.02/40 1.27/50 钽电容3216、3528 1.02/40 1.27/50 1.02/40 1.27/50 钽电容6032、7343 1.27/50 1.52/60 2.03/80 2.54/100 SOP 1.27/50 1.52/60 --- ---

表3

2)不同类型器件距离(图3)

图3

不同类型器件的封装尺寸与距离关系表(表4):

封装尺寸 0603 0805 1206 ≥1210 SOT 封装 钽电容3216、3528 钽电容6032、7343 SOIC 通孔

0603 1.27/50 1.27/50 1.27/50 1.52/60 1.52/60 2.54/100 2.54/100 1.27/50 0805 1.27/50 1.27/50 1.27/50 1.52/60 1.52/60 2.54/100 2.54/100 1.27/

50 1206 1.27/50 1.27/50 1.27/50 1.52/60 1.52/60 2.54/100 2.54/100 1.27/50 ≥1210 1.27/50 1.27/50 1.27/50 1.52/60 1.52/60 2.54/100 2.54/100 1.27/50 SOT 封装 1.52/60 1.52/60 1.52/60 1.52/60 1.52/60 2.54/100 2.54/100 1.27/50 钽电容3216、3528 1.52/60 1.52/60 1.52/60 1.52/60 1.52/60 2.54/100 2.54/100 1.27/50 钽电容6032、7343 2.54/100 2.54/100 2.54/100 2.54/100 2.54/100 2.54/100 2.54/100 1.27/50 SOIC 2.54/100 2.54/100 2.54/100 2.54/100 2.54/100 2.54/100 2.54/100 1.27/50 通孔

1.27/50

1.27/50

1.27/50

1.27/50

1.27/50

1.27/50

1.27/50

1.27/50

表4

5.4.5 大于0805封装的陶瓷电容,布局时尽量靠近传送边或受应力较小区域,其轴向尽量与进板方向平行(图4),尽量不使用1825以上尺寸的陶瓷电容。(保留意见)

图4

5.4.6 经常插拔器件或板边连接器周围3mm 范围内尽量不布置SMD ,以防止连接器插拔时产生的应力损伤器件。如图5:

连接器周围3mm范围内尽量不布置SMD

图5

另外插拔器件不要放在高器件的中间,周围要考虑留有足够的空间以便其配合器容易插入.

5.4.7 过波峰焊的表面贴器件的stand off 符合规范要求

过波峰焊的表面贴器件的stand off 应小于0.15mm,否则不能布在B面过波峰焊,若器件的stand off 在0.15mm与0.2mm之间,可在器件本体底下布铜箔以减少器件本体底部与PCB表面的距离。

5.4.8 波峰焊时背面测试点不连锡的最小安全距离已确定

为保证过波峰焊时不连锡,背面测试点边缘之间距离应大于1.0mm。

5.4.9 过波峰焊的插件元件焊盘间距大于1.0mm

为保证过波峰焊时不连锡,过波峰焊的插件元件焊盘边缘间距应大于1.0mm(包括元件本身引脚的焊盘边缘间距)。

优选插件元件引脚间距(pitch)≥2.0mm。焊盘边缘间距≥1.0mm。

在器件本体不相互干涉的前提下,相邻器件焊盘边缘间距满足图6要求:

图6

插件元件每排引脚数较多,以焊盘排列方向平行于进板方向布置器件时。当相邻焊盘边缘间距为0.6mm-1.0mm 时,推荐采用椭圆形焊盘或加偷锡焊盘(图7)。

偷锡焊盘

D1=D2

d1d2

X=0.6*pitch

Y=孔径+16~20mil

当X

当X>Y,选用圆形焊盘

过板方向

图7

5.4.10 BGA周围3mm 内无器件

为了保证可维修性,BGA器件周围需留有3mm禁布区,最佳为5mm禁布区。一般情况下BGA不允许放置背面(两次过回流焊的单板地第一次过回流焊面);当背面有BGA器件时,不能在正面BGA5mm禁布区的投影范围内布器件。

5.4.11 贴片元件之间的最小间距满足要求

机器贴片之间器件距离要求(图8):

同种器件:≥0.3mm

异种器件:≥0.13×h+0.3mm(h为周围近邻元件最大高度差)

只能手工贴片的元件之

间距离要求:≥ 1.5mm。

图8

5.4.12 元器件的外侧距过板轨道接触的两个板边大于、等于5mm(图9)

为了保证制

成板过波峰焊或回流焊时,传送轨道的卡抓不碰到元件,元器件的外侧距板边距离应大于、等于5mm,若达不到要求,则PCB应加工艺边,器件与V-CUT的距离》1mm。

同种器件异种器件

图9

5.4.13 可调器件、可插拔器件周围留有足够的空间供调测和维修

应根据系统或模块的PCBA安装布局以及可调器件的调测方式来综合考虑可调器件的排布方向、调测空间;可插拔器件周围空间预留应根据邻近器件的高度决定。

5.4.14 所有的插装磁性元件一定要有坚固的底座.禁止使用无底座插装电感,

5.4.15 有极性的变压器的引脚尽量不要设计成对称形式

5.4.16 安装孔的禁布区内无元器件和走线(不包括安装孔自身的走线和铜箔)

5.4.17 金属壳体器件和金属件与其它器件的距离满足安规要求

金属壳体器件和金属件的排布应在空间上保证与其它器件的距离满足安规要求。

5.4.18 对于采用通孔回流焊器件布局要求(图10)

a.对于非传送边尺寸大于300mm的PCB,较重的器件尽量不要布置在PCB的中间,以减轻由于插装器件的重量在焊接过程中对PCB变形的影响,以及插装过程对板上已经贴放的器件的影响。

b.为方便插装,器件推荐布置在靠近插装操作侧的位置。

c.尺寸较长的器件(如内存条插座等)长度方向推荐与传送方向一致。

d.通孔回流焊器件焊盘边缘与pitch≤0.65mm的QFP、SOP、连接器及所有的BGA的丝印之间的距离大于10mm。与其它SMT器件间距离>2mm。

e.通孔回流焊器件本体间距离>10mm。有夹具扶持的插针焊接不做要求。

f.通孔回流焊器件焊盘边缘与传送边的距离>10mm;与非传送边距离>5mm。

过板方向

PCB

图10

5.4.19 通孔回流焊器件禁布区要求

a.通孔回流焊器件焊盘周围要留出足够的空间进行焊膏涂布,具体禁布区要求为:对于欧式连接器靠板内方向10.5mm 不能有器件,在禁布区之内不能有器件和过孔。

b.须放置在禁布区内的过孔要做阻焊塞孔处理。 5.4.20 器件布局要整体考虑单板装配干涉

器件在布局设计时,要考虑单板与单板、单板与结构件的装配干涉问题,尤其是高器件、立体装配的单板等。 5.4.21 器件和机箱的距离要求

器件布局时要考虑尽量不要太靠近机箱壁,以避免将PCB 安装到机箱时损坏器件。特别注意安装在PCB 边缘的,在冲击和振动时会产生轻微移动或没有坚固的外形的器件:如立装电阻、无底座电感变压器等,若无法满足上述要求,就要采取另外的固定措施来满足安规和振动要求。

5.4.22 不过波峰焊接的器件尽量布置在PCB 边缘以方便堵孔,若器件布置在PCB 边缘,并且工装夹具做的好,在过波峰焊接是甚至不需要堵孔。

5.4.23 设计和布局PCB 时,应尽量允许器件过波峰焊接。选择器件时尽量少选不能过波峰焊接的器件,另外放在焊接面的器件应尽量少,以减少手工焊接。

5.4.24 裸跳线不能贴板跨越板上的导线或铜皮,以避免和板上的铜皮短路,绿油不能作为有效的绝缘。

5.4.25 布局时应考虑所有器件在焊接后易于检查和维护。

5.4.26 电缆的焊接端尽量靠近PCB的边缘布置以便插装和焊接,否则PCB上别的器件会阻碍电缆的插装焊接或被电缆碰歪。

5.4.27 多个引脚在同一直线上的器件,象连接器、DIP封装器件、T220封装器件,布局时应使

样能

围器件及其焊点。

5.5 走线要求

5.5.1 印制线距板边距离:V-CUT边大于0.75mm,铣槽边大于0.3mm

为了保证PCB加工时不出现露铜的缺陷,要求所有的走线及铜箔距离板边:V-CUT 边大于0.75mm,铣槽边大于0.3mm(铜箔离板边的距离还应满足安规要求)。

5.5.2 散热器正面下方无走线(或已作绝缘处理)

