文档库 最新最全的文档下载
当前位置:文档库 › 2014矩阵分析试卷

2014矩阵分析试卷

2014矩阵分析试卷
2014矩阵分析试卷

2014矩阵分析试卷

一、判断题(不要求证明)(20分)

1.设n 是大于1的整数,{()|()}V f x f x n F =是次数小于的域上的多项式,V 关于多项式的加法与数乘是一个域F 上的线性空间。 ( √ )

2.设a r 为XOY 面上的非零向量,V 为XOY 面内所有不平行于a r

的向量构成的集合,V 关于向量的加法与数乘是一个域R 上的线性空间。 ( × ) 3.设V 是域F 上的线性空间, V α∈不是零向量,映射:,()V V ξξα→=+A A 是V 上的线性变

换。 ( × )

4. 设A 是数域R 上的对称阵,映射:,()n n R R A αα→=A A 是n

R

上的对称变换。 ( √ )

二、计算题 1. (1,1,1,1)T 2. 已知1

12212W

={,},W ={,}Span a a Span b b ,而

1212(0,1,1,1),(1,0,2,0);(0,3,3,1),(1,2,0,0)a a b b =-==-=。 12W W ?的基为(1,1,3,1)T --与维数1;

12122212W +W ={,,}={,,}span span ααβαββ的基122,,ααβ或212,,αββ与维数3

3.

23:,()R R A

ββ→=A A ,基

123(1,0,0),(0,1,0);(0,0,1)

ααα===及基

12(1,0),(0,1)ββ==下的矩阵为110=211T

B ?? ?

??

4. (10分)设线性变换22:R R →A

,在基12(1,0),(0,1)ββ==的矩阵为12=24A ?? ???

,求A

的核为{k(-2,1)| k}T ?、值域的基1

2+2β

β,维数1。

6.(8分)求矩阵11010=0111123131A ??

? ? ???

的满秩分解

7.(24分)设矩阵308=3-16-20-5A ?? ? ?

???

,求可逆矩阵P ,使得1

P AP -为约当阵。 A E -λ = ???

?

? ??+-+---502613803

λλλ→ ????? ??++2)1(0001

0001λλ,

于是A 的初等因子是1+λ, 2

)1(+λ,故A 的若尔当标准形为

J = 100011001骣-÷?÷?÷?÷-?÷?÷?÷÷?-桫

。 =-1λ对对应的特征向量为()1

2

=2,0,1,=(0,1,0)T

T

ηη- ,

另3

1

1

2

2

(-k ηηη-+E A)=k ,取1

2

=1=-1k ,k ,解得()3

=1/2,0,0T

η,故201/2010100P 骣-÷?÷?÷?÷=?÷?÷?÷÷?桫

三、证明题(10分) 设:V

V ?→是酉空间上的线性变换,证明?是酉变换的充要条件是:对所有V α∈有

()αα

?=。

答案

一、1.(√)2.(╳)3.(╳)4.(√) 二、计算题 1. 1

234=1e

+1e +1e +1e α,故坐标为。=(1,111)

T X ,, (8分) 2. (8分)显然1

2,a

a 为方程组31242

2x x x x x =-??

=?的基础解系,而1

W 方程组的解空间

12,b b 为方程组21434

2+3-3x x x x x =??

=?的基础解系,而1

W 方程组的解空间

因而12W W ?为方程组2143431242

2+3-32x x x x x x x x x x =??=??

=-??=?的的解空间,其基础解析为=(-1,1-31)T a ,,,故12W W ?的基为a ,维数为1。

121212121W +W ={,,,}{,,}Span a a b b Span a a b =,故12W +W 的基为121,,a a b ,维数为3。

3.(8分)设线性映射

23:,()R R A ββ→=A A ,其中110=211A ??

???

,求

A

在基

123(1,0,0),(0,1,0);(0,0,1)ααα===及基12(1,0),(0,1)ββ==下的矩阵表示。

设线性映射

32:,()R R A αα

→=A A ,其中

110=211A ?? ???

,求

A

在基

123(1,0,0),(0,1,0),(0,0,1)T T T ααα===及基12(1,0),(0,1)T T ββ==下的矩阵表示。

4. (10

分)设线性变换

22

:R R →A ,在基

12(1,0),(0,1)

ββ==的矩阵为

12=24A ?? ???12=36A ?? ???

,求A 的核、值域的基与维数。

5.(8分)求矩阵308=3-16-20-5A ?? ? ? ???11-1=-3-33-2-22A ?? ? ? ???的约当标准型。

6.(8分)求矩阵11010=0111123131A ?? ? ? ???21-231=25-141-233-2-1A ??

