文档库 最新最全的文档下载
当前位置:文档库 › 当前微电子学与集成电路解析

当前微电子学与集成电路解析

当前微电子学与集成电路解析

集成电路-微电子-学习中概念解释

1:SOI(Silicon-On-Insulator,绝缘衬底上的硅)技术是在顶层硅和背衬底之间引入了一层埋氧化层。通过在绝缘体上形成半导体薄膜,SOI材料具有了体硅所无法比拟的优点:可以实现集成电路中元器件的介质隔离,彻底消除了体硅CMOS 电路中的寄生闩锁效应;采用这种材料制成的集成电路还具有寄生电容小、集成密度高、速度快、工艺简单、短沟道效应小及特别适用于低压低功耗电路等优势,因此可以说SOI将有可能成为深亚微米的低压、低功耗集成电路的主流技术。通常根据在绝缘体上的硅膜厚度将SOI分成薄膜全耗尽FD(Fully Depleted)结构和厚膜部分耗尽PD(Partially Depleted)结构。由于SOI的介质隔离,制作在厚膜SOI结构上的器件正、背界面的耗尽层之间不互相影响,在它们中间存在一中性体区,这一中性体区的存在使得硅体处于电学浮空状态,产生了两个明显的寄生效应,一个是"翘曲效应"即Kink 效应,另一个是器件源漏之间形成的基极开路NPN寄生晶体管效应。如果将这一中性区经过一体接触接地,则厚膜器件工作特性便和体硅器件特性几乎完全相同。而基于薄膜SOI结构的器件由于硅膜的全部耗尽完全消除"翘曲效应",且这类器件具有低电场、高跨导、良好的短沟道特性和接近理想的亚阈值斜率等优点。因此薄膜全耗尽FDSOI应该是非常有前景的SOI结构。 目前比较广泛使用且比较有发展前途的SOI的材料主要有注氧隔离的SIMOX(Seperation by Implanted Oxygen)材料、硅片键合和反面腐蚀的BESOI(Bonding-Etchback SOI)材料和将键合与注入相结合的Smart Cut SOI材料。在这三种材料中,SIMOX适合于制作薄膜全耗尽超大规模集成电路,BESOI 材料适合于制作部分耗尽集成电路,而Smart Cut材料则是非常有发展前景的SOI 材料,它很有可能成为今后SOI材料的主流。 2:速度过冲 Velocity overshoot effect (1)基本概念: 速度过冲效应(Velocity overshoot effect)是半导体载流子在强电场作用下所产生的一种瞬态输运现象。另外一种重要的瞬态输运现象是弹道输运。速度过冲效应所表现出来的效果就是载流子的漂移速度超过正常的定态漂移速度。这种效应对于小尺寸器件以及化合物半导体器件等的性能的影响比较大,可有效地提高器件的工作频率和速度。与速度过冲相对应的一种瞬态输运现象是速度下冲,即是突然去掉强电场时所产生的漂移速度低于定态速度的一种现象。(2)产生机理: 产生速度过冲的原因就在于半导体中载流子的动量弛豫时间远小于其能量弛豫时间,这实际上也就意味着,在强电场作用下,载流子能够很快地获得很大的动量,而相应地较难于获得很高的能量。这是由于载流子在强电场作用下获得动量的机理与获得能量的机理不同所致。由于晶体中能够提供能量和动量的客体通常是声学波声子和光学波声子,而一般声学波声子的动量较大、能量较小,光学波声子的能量较大、动量较小,所以在强电场作用下,载流子所获得的动量主要是来自于声学波声子,而所获得的能量则主要是来自于光学波声子。因为载流子从声学波声子处获得动量的速度要大于从光学波声子处获得能量的速度,所以在强电场作用下,载流子即会很快地通过与声学波声子的散射而获得动量、并达到很大的漂移速度,而与此同时其能量却可能仍然将处于原来较低的状态,需要通过较长一段时间才能达到相应的较高能量的状态;于是,这时载流