为了保证电气绝缘性,散热器下方周围应无走线(考虑到散热器安装的偏位及安规

距离),若需要在散热器下布线,则应采取绝缘措施使散热器与走线绝缘,或确认走线与散热器是同等电位。

5.5.3 金属拉手条底下无走线

为了保证电气绝缘性,金属拉手条的底下应无走线。

5.5.4 各类螺钉孔的禁布区范围要求

各种规格螺钉的禁布区范围如以下表5所示:(此禁布区的范围只适用于保证电气绝缘的安装空间,未考虑安规距离,而且只适用于圆孔)

连接种类型号规格安装孔(mm)禁布区(mm)螺钉连接GB9074.4-8 组合螺钉M2 2.4 ±0.1 φ7.1

M2.5 2.9 ±0.1 φ7.6

M3 3.4 ±0.1 φ8.6

M4 4.5 ±0.1 φ10.6

M5 5.5 ±0.1 φ12

铆钉连接苏拔型快速铆钉Chobert 4 4.1 0

-0.2

φ7.6

连接器快速铆钉Avtronic 1189-2812 2.8 0

-0.2

φ6

1189-2512 2.5 0-0.2φ6

自攻螺钉连接GB9074.18-88十字盘头自

攻螺钉ST2.2* 2.4 ±0.1 φ7.6 ST2.9 3.1 ±0.1 φ7.6 ST3.5 3.7 ±0.1 φ9.6 ST4.2 4.5 ±0.1 φ10.6 ST4.8 5.1 ±0.1 φ12 ST2.6* 2.8 ±0.1 φ7.6 表5

腰形长孔禁布区如下表6:

连接种

类型号规格

安装孔直径

(宽)Dmm

安装孔长L mm

禁布区(mm)(长

X宽)

螺钉连接GB9074.4-8

组合螺钉

M2 2.4 ±0.1 由实际情况确

定L>D

φ7.1X(L+4.7) M2.5 2.9 ±0.1 φ7.6X(L+4.7)

M3 3.4 ±0.1 φ8.6X(L+5.2)

M4 4.5 ±0.1 φ10.6X(L+6.1)

M5 5.5 ±0.1 φ12X(L+6.5)

表6

本体范围内有安装孔的器件,例如插座的铆钉孔、螺钉安装孔等,为了保证电气绝缘性,也应在元件库中将孔的禁布区标识清楚。

5.5.5 要增加孤立焊盘和走线连接部分的宽度(泪滴焊盘),特别是对于单面板的焊盘,

以避免过波峰焊接时将焊盘拉脱。

5.6 固定孔、安装孔、过孔要求

5.6.1 过波峰的制成板上不需接地的安装孔和定位孔应定为非金属化孔

5.6.2 BGA下方导通孔孔径为12mil

5.6.3 SMT焊盘边缘距导通孔边缘的最小距离为10mil,若过孔塞绿油,则最小距离为6mil。

5.6.4 SMT器件的焊盘上无导通孔(注:作为散热用的DPAK封装的焊盘除外)

5.6.5 通常情况下,应采用标准导通孔尺寸

标准导通孔尺寸:(孔径与板厚比≦1:6)

内径(mil)外径(mil)

12 25

16 30

20 35

24 40

32 50

5.6.6 过波峰焊接的板,若元件面有贴板安装的器件,其底下不能有过孔或者过孔要盖绿油。

5.7 基准点要求

5.7.1 有表面贴器件的PCB板对角至少有两个不对称基准点(图13)

基准点用于锡膏印刷和元件贴片时的光学定位。根据基准点在PCB上的分别可分为拼板基准点,单元基准点,局部基准点。 PCB上应至少有两个不对称的基准点。

单元基准点

局部基准点

图13

5.7.2 基准点中心距板边大于5mm,并有金属圈保护

常用PCB拼板基准点和单元基准点要求(图14):

a.形状:基准点的优选形状为实心圆。

b.大小:基准点的优选尺寸为直径40mil ±1mil。

c.材料:基准点的材料为裸铜或覆铜,为了增加基准点和基板之间的对比度,可在基准点下面敷设大的铜箔。

图14

5.7.3 基准点焊盘、阻焊设置正确(图14)

阻焊开窗:阻焊形状为和基准点同心的圆形,大小为基准点直径的两倍。在 80mil 直径的边缘处要求有一圆形的铜线作保护圈,金属保护圈的直径为:外径110mil,内径90mil,线宽为10mil。由于空间太小的单元基准点可以不加金属保护圈。对于多层板建议基准点内层铺铜以增加识别对比度。

铝基板、厚铜箔(铜箔厚度≧3OZ)基准点有所不同,如图15所示。基准点的设置为:直径为80mil的铜箔上,开直径为40mil的阻焊窗。

图15

5.7.4 基准点范围内无其它走线及丝印

为了保证印刷和贴片的识别效果,基准点范围内应无其它走线及丝印。

5.7.5 需要拼板的单板,单元板上尽量确保有基准点

需要拼板的单板,每块单元板上尽量保证有基准点,若由于空间原因单元板上无法

布下基准点,则单元板上可以不布基准点,但应保证拼板工艺边上有基准点。

5.8 丝印要求

5.8.1 所有元器件、安装孔、定位孔都有对应的丝印标号

为了方便制成板的安装,所有元器件、安装孔、定位孔都有对应的丝印标号,PCB 上的安装孔丝印用H1、H2...、Hn进行标识。

5.8.2 丝印字符遵循从左至右、从下往上的原则

丝印字符尽量遵循从左至右、从下往上的原则,对于电解电容、二极管等有极性的器件在每个功能单元内尽量保持方向一致。

15.8.3 器件焊盘、需要搪锡的锡道上无丝印,器件位号不应被安装后器件所遮挡。(密度较高,PCB上不需作丝印的除外。)

为了保证器件的焊接可靠性,要求器件焊盘上无丝印;为了保证搪锡的锡道连续性,要求需搪锡的锡道上无丝印。为了便于器件插装和维修,器件位号不应被安装后器件所遮挡。丝印不能压在导通孔、焊盘上,以免开阻焊窗时造成部分丝印丢失,影响识别。丝印间距离大于5mil。

5.8.4 有极性元器件其极性在丝印图上表示清楚,极性方向标记应易于辨认

5.8.5 有方向的接插件其方向在丝印图上表示清楚

5.8.6 PCB上应有条形码位置标识

在PCB板面空间允许的情况下,PCB上应有42*6的条形码丝印框,条形码的位置应考虑方便扫描。

5.8.7 PCB板名、日期、版本号等制成板信息丝印位置已明确

PCB文件上应有板名、日期、版本号等制成板信息丝印,位置明确、醒目。

5.8.8 PCB上应有厂家完整的相关信息及防静电标识

5.8.9 PCB光绘文件的张数正确,每层应有正确的输出,并有完整的层数输出。

5.8.10 PCB上器件的标识符必须和BOM清单中的标识符号一致.

5.9 安规要求

5.9.1 保险管的安规标识齐全

保险丝附近是否有6项完整的标识,包括保险丝序号、熔断特性、额定电流值、防爆特性、额定电压值、英文警告标识。

如F101 F3.15AH,250Vac,“CAUTION: For Continued Protection Against Risk of

Fire, Replace Only With Same Type and Rating of Fuse”。

若PCB上没有空间排布英文警告标识,可将英文警告标识放到产品的使用说明书中说明。

5.9.2 PCB上危险电压区域标注高压警示符

PCB的危险电压区域部分应用40mil宽的虚线与安全电压区域隔离,并印上高压危险标识和“DANGER! HIGH VOLTAGE”。高压警示符如图16所示:

图16

5.9.3 原、付边隔离带标识清楚

PCB的原、付边隔离带清晰,中间有虚线标识。

5.9.4 PCB板安规标识已明确

PCB板五项安规标识(UL认证标志、生产厂家、厂家型号、UL认证文件号、阻燃等级)齐全。

5.9.5 加强绝缘隔离带电气间隙和爬电距离满足要求

PCB上加强绝缘隔离带电气间隙和爬电距离满足要求,具体参数要求参见相关的《信息技术设备PCB安规设计规范》。

靠隔离带的器件需要在10N推力情况下仍然满足上述要求。

除安规电容的外壳到引脚可以认为是有效的基本绝缘外,其它器件的外壳均不认为是有效绝缘,有认证的绝缘套管、胶带认为是有效绝缘。

5.9.6 基本绝缘隔离带电气间隙和爬电距离满足要求

原边器件外壳对接地外壳的安规距离满足要求。

原边器件外壳对接地螺钉的安规距离满足要求。

原边器件外壳对接地散热器的安规距离满足要求。(具体距离尺寸通过查表确定)

5.9.7 制成板上跨接危险和安全区域(原付边)的电缆应满足加强绝缘的安规要求5.9.8 考虑10N推力,靠近变压器磁芯的两侧器件应满足加强绝缘的要求

5.9.9 考虑10N推力,靠近悬浮金属导体的器件应满足加强绝缘的要求

5.9.10 对于多层PCB,其内层原付边的铜箔之间应满足电气间隙爬电距离的要求(污染等级按照I计算)

5.9.11 对于多层PCB,其导通孔附近的距离(包括内层)应满足电气间隙和爬电距离的要求

5.9.12 对于多层PCB层间一次侧与二次侧的介质厚度要求≧0.4mm

表7列出的为缺省的对称结构及层间厚度设置:

类型层间介质厚度(mm)

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12

1.6mm四层板0.36 0.71 0.36

2.0mm四层板0.36 1.13 0.36

2.5mm四层板0.40 1.53 0.40

3.0mm四层板0.40 1.93 0.40

1.6mm六层板0.24 0.33 0.21 0.33 0.24

2.0mm六层板0.24 0.46 0.36 0.46 0.24

2.5mm六层板0.24 0.71 0.36 0.71 0.24

3.0mm六层板0.24 0.93 0.40 0.93 0.24

1.6mm八层板0.14 0.24 0.14 0.24 0.14 0.24 0.14

2.0mm八层板0.24 0.24 0.24 0.24 0.24 0.24 0.24

2.5mm八层板0.40 0.24 0.36 0.24 0.36 0.24 0.40

3.0mm八层板0.40 0.41 0.36 0.41 0.36 0.41 0.40

1.6mm十层板0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

2.0mm十层板0.24 0.14 0.24 0.14 0.14 0.14 0.24 0.14 0.24

2.5mm十层板0.24 0.24 0.24 0.24 0.21 0.24 0.24 0.24 0.24

3.0mm十层板0.24 0.33 0.24 0.33 0.36 0.33 0.24 0.33 0.24

2.0mm12层板0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

2.5mm12层板0.24 0.14 0.24 0.14 0.24 0.14 0.24 0.14 0.24 0.14 0.24

3.0mm12层板0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24

表7

层间厚度指的是介质厚度(不包括铜箔厚度),其中2-3、4-5、6-7、8-9、10-11间用的是芯板,其它层间用的是半固化片。

5.9.13 裸露的不同电压的焊接端子之间要保证最小2mm的安规距离,焊接端子在插入焊接后可能发生倾斜和翘起而导致距离变小.

5.10 PCB尺寸、外形要求

《多高层木结构建筑技术标准》的解读

《多高层木结构建筑技术标准》的解读为推动多高层木结构建筑的发展,完善多高层木结构的技术标准体系,住房城乡建设部启动了《多高层木结构建筑技术标准》(以下简称《本标准》)的编制工作,2016年年底编制完成并通过专家审查,2017年2月由住房城乡建设部发布第1483号公告,批准为国家标准,编号为GB/T51226—2017,自2017年10月1日起实施。本文将介绍本标准的主要技术要点。 1主要内容及技术要点 多高层木结构建筑涉及面较广,需要考虑和研究的问题较多,且我国在多高层木结构建筑领域的基础研究不多,缺乏工程实践经验。在编制过程中,研究并消化吸收国外在多高层木结构建筑方面的先进技术和成功经验,同时参考了高层混凝土结构、高层钢结构的国家现行相关标准。本标准共设10章,分别为: 1总则确定标准的使用范围和使用基本原则。本标准适用于多高层木结构居住建筑和办公建筑。 2术语和符号在我国惯用的木结构术语基础上,按编制内容,增加了多高层木结构建筑的相关新术语。 3作用规定多高层木结构建筑结构设计中荷载的确定方法,包括竖向荷载、风荷载以及地震荷载。

4材料规定用于多高层木结构建筑中使用的材料的基本性能要求,包括木材、钢材与金属连接件,以及建筑及装修材料。 5建筑设计规定多高层木结构建筑规划和建筑设计的要求,包括规划和建筑布局、室外环境设计、建筑性能设计和围护结构等。 6结构设计规定结构设计的要求和计算方法,包括结构体系和选型、结构体系分析、构件设计、连接设计和构造措施等。 7防火设计规定多高层木结构建筑中防火设计的要求,包括建筑防火的布局、构件的耐火性能、防火构造设计等。 8防护设计主要规定多高层木结构建筑在设计、施工及使用过程中应采取的防护措施等。 9制作、安装和验收主要规定木构件加工制作,施工安装以及施工检验和验收的相关要求,从而保证多高层木结构建筑的安全使用。 10使用和维护对多高层木结构建筑在使用过程中需要注意的问题作了规定,并提出维护的要求。 2本标准相比现行标准的创新之处 本标准相比现行的木结构建筑相关标准有了较大突破,主要有以下几点。 2.1本标准适用范围 本标准的适用范围是:多层木结构民用建筑和高层木结构住宅建筑和办公建筑的设计、制作、安装与维护的规定。按木结构建筑高度划分时,建筑高度大于27m的住宅、办公楼和建筑高度大于24m的

pcb之设计规范(DFM要求)

DFX讲义 DFX是并行工程关键技术的重要组成部分,其思想已贯穿企业开发过程的始终。它涵盖的内容很多,涉及产品开发的各个阶段,如DFA(Design for Assembly,面向装配的设计)、DFM(Design for Manufacture,面向制造的设计)、DFT(Design for Test,面向测试的设计)、DFE(Design for Electro-Magnetic Interference,面向EMI的设计)、DFC(Design for Cost,面向成本的设计) 、DFc(Design for Component,面向零件的设计) 等。目前应用较多的是机械领域的DFA和DFM,使机械产品在设计的早期阶段就解决了可装配性和可制造性问题,为企业带来了显著效益。 DFA指在产品设计早期阶段考虑并解决装配过程中可能存在的问题,以确保零件快速、高效、低成本地进行装配。DFA是一种针对装配环节的统筹兼顾的设计思想和方法,就是在产品设计过程中利用各种技术手段如分析、评价、规划、仿真等充分考虑产品的装配环节以及与其相关的各种因素的影响,在满足产品性能与功能的条件下改进产品的装配结构,使设计出的产品是可以装配的,并尽可能降低装配成本和产品总成本。 DFT是指在产品开发的早期阶段考虑测试的有关需求,在Layout设计时就根据规则做好测试方案,以保证测试的顺利进行,从而减少改版次数,减少设计成本。DFM则指在产品设计的早期阶段考虑所有与制造有关的约束,指导设计师进行同一零件的不同材料和工艺的选择,对不同制造方案进行制造时间和成本的快速定量估计,全面比较与评价各种设计与工艺方案,设计小组根据这些定量的反馈信息,在早期设计阶段就能够及时改进设计,确定一种最满意的设计和工艺方案。 从以上的定义可以知道DFM 涵盖DFA和DFT的内容,以下是DFM rule ,其中包含DFA,DFT规则。