? ? ???的满秩分解

7.(20分)求微分方程组'112

'

2123'3

2()22()22()2x t x x x t x x x x t x

?=-?=-+-??=-?的通解。 三、证明题(10分) 设:V

V ?→是酉空间上的线性变换,证明?是酉变换的充要条件是:对所有V α∈有

()αα

?=。

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

《矩阵分析》考试题A 2016

华南理工大学研究生课程考试题(A) 《矩阵分析》2016年12月 姓名院(系)学号成绩 注意事项:1.考试形式:闭卷(√)开卷() 2.考生类别:博士研究生()硕士研究生(√)专业学位研究生() 3.本试卷共四大题,满分100分,考试时间为150分钟。 一、单项选择题(每小题3分,共15分): 1、设,,是的两个不相同的真子空间,则下列不能构成子空间的是。(A);(B);(C);(D)。 2、设,为阶酉矩阵,则下列矩阵为酉矩阵的是。 (A);(B);(C);(D)。 3、设矩阵的秩为,则下列说法正确的是。 (A)的所有阶子式不等于0;(B)的所有阶子式等于0; (C)的阶子式不全为0;(D)的阶子式不全为0。 4、下列命题不正确的是。 (A)行数相同的两个矩阵一定存在最大右公因子; (B)列数相同的两个矩阵一定存在最大右公因子。 (C)特征多项式的根一定是最小多项式的根; (D)最小多项式的根一定是特征多项式的根; 5、设,则。 (A)1;(B);(C);(D)。 二、填空题(每小题3分,共15分): 1、设,,和,,是的

两个基,则从第一个基到第二个基的的过渡矩阵为 。 2、实线性空间的映射称为内积运算,如果满足下列条件: 。 3、奇异值分解定理内容为 。 4、设,则。 5、设,则。 三、计算题(每小题14分,共56分): 1、设,,;,, ,。求和的一个基。

2、求欧氏空间的一个标准正交基(从基,,,出发),内积定义为 。

3、求的若当标准形和可逆矩阵, 并计算。

4、1)写出的求解公式。 2)已知,计算。

四、证明题(第一小题8分,第二小题6分,共14分): 1、设,是维线性空间,证明都。 2、设方阵满足,且,证明。

矩阵分析期末考试

错误! 2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A) 一、(共30分,每小题6分)完成下列各题: (1)设4R 空间中的向量????????????=23121α,????????????--=32232α,????????????=78013α,????????????--=43234α,???? ? ? ??????--=30475α Span V =1{}321,,ααα,Span V =2 {}54,αα,分别求21V V +和21V V 的维数. 解:=A {}54321,,,,ααααα? ? ??? ? ??? ???--→000004100030110 202 01 21V V +和21V V 的维数为3和1 (2) 设()T i i 11-=α,()T i i 11-=β是酉空间中两向量,求内积()βα, 及它们的长度(i =). (0, 2, 2); (3)求矩阵?? ??? ?????----=137723521111A 的满秩分解. 解:?? ?? ? ?????----=137723521111A ??????? ? ??? ????? -- --→0000747510737201

??????????----=137723521111A ??????????--=775211??????? ? ?? ??? ??? ----747 510737201* (4)设-λ矩阵??? ? ? ??++=2)1(0000 00 )1()(λλλλλA ,求)(λA 的Sm ith 标准形及其行列式因子. 解:????? ??++=2)1(000000)1()(λλλλλA ()()??? ? ? ??++→2111λλλλ (5)设*A 是矩阵范数,给定一个非零向量α,定义 * H x x α=,验证x 是向量 范数. 二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为?? ?? ? ?????-=021110111A , (1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基. 解:(1)由题意知 T [ε1,ε2,ε3]=[]?? ?? ? ?????-021110111,,321εεε 线性变换T的值域为T(V)= {}321312,span εεεεε+++ 所以A (V)的维数为2, 基为{}321312,εεεεε+++ (2)矩阵A的核为AX=0的解空间。不难求得AX=0的基础解系是[2, -1, 1]T , 因此)(A N 的维数为1, 基为3212εεε+-.