集成电路中器件互联线的研究

集成电路中器件互联线的研究 王锴 摘要:集成电路的互连线问题当今集成电路领域的一个研究热点,随着半导体器件和互连线尺寸的不断缩小,越来越多的关键设计指标,如性能、抗扰度等将主要取决于互连线,或受互连线的严重影响。为了加强对于互连线技术的了解和对互连线问题的进行研究,文章讨论了互连线发展的缘由和互连线材料。 关键词::超大规模集成电路互连线问题建模金属互连线 1引言 集成电路工业作为信息产业的基础,对国民经济和社会发展产生着日益重要的影响。而在集成电路发展的大部分时间里,芯片上的互连线几乎总像是“二等公民”,它们只是在特殊的情形在或当进行高精度分析时才以予考虑。随着深亚微米半导体工艺的出现,这一情形已发生了迅速的变化。由导线引起的寄生效应所显示的尺寸缩小特性并不与如晶体管等有源器件相同,随着器件尺寸的缩小和电路速度的提高,它们常常变得非常重要。事实上它们已经开始支配数字集成电路一些相关的特性指标,如速度、能耗和可靠性。这一情形会由于工艺的进步而更加严重,因为后者可以经济可行地生产出更大尺寸的芯片,从而加大互连线的平均长度以及相应的寄生效应。因此仔细深入得分析半导体工艺中互连线的作用和特性不仅是人们所希望的,也是极为重要的。这使得互连线影响、或以互连线为中心的集成电路设计方法学和计算机辅助设计技术成为了集成电路领域的研究热点。2 集成电路互连线发展缘由 一般认为,硅材料的加工极限是10nm 线宽。我们都知道,从工艺水平来看,集成电路发展实现了从微米级别(0.5um,0.35um,0.18um,0.13um)到纳米级别(100nm,90nm,65nm,45nm,28nm,22nm)的跨越。目前Intel、Samsung、TSMC等跨国跨地区企业先后进入22nm工业化量产工艺节点。随着集成电路向超深亚微米的迈进,即制造工艺由已经可以规模量产的28nm 进一步朝22nm,18nm提升,并向10nm逼近时,摩尔定律在集成电路技术发展中的适用性开始受到挑战。 由于器件特征尺寸的进一步微缩,虽然电路的门延迟减小,但是特征尺寸的减小将导致互连引线横截面和线间距的减小。互连线的横截面和间距的减小,将不可避免的使得互连延迟效应变得更加严重。为了应对特征尺寸进一步缩小而带来的互连延迟的问题,产业界开始通过研发新材料、新结构、

集成电路的发展与应用

粉体(1)班学号:1003011020 集成电路技术的发展与应用 摘要: 集成电路(Integrated Circuit,简称IC)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,这样,整个电路的体积大大缩小,且引出线和焊接点的数目也大为减少,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”(也有用文字符号“N”等)表示。 关键词:集成电路模拟集成电路电子元件晶体管发展应用集成电路对一般人来说也许会有陌生感,但其实我们和它打交道的机会很多。计算机、电视机、手机、网站、取款机等等,数不胜数。除此之外在航空航天、星际飞行、医疗卫生、交通运输、武器装备等许多领域,几乎都离不开集成电路的应用,当今世界,说它无孔不入并不过分。 在当今这信息化的社会中,集成电路已成为各行各业实现信息化、智能化的基础。无论是在军事还是民用上,它已起着不可替代的作用。 一、集成电路的定义、特点及分类介绍 1、什么是集成电路:所谓集成电路(IC),就是在一块极小的硅单晶片上,利用半导体 工艺制作上许多晶体二极管、三极管及电阻、电容等元件,并连接成完成特定电子技术功能的电子电路。从外观上看,它已成为一个不可分割的完整器件,集成电路在体积、重量、耗电、寿命、可靠性及电性能方面远远优于晶体管元件组成的电路,目前为止已广泛应用于电子设备、仪器仪表及电视机、录像机等电子设备中。[1] 2、集成电路的特点:集成电路或称微电路(microcircuit)、微芯片(microchip)、 芯片(chip)在电子学中是一种把电路(主要包括半导体装置,也包括被动元件等)小型化的方式,并通常制造在半导体晶圆表面上。前述将电路制造在半导体芯片表面上的集成电路又称薄膜(thin-film)集成电路。另有一种厚膜(thick-film)混成集成电路(hybrid integrated circuit)是由独立半导体设备和被动元件,集成到衬底或线路板所构成的小型化电路。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。 3、集成电路的分类: (1)按功能结构分类:集成电路,又称为IC,按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大系。

武汉大学微电子学与固体电子学研究生培养方案

微电子学与固体电子学专业攻读硕士学位 研究生培养方案 一、培养目标 本专业培养德、智、体全面发展的微电子学与固体电子学高层次专门人才。要求所培养的硕士研究生达到: 1、热爱祖国、热爱人民,认真学习并较好掌握马克思列宁主义理论。具有良好的道德修养和科学态度。愿意为祖国的现代化建设事业热忱服务。 2、具有严谨踏实的学风,较全面系统地掌握微电子学与固体电子学的基础理论和专业知识。注意跟踪了解微电子学与固体电子学发展的前沿动态。熟练掌握一门外国语。具有创新精神,能独立从事本专业的科研与技术开发工作。 3、身心健康。 二、研究方向 1、纳微电子学 纳米加工与纳米器件、宽带隙纳米材料与场效应晶体管、石墨烯材料与场效应晶体管、基于纳米结构的发光与显示器件等; 2、半导体传感电子学 压电、铁电、磁电材料与传感器件、电阻开关器件;氧化物光敏与气敏传感器件;GaN、ZnO、GaAs、硅等半导体光电材料与探测器等; 3、能源电子材料与器件 有机光伏电子学与器件、染料敏华太阳能电池、GaN/GaAs多结高效太阳能电池、新型高效硅太阳能电池等; 4、宽禁带半导体材料与器件 GaN、AlN、ZnO、MgO半导体材料与光电器件等; 5、微电子系统与集成电路设计 微纳电子器件模型设计、微电子系统与集成电路设计等; 6、磁电子学 磁电材料与传感器件、有机磁材料设计与计算、稀磁材料与器件等; 7、信息处理与微系统 基于大规模集成电路芯片的处理器系统;基于现代信号处理技术的图像增强、压缩、重建、识别算法与实现;高性能DSP与嵌入式CPU智能系统等; 8、生物医学电子学 生物医学微流纳流芯片、医学影像的特征信息提取算法研究、医学断层光电子技术等。