国内外10个国家装配式建筑的发展现状

国内外10个国家装配式建筑的发展现状 国内外共10个国家:中国、美国、英国、德国、法国、日本、加拿大、新加坡、丹麦、瑞典装配式建筑的发展现状。 美国 美国装配式住宅盛行于20世纪70年代。1976年,美国国会通过了国家工业化住宅建造及安全法案,同年出台一系列严格的行业规范标准,一直沿用至今。除注重质量,现在的装配式住宅更加注重美观、舒适性及个性化。据美国工业化住宅协会统计,2001年,美国的装配式住宅已经达到了1000万套,占美国住宅总量的7%。在美国、加拿大,大城市住宅的结构类型以混凝土装配式和钢结构装配式住宅为主,在小城镇多以轻钢结构、木结构住宅体系为主。美国住宅用构件和部品的标准化、系列化、专业化、商品化、社会化程度很高,几乎达到100%。用户可通过产品目录,买到所需的产品。这些构件结构性能好,有很大通用性,也易于机械化生产。钢-木结构别墅,钢结构公寓。建材产品和部品部件种类齐全。构件通用化水平高、商品化供应。BL质量认证制度。部品部件品质保证年限。 英国 英国政府积极引导装配式建筑发展。明确提出英国建筑生产领域需要通过新产品开发、集约化组织、工业化生产以实现“成本降低10%,时间缩短10%,缺陷率降低20%,事故发生率降低20%,劳动生产率提高10%,最终实现产值利润率提高10%”的具体目标。同时,政府出台一系列鼓励政策和措施,大力推行绿色节能建筑,以对建筑品质、性能的严格要求促进行业向新型建造模式转变。英国装配式建筑的发展需要政府主管部门与行业协会等紧密合作,完善技术体系和标准体系,促进装配式建筑项目实践。可根据装配式建筑行业的专业技能要求,建立专业水平和技能的认定体系,推进全产业链人才队伍的形成。除了关注开发、设计、生产与施工外,还应注重扶持材料供应和物流等全产业链的发展。钢结构建筑、模块化建筑,新建占比70%以上。设计、制作到供应的成套技术及有效的供应链管理。英钢联起到关键作用。 德国 德国的装配式住宅主要采取叠合板、混凝土、剪力墙结构体系,采用构件装配式与混凝土结构,耐久性较好。德国是世界上建筑能耗降低幅度最快的国家,近几年更是提出发展零能耗的被动式建筑。从大幅度的节能到被动式建筑,德国都采取了装配式住宅来实施,装配式住宅与节能标准相互之间充分融合。二战后多层办事装配式住宅,1970年代东德工业化水平90%。新建别墅等建筑基本为全装配式钢(-木)结构。强大的预制装配式建筑产业链。高校、研究机构和企业研发提供技术支持。建筑、结构、水暖电协作配套。施工企业与机械设备供应商合作密切。机械设备、材料和物流先进,摆脱了固定模数尺寸限制。 日本 日本于1968年就提出了装配式住宅的概念。1990年推出采用部件化、工业化生产方式、高生产效率、住宅内部结构可变、适应居民多种不同需求的中高层住宅生产体系。在推进规模化和产业化结构调整进程中,住宅产业经历了从标准化、多样化、工业化到集约化、信息化的不断演变和完善过程。日本根据每五年都颁布住宅建设五年计划,每一个五年计划都有明确的促进住宅产业发展和性能

混凝土结构设计规范41864

《混凝土结构设计规范》GB50010-2010主要修订内容 1.完善规范的完整性,从以构件计算为主适当扩展到整体结构的设计,补充结构抗倒塌设计的原则,增强结构的整体稳固性。 2. 完善承载力极限状态设计内容,增加以构件分项系数进行应力设计等内容。 3. 钢筋混凝土构件按荷载效应准永久组合计算裂缝宽正常使用极限状态设计,钢筋混凝土构件按荷载效应准永久组合计算裂缝宽度,预应力构件稍放松;调整了裂缝宽度计算中的构件受力特征系数取值。 4.增加楼盖舒适度要求,规定了楼板竖向自振频率的限制。 5. 完善耐久性设计方法,除环境条件外,提出环境作用等级概念。 6. 增加了既有结构设计的基本规定。增加了既有结构设计的基本规定。 7. 淘汰低强钢筋,纳入高强、高性能钢筋;提出钢筋延性(极限应变)的要求。 8. 补充并筋(钢筋束)的配筋形式及相关规定。 9. 结构分析内容适当得到扩展,提出非荷载效应分析原则。 10. 对结构侧移二阶效应,提出有限元分析及增大系数的简化方法。 11. 完善了连续梁、连续板考虑塑性内力重分布进行内力调幅的设计方法。 12. 补充、完善材料本构关系及混凝土多轴强度准则的内容。 13. 构件正截面承载力计算:“任意截面”移至正文,“简化计算”移至附录。 14. 截面设计中完善了构件自身挠曲影响的相关规定。 15. 修改了受弯构件的斜截面的受剪承载力计算公式。 16. 改进了双向受剪承载力计算的相关规定。 17. 补充在拉、弯、剪、扭作用下的钢筋混凝土矩形截面框架柱设计的相关规定。 18. 修改了受冲切承载力计算公式。 19. 补充了预应力混凝土构件疲劳验算的相关公式。 20. 增加按开裂换算截面计算在荷载效应准永久或标准组合下的截面应力。 21. 宽度大于0.2mm 的开裂截面,增加按应力限制钢筋间距的要求。 22. 挠度计算中增加按荷载效应准永久组合时长期刚度的计算公式。 23. 增加了无粘结预应力混凝土受弯构件刚度、裂缝计算方法。 24. 考虑耐久性影响适当调整了钢筋保护层厚度的规定,一股情况下稍增,恶劣环境下大幅度增加。 25. 提出钢筋锚固长度修正系数,考虑厚保护层、机械锚固等方式控制锚固长度。 26. 框架柱修改为按配筋特征值及绝对值双控钢筋的最小配筋率,稍有提高。 27. 大截面构件的最小配筋适当降低。 28. 增加了板柱结构及现浇空心楼板的构造要求。 29. 在梁柱节点中引入钢筋机械锚固的形式。 30. 补充了多层房屋结构墙体配筋构造的基本要求。 31. 补充了二阶段成形的竖向叠合式受压构件(柱、墙)的设计原则及构造要求。 32. 完善装配式混凝土结构的设计原则以及装配式楼板、粱、柱、墙的构造要求。 33. 提出了预制自承重构件的设计原则;增补了内埋式吊具及吊装孔有关要求。 34. 补充、完善了各种预应力锚固端的配筋构造要求。 35. 调整了预应力混凝土的收缩、徐变及新材料、新工艺预应力损失数值计算。 36. 调整先张法布筋及端部构造,后张法布筋及孔道布置的构造要求。

华为PCB设计规范标准

华为PCB设计规范 I. 术语 1..1 PCB(Print circuit Board):印刷电路板。 1..2 原理图:电路原理图,用原理图设计工具绘制的、表达硬件电路中各种器件之间的连接关系的图。 1..3 网络表:由原理图设计工具自动生成的、表达元器件电气连接关系的文本文件,一般包含元器件封装、网络列表和属性定义等组成部分。 1..4 布局:PCB设计过程中,按照设计要求,把元器件放置到板上的过程。深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。 1..5 仿真:在器件的IBIS MODEL或SPICE MODEL支持下,利用EDA设计工具对PCB的布局、布线效果进行仿真分析,从而在单板的物理实现之前发现设计中存在的EMC问题、时序问题和信号完整性问题,并找出适当的解决方案。深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。 II. 目的 A. 本规范归定了我司PCB设计的流程和设计原则,主要目的是为PCB设计者提供必须遵循的规则和约定。 B. 提高PCB设计质量和设计效率。 提高PCB的可生产性、可测试、可维护性。 III. 设计任务受理 A. PCB设计申请流程 当硬件项目人员需要进行PCB设计时,须在《PCB设计投板申请表》中提出投板申请,并经其项目经理和计划处批准后,流程状态到达指定的PCB设计部门审批,此时硬件项目人员须准备好以下资料: ⒈经过评审的,完全正确的原理图,包括纸面文件和电子件; ⒉带有MRPII元件编码的正式的BOM; ⒊PCB结构图,应标明外形尺寸、安装孔大小及定位尺寸、接插件定位尺寸、禁止布线区等相关尺寸; ⒋对于新器件,即无MRPII编码的器件,需要提供封装资料; 以上资料经指定的PCB设计部门审批合格并指定PCB设计者后方可开始PCB设