北京科技大学考研数学分析(2003-2014)

北 京 科 技 大 学 2014年硕士学位研究生入学考试试题 ============================================================================================================= 试题编号: 613 试题名称: 数学分析 (共 2 页) 适用专业: 数学, 统计学 说明: 所有答案必须写在答题纸上,做在试题或草稿纸上无效。 ============================================================================================================= 1.(15分)(1)计算极限2020cos lim ln(1)x x xdx x →+?; (2)设112(1)0,,(1,2,3,),2n n n a a a n a ++>==+ 证明: lim n n a →∞存在,并求该极限. 2.(15分) (1)设222z y x u ++=,其中),(y x f z =是由方程xyz z y x 3333=++所确定的隐函数, 求x u . (2) 设2233x u v y u v z u v ?=+?=+??=+?,求z x ??. 3. (15分)设)(x f 在[]0,2上连续,且)0(f =(2)f ,证明?0x ∈[]0,1,使 )(0x f =0(1).f x + 4.(15分)设f (x )为偶函数, 试证明: 20()d d 2(2)()d ,a D f x y x y a u f u u -=-??? 其中:||,|| (0).D x a y a a ≤≤> 5. (15分)设)(x f 在区间[0,1]上具有二阶连续导数,且对一切[0,1]x ∈,均有(),''()f x M f x M <<. 证明: 对一切[0,1]x ∈,成立 '()3f x M <.

算法设计与分析课程期末试卷-A卷(自测 )

华南农业大学期末考试试卷(A卷) 2008学年第一学期考试科目:算法分析与设计 考试类型:(闭卷)考试时间:120分钟 学号姓名年级专业 一、选择题(20分,每题2分) 1.下述表达不正确的是。 A.n2/2 + 2n的渐进表达式上界函数是O(2n) B.n2/2 + 2n的渐进表达式下界函数是Ω(2n) C.logn3的渐进表达式上界函数是O(logn) D.logn3的渐进表达式下界函数是Ω(n3) 2.当输入规模为n时,算法增长率最大的是。 A.5n B.20log2n C.2n2D.3nlog3n 3.T(n)表示当输入规模为n时的算法效率,以下算法效率最优的是。A.T(n)= T(n – 1)+1,T(1)=1 B.T(n)= 2n2 C.T(n)= T(n/2)+1,T(1)=1 D.T(n)= 3nlog2n 4.在棋盘覆盖问题中,对于2k×2k的特殊棋盘(有一个特殊方块),所需的L型骨 牌的个数是。 A.(4k– 1)/3 B.2k /3 C.4k D.2k 5.在寻找n个元素中第k小元素问题中,若使用快速排序算法思想,运用分治算法 对n个元素进行划分,应如何选择划分基准?下面答案解释最合理。A.随机选择一个元素作为划分基准 B.取子序列的第一个元素作为划分基准 C.用中位数的中位数方法寻找划分基准 D.以上皆可行。但不同方法,算法复杂度上界可能不同

6. 现在要盖一所邮局为这9个村庄服务,请问邮局应该盖在 才能使到邮局到这9个村庄的总距离和最短。 A .(4.5,0) B .(4.5,4.5) C .(5,5) D .(5,0) 7. n 个人拎着水桶在一个水龙头前面排队打水,水桶有大有小,水桶必须打满水, 水流恒定。如下 说法不正确? A .让水桶大的人先打水,可以使得每个人排队时间之和最小 B .让水桶小的人先打水,可以使得每个人排队时间之和最小 C .让水桶小的人先打水,在某个确定的时间t 内,可以让尽可能多的人打上水 D .若要在尽可能短的时间内,n 个人都打完水,按照什么顺序其实都一样 8. 分治法的设计思想是将一个难以直接解决的大问题分割成规模较小的子问题,分 别解决子问题,最后将子问题的解组合起来形成原问题的解。这要求原问题和子问题 。 A .问题规模相同,问题性质相同 B .问题规模相同,问题性质不同 C .问题规模不同,问题性质相同 D .问题规模不同,问题性质不同 9. 对布线问题,以下 是不正确描述。 A .布线问题的解空间是一个图 B .可以对方格阵列四周设置围墙,即增设标记的附加方格的预处理,使得算法简化对边界的判定 C .采用广度优先的标号法找到从起点到终点的布线方案(这个方案如果存在的话)不一定是最短的 D .采用先入先出的队列作为活结点表,以终点b 为扩展结点或活结点队列为空作为算法结束条件 10. 对于含有n 个元素的子集树问题,最坏情况下其解空间的叶结点数目为 。 A .n! B .2n C .2n+1-1 D . ∑=n i i n 1 !/! 答案:DACAD CACCB