装配式建筑的内涵、国内外装配式建筑的发展历程与趋势

装配式建筑的内涵、国内外装配式建筑的发展历程与趋势(1)内涵 装配式建筑是指用预制的构件在现场装配而成的建筑 从结构形式来说,装配式混凝土结构、钢结构、木结构都可以称为装配式建筑,是工业化建筑的重要组成部分。 这种建筑的优点是建造速度快,受气候条件制约小,既可节约劳动力又可提高建筑质量,用通俗的话形容,就是像造汽车那样造房子。 装配式建筑是转变城市建设模式、有降低建筑能耗、推进工业化的重要载体。 联合国经济委员会对工业化的定义 ■生产过程的连续性。 房屋建造的全过程联结为完整的一体化产业链。 ■生产物的标准化。 设计的标准化,建筑部品、构配件的通用化和系列化。 ■生产过程的集成化。 是指建筑技术、部品与建造工艺、工法的系统集成。

■工程高度组织化。 科学管理方法把建造全过程组织起来 ■生产的机械化。 是指减少现场人工作业,实现构件生产工厂化、施工建造机械化。 《工业化建筑评价标准》:2016年1月1日实施 采用以标准化设计、工厂化生产、装配化施工、一体化装修和信息化管理等为主要特征的工业化生产方式建造的建筑。 (基本条件)。 为什么要编制这个标准 1.国务院、住建部对推动建筑产业现代化提出了一系列明确要求。 2.全国30多个省、自治区、市纷纷出台了指导意见和鼓励措施。 3.设计、构件生产、施工、装备制造和房地产开发企业积极响应,建设了一大批装配式建筑试点,初步形成了“政府推动、企业参与、产业化蓬勃发展”的良好态势。 迫切需要建立一套适合我国国情的工业化建筑评价体系,制订并实施统一、规范的评价标准。

首次明确了“预制率”和“装配率”的定义。 预制率:工业化建筑室外地坪以上的主体结构和围护结构中,预制构件部分的混凝土用量占对应构件混凝土总用量的体积比。 预制率是衡量主体结构和外围护结构采用预制构件的比率, 经测算,如果低于20%的预制率,基本上与传统现浇结构的生产方式没有区别,也不可能成为工业化建筑。 预制构件类型包括:外承重墙、内承重墙、柱、梁、楼板、外挂墙板、楼梯、空调板、阳台、女儿墙等结构构件。 装配率:工业化建筑中预制构件、建筑部品的数量(或面积)占同类构件或部品总数量(或面积)的比率。 预制率不应低于20%、装配率不应低于50%的基本要求 装配率是衡量工业化建筑所采用工厂生产的建筑部品的装配化程度。 工业化建筑采用的各类建筑部品的装配率不应低于50%。 建筑部品类型包括:非承重内隔墙、集成式厨房、集成式卫生间、预制管道井、预制排烟道、护栏等。 (2)历程 1)北美(美国、加拿大) 美国:装配式住宅起源于20世纪30年代, 盛行于20世纪70年代。 1976年,美国国会通过了国家工业化住宅建造及安全法案,同年出台一系列严格的行业规范标准。

PCB设计规范

PCB设计规范 _2s-Z_. 冃U言 木规范参考国.家标准卬毓卜也路板设计和使用等标准编制而成。 、布局 元件在二维、三维空间上不能产生冲突。 先放置与结构关系密切的元件,如接插件、开关、电源插座等。对于按键,连接器等与结构相关 的元器件放置好后应锁定,以免在无意之中移动。 如果有相同结构电路部分,尽可能采用“对称式”标准布局。 元器件的排列要便于调试和维修,小元件周围尽量不放置大元件、需调试的元、器件周围要有足够的空间。 按照“先大后小,先难后易”的布置原则,重要的单元电路、核心元器件应当优先布局。 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流, 低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间 隔要充分; 发热元件要一般应均匀分布(如果有散热片还需考虑其所占的位置),且置于下风位置以利于单板和整机的散热,电解电容离发热元件最少400mil;除温度检测元件以外的温度敏感器件应远离发 热量大的元器件。 元器件离板边尽量不小于5mm,特殊情况下也应大于板厚。 如果PCB用排线连接,控制排线对应的插头插座必须成直线,不交叉、不扭曲。 连续的40PIN排针、排插必须隔开2mm以上。 考虑信号流向,合理安排布局,使信号流向尽可能保持一致。输入、输出元件尽量远离。 电压的元器件应尽量放在调试时手不易触及的地方。 驱动芯片应靠近连接器。 有高频连线的元件尽可能靠近,以减少高频信号的分布参数和电磁干扰。 对于同一功能或模组电路,分立元件靠近芯片放置。连接器根据实际情况必须尽量靠边放置。 开关电源尽量靠近输入电源座。 BGA等封装的元器件不应放于PCB板正中间等易变形区 BGA等阵列器件不能放在底面,PLCC、QFP等器件不宜放在底层。 多个电感近距离放置时应相互垂直以消除互感。 元件的放置尽量做到模块化并连线最短。 在保证电气性能的前提下,尽量按照均匀分布、重心平衡、版面美观的标准优化布局。 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开; 定位孔、标准孔等非安装孔周围 1.27mm内不得贴装元、器件,螺钉等安装孔周围 3.5mm (对于M2.5 )、4mm(对于M3内不得贴装元器件; 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短 路; 元器件的外侧距板边的距离为5mm 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布; 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;其它元器件的布置:

中美自喷设计规范比较

中美设计规范比较 中国水喷淋规范发展历史 ?GB50084 1) 20世纪30年代我国开始使用自动喷水灭火系统; 2) 1985年国家规范颁布实施; 3) 2001和2005年对规范进行了修改. 美国水喷淋规范发展历史 ?1723年英国获第一个自动喷水灭火系统的专利, 由一桶水, 一小箱枪药和易熔元件组成; ?1852年美国第一个喷淋系统: 水管上打孔; ?1874年Henry S. Parmelee在美国获得第一个实用灭火系统专利; ?1881年Frederick Grinnell制造了第一只动洒水头; ?1884年Boston Manufacturers Mutual Fire Insurance Company 和 Boston Board of Fire Underwriters联合对当时的喷淋系统进行评估; 美国水喷淋规范发展历史 ?1885年英国曼彻斯特Mutual Fire Insurance Corporation制订了第一套 喷淋系统安装规范; ?1887年美国由Factory Improvement Committee of the New England Insurance Exchange制订了相应的美国规范. ?1896年建立NFPA组织, NFPA13诞生: 原因是法规太多市场太乱. ?规范共修改了59次. ?NFPA13-2010

危险等级的划分 ?危险等级(NFPA13) 1. 重要性: 决定了喷头, 喷水强度, 作用面积, 喷头间距, 及ESFR喷头的保护高度和压力的要求, 从而又影响到泵的选择等; 2. 根据经验判断危险等级; 3. 危险等级的认可. 危险等级的划分-中国 ?轻危险级 ?中危险级 –I级 –II级 ?严重危险等级 –I级 –II级 ?仓库危险等级 –I级(NFPA I & II级商品) –II级(NFPA III & IV级商品, B, C组塑料) –III级(NFPA A 组塑料) 危险等级的划分–场所举例

《混凝土结构设计规范》

为方便了解规范修订的变化并提出意见,将本次修订的主要内容简述如下:为方便了解规范修订的变化并提出意见,将本次修订的主要内容简述 1 完善规范的完整性,完善规范的完整性从以构件计算为主适当扩展到整体结构的设计,补充结完整性,从以构件计算为主适当扩展到整体结构的设计,适当扩展到整体结构“ 构方案”和“结构抗倒塌设计”的原则,增强结构的整体稳固性。构方案”结构抗倒塌设计” 的原则,增强结构的整体稳固性。 3 完善承载力极限状态设计内容,增加以构件分项系数进行应力设计等内容。 钢筋混凝土构件按荷载效应准永久组合计算裂缝宽正常使用极限状态设计,钢筋混凝土构件按荷载效应准永久组合计算裂缝宽 度,预应力构件稍放松;调整了裂缝宽度计算中的构件受力特征系数取值。度,预应力构件稍放松;调整了裂缝宽度计算中的构件受力特征系数取值。 4 增加楼盖舒适度要求,规定了楼板竖向自振频率的限制。 5 完善耐久性设计方法,除环境条件外,提出环境作用等级概念。完善耐久性设计方法,除环境条件外,提出环境作用等级概念除环境条件外,提出环境作用等级概念。 6 增加了既有结构设计的基本规定。增加了既有结构设计的基本规定。既有结构设计的基本规定 7 淘汰低强钢筋,纳入高强、高性能钢筋;提出钢筋延性(极限应变)的要求。淘汰低强钢筋,纳入高强、高性能钢筋;提出钢筋延性(极限应变)的要求 8 补充并筋(钢筋束)的配筋形式及相关规定。补充并筋(钢筋束)的配筋形式及相关规定及相关规定。 9 结构分析内容适当得到扩展,提出非荷载效应分析原则。结构分析内容适当得到扩展提出非荷载效应分析原则。适当得到扩展, 10

对结构侧移二阶效应,提出有限元分析及增大系数的简化方法。侧移二阶效应,提出有限元分析及增大系数的简化10 对结构侧移二阶效应,提出有限元分析及增大系数的简化方法。 11 完善了连续梁、连续板考虑塑性内力重分布进行内力调幅的设计方法。 12 补充、完善材料本构关系及混凝土多轴强度准则的内容。 “ 任意截面”“ 简化计算”13 构件正截面承载力计算:任意截面”移至正文,简化计算”移至附录。 截面设计中完善了构件自身挠曲影响的相关规定。14 截面设计中完善了构件自身挠曲影响的相关规定。 修改了受弯构件的斜截面的受剪承载力计算公式。15 修改了受弯构件的斜截面的受剪承载力计算公式。 改进了16 改进了双向受剪承载力计算的相关规定。 17 补充在拉、弯、剪、扭作用下的钢筋混凝土矩形截面框架柱设计的相关规定。扭作用下的钢筋混凝土矩形截面框架柱设计的相关规定 修改了受冲切承载力计算公式。18 修改了受冲切承载力计算公式。 19 补充了预应力混凝土构件疲劳验算的相关公式。 20 增加按开裂换算截面计算在荷载效应准永久或标准组合下的截面应力。 21 宽度大于 0.2mm 的开裂截面,增加按应力限制钢筋间距的要求。 22 挠度计算中增加按荷载效应准永久组合时长期刚度的计算公式。挠度计算中增加按荷载效应准永久组合时长期刚增加按荷载效应准永久组合时长期刚度 23 增加了无粘结预应力混凝土受弯构件刚度、裂缝计算方法。增加了 24 考虑耐久性影响适当调整了钢筋保护层厚度的规定,一股情况下稍增,恶劣考虑耐久性影响适当调整了钢筋保护层厚度的规定,一股情况下稍增,恶劣适当调整了钢筋保护层厚度的规定,一股情况下稍 环境下大幅度增加。

北美规格材目测分等概述

北美规格材目测分等概述 郭伟任海青殷亚方江京辉龙超 摘要:目测分等方法是北美一种很重要的锯材分等体系,即依据目测分等规则通过肉眼观测方式测定木材的缺陷状况进而确定规格材的材质等级。因此,对木材缺陷与材质等级之间关系的正确把握以及对分等规则的正确应用,是对规格材进行科学、正确分等的基本要求。合理地依据目测分等规则划分规格材等级,不仅可以使规格材生产厂家的经济效益最大化,而且有利于规格材产品使用性能的充分、合理发挥。经过目测分等的规格材具有客观的力学性质以及外观质量等级,可以为其作为结构用材使用时提供科学的依据。直到今天,目测分等方法依然是北美进行规格材分等的主要分等方法和基础。文中介绍了北美目测分等方法的发展、原理、意义以及世界上其他一些国家和地区的目测分等标准,并对中国目测分等标准与北美目测分等规则进行了比较,希望对完善我国的目测分等规则有所启示。 关键词:规格材,目测分等,缺陷 Summary of Visual Grading on Structural Lum ber in North America Guo Wei Ren Haiqing Yin Yafang Jiang Jinghui Long Chao Abstract:Lumber visual grading is one of the most important lumber grading systems in North America,which finishes lumber grading by watching and measuring the lumber superficial quality or characterisfics So the feature of grading method requires the graders master the grading rules and grade the lumber as quickly as possible,as the precondition of suficient use.Visual grading not only promotes the profits of the graded lumber production,but also exerts the lumber~value.So far,visual grading is still the basic and main grading method in North America.This paper introduces some basic information about visual grading,such as the history,principle and significance of the visual grading of lumber in North America,and introduces some other standards about visual grading in the world,then make a comparison between Chinese Code and NLGA.The authors hope it can avail domestic visual grading ru les about structural lumb er products. Key words:stru ctural lumber,visual grading,characteristics 规格材(dimension lumber)在我国相关标准中的定义是指按轻型木结构设计的需要,木材截面的宽度和高度按照规定尺寸加工的规格化木材[5]。在北美分等体系中,“结构用锯材”是按照板材、横梁和纵梁、柱和方材、规格材4种使用功能进行分等。在“结构用锯材”中,规格材根据其最终用途又可以划分为4个类别,分别是:结构用轻型框架、轻型框架、搁栅和厚板、墙骨。 目测分等方法(也称目测分级,Visual grad.ing)是指用肉眼观测方式对木材强度划分等级,主要是通过对规格材表面的各种影响强度或相关性能的缺陷进行评估实现的。采用北美目测收稿分等方法划分等级的规格材的弹性模量变异系数最高为25%。随着锯材生产的发展,目测

PCB工艺设计规范要点

PCB板设计规范 文件编号:QI-22-2006A 版本号:A/0 编写部门:工程部 编写:职位:日期: 审核:职位:日期: 批准:职位:日期:

目录 一、PCB版本号升级准则 (1) 二、PCB板材要求 (2) 三、PCB安规文字标注要求 (3) 四、PCB零件脚距、孔径及焊盘设计要求 (15) 五、热设计要求 (16) 六、PCB基本布局要求 (18) 七、拼板规则 (19) 八、测试点要求 (20) 九、安规设计规范 (22) 十、A/I工艺要求 (24)