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

波士顿矩阵分析在实际案例中的运用

波士顿矩阵分析在实际案例中的运用[1] 上海和达汽车零部件有限公司是由某国内上市公司与外商合的生产汽车零部件的企业。公司于1996年正式投产.配套厂海大众发、一汽大众、上海通用、东风柳汽、吉利、湖南长风武等。 和达公司的主要产品分成五类,一是挤塑和复合挤塑类(密封嵌条、车顶饰条等);二是滚压折弯类(车门导槽、滑轨、车架管;三是普通金属焊接类(汽车仪表板横梁模块);四是激光焊接镁合金横梁模块);五是排档杆类(手动排档总成系列)。 和达公司产品波士顿矩阵分析 A 问题型业务(Question Marks.指高增长、低市场份额) 处在这个领域中的是一些投机性产品。这些产品可能利润率但占有的市场份额很小。公司必须慎重回答“是否继续投资.业务?”这个问题。只有那些符合企业发展长远目标、企业具优势、能够增强企业核心竞争力的业务才得到肯定的回答。 从和达公司的情况来看。滚压折弯类产品由于技术含量不高.褴低,未来市场竞争程度必然加剧。所以对于这类产品.最好就是舍弃。由于目前还能带来利润,不必迅速退出,只要目前持必要的市场份额,公司不必再增加投入。当竞争对手大举,可以舍弃。 B 明星型业务(8tsx8,指高增长、高市场份额) 这个领域中的产品处于快速增长的市场中并且占有支配地位份额。但也许不会产生正现金流量。但因为市场还在高速成业必须继续投资,以保持与市场同步增长,并击退竞争对手。 对于和达公司来说,铝横梁的真空电子束焊接系统是国内第一家。具有技术上的领先优势。因此企业应该加大对这一产品的投入.以继续保持技术上的领先地位。对于排档杆类产品.由于国内在这个领域的竞争程度还不太激烈,因此可以考虑进入。和达公司应该把这类产品作为公司

矩阵分析模拟试题及答案

矩阵分析模拟试题及答案 一.填空题(每空3分,共15分) 1. 设A 为3阶方阵, 数2-=λ, 3=A , 则A λ= -24. 2. 设向量组T )4,3,2,1(1=α,T )5,4,3,2(2=α,T )6,5,4,3(3=α,T )7,6,5,4(4=α,则 ),,,(4321ααααR =2. 3. 已知??? ?? ??---=11332 223a A ,B 是3阶非零矩阵,且0=AB ,则=a 1/3. 4.设矩阵????? ??------=12422 421x A 与??? ? ? ??-=Λ40000005y 相似,则y x -=-1. 5. 若二次型()32212 3222132122, ,x ax x x x x x x x x f ++++=是正定二次型,则a 的取值 范围是22< <-a . 二.单项选择题(每小题3分,共15分) 1. 设A 是3阶矩阵,将的第二列加到第一列得矩阵,再交换的第二行与第三行得单位矩阵, 记????? ??=1000110011P ,??? ?? ??=010*******P ,在则=A ( D ) 21)(P P A 211)(P P B - 12)(P P C 112)(-P P D 2. 设A 是4阶矩阵,且A 的行列式0=A ,则A 中( C ) )(A 必有一列元素全为0 )(B 必有两列元素成比例 )(C 必有一列向量是其余列向量的线性组合 )(D 任意列向量是其余列向量的线性组合 3. 设A 与B 均为3阶方阵, 且A 与B 相似, A 的特征值为1, 2, 3, 则1 )2(-B 的特 征值为(B ) )(A 2, 1, 32 )(B 12, 14, 16 )(C 1, 2, 3 )(D 2, 1, 2 3

矩阵分析期末考试2012

2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 学号 姓名 一、(共30分,每小题6分)完成下列各题: (1)设4 R 空间中的向量????????????=23121α,????????????--=32232α,????????????=78013α,???? ?? ??????--=43234α, ????? ? ??????--=30475α Span V =1{}321,,ααα,Span V =2{}54,αα,分别求21V V +和21V V 的 维数. 解:=A {} 54321,,,,ααααα? ? ??? ? ??? ???--→000004100030110 202 01 21V V +和21V V 的维数为 3和1 (2) 设() T i i 11-=α,() T i i 11-=β是酉空间中两向量,求 内积()βα, 与它们的长度(i = . (0, 2, 2); (3)求矩阵?? ?? ? ?????----=137723521111A 的满秩分解.

解:?? ?? ? ?????----=137723521111A ??????? ? ??? ???? ? -- --→0000747510737201 ??????????----=137723521111A ??????????--=775211??????? ??? ??? ?? ? ----747 510737201* (4)设-λ矩阵???? ? ??++=2)1(000000 )1()(λλλλλA ,求)(λA 的标准形与其 行列式因子. 解:????? ??++=2)1(000000)1()(λλλλλA ()()??? ? ? ??++→2111λλλλ (5)设*A 是矩阵范数,给定一个非零向量α,定义 *H x x α=, 验证x 是向量范数. 二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为 ?? ?? ? ?????-=021110111A , (1)(5分)求T 的值域)(T R 的维数与一组基; (2)(5分)求T 的核)(T N 的维数与一组基. 解:(1)由题意知 T [ε1,ε2,ε3]=[]?? ?? ? ?????-021110111,,321εεε

2014-2015-1数学分析1参考答案及评分标准格式A

中国计量学院2014 ~ 2015 学年第1学期 《数学分析1》课程 试卷(A )参考答案及评分标准 开课二级学院:理学院,学生班级:14信算1、2、3,数学1、2,教师:汪悦 一、 填空题.(每题2分,共20分) 1. sup 1,inf 0S S = = 2. 0,0,-0|()|.x f x A εδδε?>?><<-<当时,有 3. 0,x = 可去. 4. 0,0,x x < > 为凹函数; 为凸函数 5. 100! 6. 2 7. 1 2 y x = 8. 11- 2 , 9. 2.01 10. 高阶 二、求极限.(每题5分,共15分). 1. 解: 222221121121n n n n n n n n n n n n n n n n n +++++++++++≤+++≤ +++++ 22113lim lim 12 n n n n n n n n n n n →∞→∞++++++++==++ 222123lim()122 n n n n n n n n n →∞++++++=+++ (5分) 2. 解: 2 2 301lim sin x x x e x x -→--2 2 2 2 4 3 2 0001221lim lim lim 42x x x x x x x e x xe e x x x ---→→→---+-+===

2201 lim 22 x x x →-==- (5分) 3.解: 200 cos sin lim 1lnsin lim lim sin cos tan tan lnsin 0cot sin 0 lim(sin ) lim 1x x x x x x x x x x x x x x x x e e e e e →→→--→→======(5分) 三、求下列导数或微分. (每题5分,共20分) 1.2cos cos sin ,ln cos ln sin ,sin ln sin sin x y x y x y x x x x y x '===-+ 2cos 2 cos cos sin (sin ln sin ) sin cos sin (sin ln sin )sin x x x y x x x x x dy x x x dx x '=-+∴=-+ (5分) 2. 2 11 (arcsin )()y f x x ''=- (5分) 3. 0(00)1(00)x f f a b =-==+=+在连续,得 0000()(0)sin 20(0)lim lim 2 00 ()(0)11 (0)lim lim 200 1 x x x x x f x f x x f x x f x f b be f b x x a - -++-→→+→→-'====----+-'====--=-在可导,得 (5分) 4. (10)2(10)12(9)2 2(8)10101029810298()sin 2()sin 2()sin 29 2sin(25)1022sin(2)4522sin(24)2 2sin 2220cos 2290sin 2f x x x C x x C x x x x x x x x x x x x πππ'''=++=++??+ +??+=-+?+? (5分) 四、求下列不定积分. (每题5分,共20分) 1.解:

2014年考研数学三真题及解析

2014年全国硕士研究生入学统一考试 数学三试题 一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设lim ,n a a =且0,a ≠则当n 充分大时有( ) (A )2n a a > (B )2 n a a < (C )1n a a n >- (D )1 n a a n <+ (2)下列曲线有渐近线的是( ) (A )sin y x x =+ (B )2sin y x x =+ (C )1sin y x x =+ (D )2 1sin y x x =+ (3) (A ) (B ) (C ) (D ) (4)设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上( ) (A )当'()0f x ≥时,()()f x g x ≥ (B )当'()0f x ≥时,()()f x g x ≤ (C )当'()0f x ≤时,()()f x g x ≥ (D )当'()0f x ≤时,()()f x g x ≥