一、PCB版本号升级准则: 1.PCB板设计需要有产品名称,版本号,设计日期及商标。 2.产品名称,需要通过标准化室拟定,如果是工厂的品牌,那么可以采用红光厂注册商标( )商标需要统一字符大小,或者同比例缩放字符。不能标注商标的,则可以简单字符冠名,即用红光汉语拼音几个首字母,例如,HG 或HGP冠于产品名称前。 3.版本的序列号,可以用以下标识REV0,0~9, 以及0.0,1.0,等,微小改动用.A、.B、.C等区分。具体要求如下: ①如果PCB板中线条、元件器结构进行更换,一定要变更主序号,即从 1.0 向 2.0等跃迁。 ②如果仅仅极小改动,例如,部分焊盘大小;线条粗细、走向移动;插件孔 径,插件位置不变则主级次数可以不改,升级版只需在后一位数加上A、 B、C和D,五次以上改动,直接升级进主位。 ③考虑国人的需要,常规用法,不使用4.0序号。 ④如果改变控制IC,原来的IC引脚不通用,请改变型号或名称。 ⑤PCB版本定型,技术确认BOM单下发之后,工艺再改文件,请在原技术 责任工程师确认的版本号后加入字符(-G)。工艺部门多次改动也可参照技术部门数字序号命名,例如,G1,G2向上升级…等。 4.PCB板日期,可以用以下方案标明。XX-YY-ZZ,或者,XX/YY/ZZ。 XX表示年,YY表示月,ZZ表示日。例如:11-08-08,也可以11-8-8,或者,11/8/8。PCB板设计一定要放日期标记。 二、PCB 板材要求 确定PCB 所选用的板材,板材类型见表1,若选用高TG 值的板材,应在文件中注明厚度公差。 注1:1、CEM-1: 纸芯环氧玻璃布复合覆铜箔板,保持了优异的介电性能、机械性能、和耐热性;且允许冲孔加工,其冲孔特性较玻璃环氧基材FR-4更优越,模具寿命更长;高温时翘曲变形很小。 2、FR-4:基板是铜箔基板中最高等级,用环氧树脂、八层玻璃纤维布和电渡铜箔含浸、压覆而成。有优秀的介电性能、机械强度;耐热性好、吸湿小。 3、FR-1:纸基材酚醛树脂基板,弯曲度、扭曲度好,耐热、耐湿差。注2:由于无铅焊料的熔点比传统的Sn-Pb高30℃-40℃,因此无铅化的实施对PCB材质、电子元器件的耐温性、助焊剂的性能、无铅焊料的性能、无铅组装设备的性能提出了更高的要求。对于PCB材质,需要采用热膨胀系数比较小而且玻璃化转变温度Tg值比较大的材料,才能够满足无铅焊接工艺的要求。

轻型木结构施工组织设计[1]

施工组织设计 编制单位: 编制人:日期: 审批人:日期: 施工组织设计

1 编制依据 1.1本工程招标文件中提供的施工设计图纸。 1.2本工程供货及安装合同(xxxxxxxx)中具体条款。 1.3本工程的施工单位于X年X月X日下午召开的工程启动会议。 1.4本工程涉及的国家或行业的主要规范、规程。 本工程涉及的主要规范、文件、图集一览表 2工程概况

2.1工程名称: 2.2工程地址: 2.3建设单位: 2.4施工单位: 2.5合同开工日期: 2.6计划峻工日期: 2.7工程特点 2.7.1本工程为两栋美制轻型木结构住宅,建筑面积共为平方米,内设家厅、餐厅、中西式厨房、书房、卧室等。 2.7.2基础为钢筋混凝土结构。 2.7.3主体为木结构,材料为SPF规格材,采用专用钉及辛普森连接件连接;窗为双层中空玻璃塑钢窗,室内门为模压木门。 2.7.4屋面结构为斜坡木屋架,屋面瓦为沥青瓦。 2.7.5屋面雨水沿落水槽、落水管排至市政管道。 2.7.6装饰装修:基础外墙砌筑霹雳砖块;一楼外墙砌筑舒布洛克纹面装饰砖;二楼外墙安装PVC挂板。室内墙面及天花为石膏板面层,外喷涂水性油漆。一楼地面安装实木地板;二楼地面铺设弹性纤维地毯;卫生间和西式厨房地面铺设防滑、防水塑料地毯。 2.7.7室内给水系统为:室外市政自来水管与室内分水器连接,分水器采用点到点(水管无接头)的方式分别供水至各终端。 2.7.8室内排水系统采用ABS管材排入市政管道。 2.7.9室内电气系统: 美制轻型木结构住宅是从美国整体引进的一种产业化全木结构房屋,主要构件及材料全部从国外进口。根据美国《基础电工程技术》的规定,轻型木结构住宅室内供电必须采用ROMEX(罗马克斯)免穿管专用电线。电线的敷设方法为:从配电箱按点到点(中间无接头、无分线盒)的布线方法将电线直接敷设于木结构中至终端。 由于轻型木结构是将木材加工为专用规格材(木搁栅),然后由规格材组装成墙体、楼盖、屋盖等房屋构件,最后拼装成各种造型的住宅。所以对于木结构构件的开孔是有严格规定的。为了不损坏木结构构件,尽量减少在构件上开孔,而且孔径尽量减小,专家们为轻型木结构住宅专门研制了ROMEX(罗马克斯)免穿管专用电线,在轻型木结构住宅中敷设这种电线时不必要预埋电线管,可直接在墙体、楼盖、屋盖中布线。 3施工部署与施工方案

《混凝土结构设计规范》GB50010

《混凝土结构设计规范》GB50010-2002 3基本设计和规定 1.1.8未经技术鉴定或设计许可,不得改变结构的用途和使用环境。 1.2..1根据建筑结构破坏后果的严重程度,建筑结构划分为三个安全等级。设计 时应根据具体情况,按照表3.2.1的规定选用相应的安全等级。 表3.2.1 建筑结构的安全等级 1.1.3混凝土轴心抗压、轴心抗拉强度标准值?ck、?tk应按表4.1.3采用。 表4.1.3 混凝土强度标准值(N/mm2) c t 表4.1.4 混凝土强度设计值(N/mm2) 的强度设计值应乘以系数0.8;当构件质量(如混凝土成型、截面和轴线尺寸等)确有保证时,可不受此限制; 2.离心混凝土的强度设计值应按专门标准取用。 1.2.2钢筋的强度标准值应具有不小于95%的保证率。热轧钢筋的强度标准值系 表示。预应力钢绞线、钢丝和热处理钢筋的强度标根据屈服强度确定,用? yk 准值系根据极限抗拉强度确定,用? 表示。 ptk 普通钢筋的强度标准值应按表4.2.2-1采用;预应力钢筋的强度标准值应按

表4.2.2-2采用。 各种直径钢筋、钢绞线和钢丝的公称截面面积、计算截面面积及理论重量应按附录B 采用。 表4.2.2-1 普通钢筋强度标准值(N/mm 2) 2 当采用直径大于40mm 的钢筋时,应有可靠的工程经验。 表4.2.2-2 预应力钢筋强度标准值(N/mm 2) 称直径Dg ,钢丝和热处理钢筋的直径d 均指公称直径; 2 消除应力光面钢丝直径d 为4~9mm ,消除应力螺旋肋钢丝直径d 为4~8mm 。 4.2.3普通钢筋的抗拉强度设计值?y 及抗压强度设计值?′y 应按表4.2.3-1采用;预应力钢筋的抗拉强度设计值?py 及抗压强度设计值?′py 应按表4.2.3-2采用。 当构件中配有不同种类的钢筋时,每种钢筋应采用各自的强度设计值。 表4.2.3-1 普通钢筋强度设计值(N/mm 2) 300 N/mm 2取用。 表4.2.3-2 预应力钢筋强度设计值(N/mm 2)

PCB设计规范

PCB设计规范 前言 本规范参考国家标准印制电路板设计和使用等标准编制而成。 一、布局 ●元件在二维、三维空间上不能产生冲突。 ●先放置与结构关系密切的元件,如接插件、开关、电源插座等。对于按键,连接器等与结构相关 的元器件放置好后应锁定,以免在无意之中移动。 ●如果有相同结构电路部分,尽可能采用“对称式”标准布局。 ●元器件的排列要便于调试和维修,小元件周围尽量不放置大元件、需调试的元、器件周围要有足 够的空间。 ●按照“先大后小,先难后易”的布置原则,重要的单元电路、核心元器件应当优先布局。 ●布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流, 低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分; ●发热元件要一般应均匀分布(如果有散热片还需考虑其所占的位置),且置于下风位置以利于单板 和整机的散热,电解电容离发热元件最少400mil;除温度检测元件以外的温度敏感器件应远离发热量大的元器件。 ●元器件离板边尽量不小于5mm,特殊情况下也应大于板厚。 ●如果PCB用排线连接,控制排线对应的插头插座必须成直线,不交叉、不扭曲。 ●连续的40PIN排针、排插必须隔开2mm以上。 ●考虑信号流向,合理安排布局,使信号流向尽可能保持一致。 ●输入、输出元件尽量远离。 ●电压的元器件应尽量放在调试时手不易触及的地方。 ●驱动芯片应靠近连接器。 ●有高频连线的元件尽可能靠近,以减少高频信号的分布参数和电磁干扰。 ●对于同一功能或模组电路,分立元件靠近芯片放置。 ●连接器根据实际情况必须尽量靠边放置。 ●开关电源尽量靠近输入电源座。 ●BGA等封装的元器件不应放于PCB板正中间等易变形区 ●BGA等阵列器件不能放在底面,PLCC、QFP等器件不宜放在底层。 ●多个电感近距离放置时应相互垂直以消除互感。 ●元件的放置尽量做到模块化并连线最短。 ●在保证电气性能的前提下,尽量按照均匀分布、重心平衡、版面美观的标准优化布局。 ●按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集 中原则,同时数字电路和模拟电路分开; ●定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于 M2.5)、4mm(对于M3)内不得贴装元器件; ●卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短 路; ●元器件的外侧距板边的距离为5mm; ●贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm; ●金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距 应大于2mm。定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm; ●发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;