(5)行列式 00000000a b a b c d c d = (A )2()ad bc - (B )2()ad bc -- (C )2 2 22 a d b c - (D )22 2 2 b c a d - (6)设123,,a a a 均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的 (A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分也非必要条件 (7)设随机事件A 与B 相互独立,且P (B )=0.5,P(A-B)=0.3,求P (B-A )=( ) (A )0.1 (B )0.2 (C )0.3 (D )0.4 (8)设123,,X X X 为来自正态总体2(0,)N σ 服从的分布为 (A )F (1,1) (B )F (2,1) (C )t(1) (D )t(2) 二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸... 指定位置上. (9)设某商品的需求函数为402Q P =-(P 为商品价格),则该商品的边际收益为_________。 (10)设D 是由曲线10xy +=与直线0y x +=及y=2围成的有界区域,则D 的面积为_________。 (11)设 20 1 4 a x xe dx = ? ,则_____.a = (12)二次积分2 21 1 0( )________.x y y e dy e dx x -=?? (13)设二次型22 123121323(,,)24f x x x x x ax x x x =-++的负惯性指数为1,则a 的取值范围是_________

河南工业大学2014年数学分析考研真题

河南工业大学 2014年硕士研究生入学考试试题 考试科目: 数学分析 共 2 页(第 1 页) 注意:1、本试题纸上不答题,所有答案均写在答题纸上 2、本试题纸必须连同答题纸一起上交。 一、(24分,每小题8分) 计算下列极限: 1. 1211lim 1)n n n n -→+∞+-( ; 2. 0lim 1cos x x →-; 3. lim sin sin sin ).n →+∞+++L 222 12n (n n n 二、( 48分,每小题12分) 计算下列各类积分: 1. 12sin I dx x π π-=+?; 2. 2sin y x I dy dx x ππππ-=?? ; 3. 第二型曲线积分22C xdy ydx x y -+??,其中C 为任意简单闭曲线,逆时针为正向; 4. 利用奥高公式计算 ()()()s I x y z dydz y z x dzdx z x y dxdy =-++-++-+??ò, 其中S 是八面体1x y z y z x z x y -++-++-+=的外侧. 三、(36分,每小题12分) 完成下列各题 1.(12分) 按步骤做出函数23(1)y x x =-的图像. 2. 求幂级数111(1) (1)2n n n x n ∞=-+++∑L 的收敛域. 3. 设(,)z z x y =是由方程组 ,,u v u v x e y e z uv +-===, 确定的函数,求当0,0u v == 时的2,dz d z .

共 2 页(第 2 页) 四、(42分) 完成下列证明题 1. (10分) 若函数()f x 在[,)a +∞上连续,lim ()x f x →+∞ 存在,则()f x 在[,)a +∞上一致连续. 2. (10分) 设二元函数f 在圆周222:C x y a +=上连续,证明:存在C 的一条直径的 两个端点A 与B ,使得 ()()f A f B =. 3. (10分) 证明方程0ln x x e π=-?在0+∞(,)内有且仅有两个实根. 4. (12分) 证明函数2222222,0(,)0,0x y x y x y f x y x y ?+≠?+=??+=? 在原点(0,0)处连续,且存在偏导数,但在(0,0)处不可微.

矩阵分析试题中北大学33

§9. 矩阵的分解 矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,这是矩阵理论及其应用中常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了原矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,因而使其对分解矩阵的讨论和计算带来极大的方便,这在矩阵理论研究及其应用中都有非常重要的理论意义和应用价值。 这里我们主要研究矩阵的三角分解、谱分解、奇异值分解、满秩分解及特殊矩阵的分解等。 一、矩阵的三角分解——是矩阵的一种有效而应用广泛的分解法。 将一个矩阵分解为酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积,这对讨论矩阵的特征、性质与应用必将带来极大的方便。首先我们从满秩方阵的三角分解入手,进而讨论任意矩阵的三角分解。 定义1 如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈<=- ij a C R i j i n 1,2,),=++ j i i n 则上三角矩阵 1112 1222000?? ? ? = ? ? ?? n n nn a a a a a R a 称为正线上三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,R 称为单位上三角复(实)矩阵。

定义2如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈>=- ij a C R i j i n 1,2,),=++ j i i n 则下三角矩阵 11212212000?? ? ? = ? ? ?? n n nn a a a L a a a 称为正线下三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,L 称为单位下三角复(实)矩阵。 定理1设,?∈n n n A C (下标表示秩)则A 可唯一地分解为 1=A U R 其中1U 是酉矩阵,R 是正线上三角复矩阵;或者A 可唯一地分解为 2=A LU 其中2U 是酉矩阵,L 是正线下三角复矩阵。 推论1设,?∈n n n A R 则A 可唯一地分解为 1=A Q R 其中1Q 是正交矩阵,R 是正线上三角实矩阵;或者A 可唯一地分解为 2=A LQ 其中2Q 是正交矩阵,L 是正线下三角实矩阵。 推论2 设A 是实对称正交矩阵,则存在唯一的正线上三角实矩阵R ,使得 =T A R R 推论3设A 是正定Hermite 矩阵,则存在唯一的正线上三角复矩阵R ,使得 =T A R R

2016矩阵论试题A20170109 (1)

第 1 页 共 4 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则______||||1=A 。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A 4. 设矩阵??? ? ? ??--=304021101A ,则 _______ 3332345=-++-A A A A A . 5.??? ? ? ? ?-=λλλλλ0010 1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

2014年考研数三真题和解析

2013年全国硕士研究生入学统一考试 数学三试题 一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸... 指定位置上. (1)当0x →时,用()o x 表示比x 高阶的无穷小,则下列式子中错误的是( ) (A )2 3 ()()x o x o x ?= (B )23 ()()()o x o x o x ?= (C )2 2 2 ()()()o x o x o x += (D )2 2 ()()()o x o x o x += (2)函数||1()(1)ln || x x f x x x x -=+的可去间断点的个数为( ) (A )0 (B )1 (C )2 (D )3 (3)设k D 是圆域2 2 {(,)|1}D x y x y =+≤位于第k 象限的部分,记()k k D I y x dxdy =-??()1,2,3,4k =, 则( ) (A )10I > (B )20I > (C )30I > (D )40I > (4)设{}n a 为正项数列,下列选项正确的是( ) (A )若1 11 ,(1) n n n n n a a a ∞ -+=>-∑则 收敛 (B )1 1 (1) n n n a ∞ -=-∑若 收敛,则1n n a a +>

(C )1 n n a ∞ =∑若 收敛,则存在常数1P >,使lim P n n n a →∞ 存在 (D )若存在常数1P >,使lim P n n n a →∞ 存在,则 1 n n a ∞ =∑收敛 (5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价 (6)矩阵1a 1a b a 1a 1?? ? ? ???与2000b 0000?? ? ? ??? 相似的充分必要条件为 (A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a (D )为任意常数b a ,2= (7)设123X X X ,,是随机变量,且22 123~N(0,1)~N(~(5,3)X N ,X 0,2),X , {22}(1,2,3),j j P P X j =-≤≤=则( ) (A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >> (8)设随机变量X 和Y 相互独立,则X 和Y 的概率分布分别为, 则{2}P X Y +== ( )

北京交通大学研究生矩阵分析期末考试试卷(7份)

2004-2005学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 班级 学号 姓名 一. (12分)3[]R x 表示由次数小于3的多项式组成的线性空间。在 3[]R x 中取两个基:21231,1,(1)x x ααα==-=-; 21232,2,(2)x x βββ==-=-。(1)求123,,βββ到123,,ααα的过度矩阵,(2) 求21x x ++ 在123,,ααα下的坐标。 二. (14分)设T 是n R 的线性映射,对任意12(,, ,)T n n x x x x R =∈满足 11(0,, ,)n Tx x x -=。(1)证明0n T =; (2)求T 的核()N T 及值域 ()R T 的 基和维数。 三. (12分)设1023510224i A i i i -?? ?=++ ? ?-??,120x i -?? ? ?= ? ? ?-?? ,i = 。 计算11, , , Ax Ax A A ∞∞。 四.(10分)求矩阵1123101032160113A -?? ?-- ? = ?- ? ?-? ? 的满秩分解。 五. (12分)求矩阵011110101A ?? ? = ? ??? 的正交三角分解A UR =,其中U

是酉矩阵,R 是正线上三角矩阵。 六. (16分,1、2小题各5分, 3小题6分)证明题: 1. 设A 是n 阶正规矩阵,且满足2320A A E -+=。证明A 是Hermite 矩阵,并写出A 的Jordan 标准形的形式。 2.设A 是正定Hermite 矩阵,且A 是酉矩阵,证明A E =。 3.证明:若A 是Hermite 矩阵,则iA e 是酉矩阵。 七. (24分) 设100011101A ?? ? =- ? ?-?? 。(1)求E A λ-的Smith 标准形; (2)写出A 的最小多项式, A 的初等因子和Jordan 标准形; (3)求相似变换矩阵P 使得1P AP J -=;(4)求1P -矩阵函数()f A ,并计算tA e 。 2004-2005学年第一学期硕士研究生矩阵分析考试试卷(B) 专业 班级 学号 姓名 一. (12分)设3R 两个:123(1,0,1),(1,0,0),(0,1,1)T T T ααα==-=; 123(0,1,1),(1,1,0),(1,0,1)T T T βββ=-=-=。(1)求123,,ααα到 123,,βββ的过度矩阵,(2) 求子空间V ,其中V 中的向量在两个基下的坐标相同。 二. (14分)设线性映射43:T R R →满足:对任意41234(,,,)T x x x x R ∈, 求的核()N T 及值域()R T 的基和维数。