PCB-LAYOUT设计规范

1.目的 规范产品的PCB设计工艺要求,规定PCB 工艺设计的相关参数,使PCB设计满足可生产性等到技术要求。2.范围 适用于恒晨公司所有PCB板的设计; 3.权责 1、LAYOUT组:负责建立和规范PCB文件库,并严格执行以下要求。 4.规范内容 4.1 PCB板的锡膏印刷机定位孔: 4.1.1位置:PCB板的4个角上。 4.1.2尺寸:¢1.2±0.1mm。 4.2 V-CUT槽深度要求: 4.2.1要求上下V-CUT槽的深度各占板厚的1/3。 4.3 PCB板尺寸要求: 4.3.1对于大板,宽度不超过250MM,拼板长度不超过300MM。 4.3.2对于连接板等小板,拼板长度不超过80MM。 4.3.3宽度超过250MM的板卡需在板中间的5MM区域不放元器件,用于过炉夹具使用。 4.3.4 PCB 尺寸、板厚需在PCB 文件中标明、确定,尺寸标注应考虑厂家的加工公差。板厚(±10%公差)规格:0.8mm、1.0mm、1.2mm、1.6mm、2.0mm、2.5mm、3.0mm、3.5mm; 4.4 PCB板元器件布局要求 4.4.1所有的插件零件尽量摆在同一面。 4.4.2 DIP元件与SMT元件安全距离:TOP面为1MM,BOT面为2MM。 4.4.3插座的固定孔要求统一一致 4.4.4电容、二极管等有方向的元器件方向必须一致。

4.4.5 CHIP元件之间的安全距离:0.75MM; 4.4.6 CHIP与IC之间的安全距离:0.5MM; 4.4.7 IC与IC之间的安全距离:2MM。 2MM 4.4.8 SMT焊盘与过孔/通孔之间的安全距离:0.5MM。 4.4.9 IC、连接器等密脚元件,当相邻焊盘相连时,需要引出后再连接。如下图: 4.4.10 经常插拔器件或板边连接器周围3mm 范围内尽量不布置SMD,以防止连接器插拔时产

结构设计安全度专题讨论综1

结构设计安全度专题讨论综1 (摘自《土木工程学报》第32卷第6期pp75-pp77,1999年6月) 1999年5月14日。中国土木工程学会邀请在京的部分专家,举行了为期一天的结构设计安全度专题讨论会。来自设计、科研,高校。政府部门等16个单位共28名专家参加了会议。中国土木工程学会秘书长唐美树,常务副理事长。国家建设部总工姚兵。建设部科技司司长李先逵先后在会上致词,强调了对安全度问题展开讨论的重要性,中国土木工程学会并将于明年5月在杭州召开第九次年会,结构安全度将作为年会的要紧议题。 讨论会由中国土木工程学会学术委员会副主任刘西拉教授主持。与会专家各抒已见,其中既有共识,也有不同乃至对立的意见。以下是讨论发言的简要归纳。 1、关于可靠度设计理论 可靠度理论是分析结构安全性的一种有效手段。我国已颁布统一标准,要求结构设计规范按可靠度理论设计。70年代的我国混凝土结构、木结构和钢结构设计规范分别采纳不同的设计方法体系,在安全度的表达形式上互不相同,给设计或教学都造成不便,80年代用可靠度理论领先加以统一。然而,对规范采纳可靠度理论,以及这一理论能否将各种结构的安全度都统一在同一体系中,专家们持不同意见: (1)认为我国规范采纳了先进的可靠度理论,用失效概率度量结构的可靠性,通过将抗力和作用效应相互独立。将随机过程化为随机变量并以体会为校准点,成功地将这一理论用于建筑结构设计规范中,这是我国规范先进性的一种表现。工程设计采纳可靠度理论为国际标准组织(ISO)所提倡,是国际上大势所趋;多次国际安全度会议也倾向于采纳ISO提出的在设计规范中采纳可靠度理论的原则。可靠度理论一样重视体会,可靠度取值用校准法确定。 (2)认为可靠度理论是分析和度量结构安全性的一种先进手段,但在应用上还有其局限性,理论本身也有一些方面未能突破,比如结构可靠度分析的三个约束条件:将抗力与作用效应分离,将随机过程变为随机变量,以及将截面承载力的安全指标β作为结构的可靠指标,随着认识的进展都值得质疑。用概率可靠度理论需要进行大量数据统计,但不论荷载统计或抗力统计都还存在一些问题,规范安全度还需考虑今后可能显现的荷载变化。概率可靠度理论会有意或无意地简化、忽略本应考虑但又无法用这一理论处理的因素,如一定程度的人为失误以及社会。经济因素等。可靠度理论强调三个正常,即正常设计。正常施工和正常使用,但正常和不正常有时不易界定。匆忙地将可靠度理论推广于各种规范,会带来一些不必要苦恼,比如地基基础规范中,地基承载力强度的设计

混凝土结构设计规范(6)

6.5 受冲切承载力计算 6.5.1在局部荷载或集中反力作用下不配置箍筋或弯起钢筋的板,其受冲切承载力应符合下列规定(图6.5.1): (a)局部荷载作用下;(b)集中反力作用下 图 6.5.1板受冲切承载力计算 1-冲切破坏锥体的斜截面;2-计算截面;3-计算界面的周长;4-冲切破坏锥体的底面线 F l≤(0.7βh f t+0.25σpc,m)ηu m h0(6.5.1-1) 公式(6.5.1-1)中的系数η,应按下列两个公式计算,并取其中较小值: η1=0.4+1.2/βs(6.5.1-2) (6.5.1-3)

式中:F l——局部荷载设计值或集中反力设计值;板柱结构,取柱所承受的轴向压力设计值的层间差值减去柱顶冲切破坏锥体围板所承受的荷载设计值;当有不平衡弯矩时,应按本规第6.5.6 条的规定确定; βh——截面高度影响系数:当h 不大于800mm 时,取βh为1.0;当h 不小于2000mm 时,取βh为0.9,其间按线性插法取用; σpc,m——计算截面周长上两个方向混凝土有效预压应力按长度的加权平均值,其值宜控制在1.0N/mm2~3.5N/mm2围; u m——计算截面的周长,取距离局部荷载或集中反力作用面积周边h0/2 处板垂直截面的最不利周长; h0——截面有效高度,取两个方向配筋的截面有效高度平均值; η1——局部荷载或集中反力作用面积形状的影响系数; η2——计算截面周长与板截面有效高度之比的影响系数; βs——局部荷载或集中反力作用面积为矩形时的长边与短边尺寸的比值,βs不宜大于4;当βs小于2 时取2;对圆形冲切面,βs取2; αs——柱位置影响系数:中柱,αs取40;边柱,αs取30;角柱,αs取20。 6.5.2当板开有孔洞且孔洞至局部荷载或集中反力作用面积边缘的距离不大于6h0 时,受冲切承载力计算中取用的计算截面周长u m,应扣除局部荷载或集中反力作用面积中心至开孔外边画出两条切线之间所包含的长度(图 6.5.2)。

相关文档
相关文档 最新文档