以格雷马斯的符号矩阵分析《唐人街探案》

以格雷马斯的符号矩阵分析《唐人街探案》 【摘要】格雷马斯是结构主义符号学和语义学的重要代表人物,“符号矩阵”是他结构主义理论的重要内容之一,被广泛应用,具有重要的价值。本文运用格雷马斯的“符号矩阵”来分析影片《唐人街探案》中的叙述矩阵,从而分析了影片中主要的人物关系。再从格雷马斯对行动模态划分的四个阶段入手,对影片的叙事结构进行梳理和分析,借此来帮助我们更好的了解影片的含义。 【关键字】《唐人街探案》;格雷马斯;符号矩阵;二元对立; 《唐人街探案》是由陈思诚执导的一部具有喜剧性的悬疑影片。影片讲述了天赋异禀的结巴少年秦风警校落榜,在姥姥的建议下去泰国找号称是“唐人街第一神探”,实际是投机取巧“小混混”的远方表舅唐仁散心。无奈由于一箱黄金的离奇丢失,唐仁又是唯一一位与盗匪嫌疑人颂帕在被杀之前有过接触的人,因此唐仁被怀疑盗金杀人。秦风因为在与唐仁逃跑过程中袭警,也成为警察追捕的对象。而与此同时,以小沈阳为代表的盗匪三人组也就是颂帕的同伙,他们绑架唐仁与秦风,向其索要黄金。故事由此发展,“神探组合”在躲避警察追捕、盗匪绑架的同时,在短短的三天内找到了丢失的黄金,查明真凶为自己洗刷了冤屈。本文以格雷马斯的“符号矩阵”来分析《唐人街探案》中的深层结构,再以行动模态来分析《唐人街探案》中的叙事结构。 一、格雷马斯的“符号矩阵” 结构主义语言学家格雷马斯认为,叙述有一个“内在层次”,“它像一个共有的结构主干,在表达之前叙述性就在此存在并得到组织。”[1]格雷马斯在诠释亚里士多德逻辑学命题的基础上,将“二元对立”模式进行扩展,提出了“符号矩阵”[2]理论,这个理论的提出更有利于分析故事中的人物关系,发现其深层含义。本文运用格雷马斯的符号矩阵来分析《唐人街探案》中的深层结构,从而了解人物之间的关系。 符号矩阵是由四个符号学要素组成的显示人物行动意义的矩阵图示,是格雷马斯提出的一种研究行动逻辑的模式。格雷马斯的符号矩阵理论主要是先设立一对对立项X和反X,与X矛盾但不对立的项为非X,与反X矛盾但不对立的项为非反X,而非X与非反X不一定会有对立的关系,他们之间是一个动态的关系,如图一所示。

北京交通大学研究生课程矩阵分析期末考试2011-12-16

北京交通大学 2011-2012学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 班级 学号 姓名 一、(共12分,每小题3分)试对下列概念给出定义: (1)线性映射的值域和核;(2)线性变换的特征值和特征向量; (3)矩阵的最小多项式; (4)矩阵的诱导范数. 二、(共24分,每小题8分)设5R 空间中的向量 110212α????????=????????,201221α????????=????????,312012α?? ? ? ?= ? ? ???,413233α????????=????????,512013α????????=????????,623445α?? ???? ??=?? ?? ???? , Span V =1()1234,,,αααα,Span V =2()56,αα, (1)求矩阵()123456,,,,,A αααααα=的满秩分解; (2)求21V V +的维数及基; (3)求21V V 的维数及基. 三、(10分)求矩阵2000 0224400 2A ????? ?=?????? 的正交三角分解UR A =,其中U 是次酉矩阵,R 是正线上三角矩阵. 四、(10分)设13021i i A i i ??= ?---??24 C ?∈,计算12, , , F A A A A ∞. (这里12-=i ).

2 五、(共28分,每题7分)证明题: (1)设A 是正定Hermite 矩阵,B 是反Hermite 矩阵,证明:AB 的特征值的实部为0. (2)设A 为正规矩阵,证明:)(2A A ρ=. 这里)(A ρ为A 的谱半径. (3)设n n C B ?∈且1

相关文档