集成电路热点问题讨论

作者简介:沈正传(1960— ),男,江苏泰州人,工程师.集成电路热点问题讨论 沈正传 (泰州职业技术学院,江苏 泰州225300) 摘 要:集成电路的发展过程中采用的最新技术有:纳米技术,片上系统技术(S OC )和浅沟隔 离技术(STI ),这些新技术加快了集成电路的发展进程。 关键词:纳米技术;片上系统技术(S OC );浅沟隔离技术(STI ) 中图分类号:T N4 文献标识码:A 文章编号:1671-0142(2004)01-0021-03当前,集成电路产业的发展日新月异,据国际权威机构预测到2012年,世界集成电路的年销售额达到20121万亿美元,并支持6~8万亿美元的电子设备和80万亿美元的电子信息服务,相当于今天全世界的总和。集成电路的发展加速了人类社会信息化的进程,已经成为信息产业乃至21世纪实现世界知识经济进步的技术基础之一。与集成电路产业迅速发展的同时,微电子技术也在不断进步,电路性能迅速提高,到2010年,动态存储器(DRAM )的存取时间将降低至10ns 以下;电源电压有可能降至0.6V ,数字电路的时钟频率可以提高到3GH z 。全定制设计的数字系统集成度将达到25Mgate/cm 2;电子系统中常用的标准单元集成度也将达到10Mgate/cm 2。随着微电子技术的进步,人们对集成系统的需求也在提高。计算机、通信、消费类电子产品及军事等领域都需要集成电路。在军舰、战车、飞机、导弹和航天器中集成电路的成本分别占到总成本的22%、24%、33%、45%和66%。 集成电路的相关技术在今天得到了飞速的发展,在集成电路领域也出现了许多热点的技术。重点体现在纳米技术、片上系统技术和浅沟隔离技术三个方面。 1、纳米技术 集成电路发展已经逐步走向纳米技术,工艺线宽日趋精微。对于纳米技术未来发展前景,Intel 电路研究实验室主任Shekhar Y.Borkar 指出,在微处理器发展到纳米技术时,急需解决的将是由工艺提升而导致的漏电问题。目前Intel 已经可以达到45纳米的技术,这样的技术几乎是目前栅氧化层所能达到的极限。在工艺水平逐步提高的情况下,为降低功耗而调低供电电源电压,将会使漏电率上升,这是一个水涨船高的问题。对此,Intel 目前的主要研究方向是怎样能够在供电电压下降的情况下尽量减少漏电流,从大体上达到平衡。如果这样的问题可以得到解决,未来的产业发展将会充分延续“摩尔定律”的规则,在2010年左右可出现14纳米的芯片。这样所形成的技术几乎无法用现有工艺实现,即使是Intel 目前也仅仅是展示出20纳米的晶片,成品出现则仍需一段时间。 在实现纳米技术时,同样要面对的问题将会出现在集成电路的产品中,数字C M OS 电路出会出现瓶颈。对此,我国专家曾经透露,目前所进行的C M OS 电路主要是平面结构,在未来发展中,将逐步开始朝堆叠方向发展,也就是从平面走向三维,这将是我国发展集成电路产业的道路之一。目前这样的技术并没有实现,国际大公司也仅处于研究阶段,这样的技术大概还需要5年时间才能够初露端倪,要达到完成阶段大概需要10年以上的时间。以这样的时间算起来,则刚好能够配合整体集成电路走向纳米技术的发展过程 第4卷第1期2004年2月 泰州职业技术学院学报Journal of T aizhou P olytechnical Institute V ol.4 N o.1Feb.2004

模拟集成电路复习

1、 研究模拟集成电路的重要性:(1)首先,MOSFET 的特征尺寸越来越小,本征速度越来 越快;(2)SOC 芯片发展的需求。 2、 模拟设计困难的原因:(1)模拟设计涉及到在速度、功耗、增益、精度、电源电压等多 种因素间进行折衷,而数字电路只需在速度和功耗之间折衷;(2)模拟电路对噪声、串扰和其它干扰比数字电路要敏感得多;(3)器件的二级效应对模拟电路的影响比数字电路要严重得多;(4)高性能模拟电路的设计很少能自动完成,而许多数字电路都是自动综合和布局的。 3、 鲁棒性就是系统的健壮性。它是在异常和危险情况下系统生存的关键。所谓“鲁棒性”, 是指控制系统在一定的参数摄动下,维持某些性能的特性。 4、 版图设计过程:设计规则检查(DRC )、电气规则检查(ERC )、一致性校验(LVS )、RC 分布参数提取 5、 MOS 管正常工作的基本条件是:所有衬源(B 、S )、衬漏(B 、D )pn 结必须反偏 6、 沟道为夹断条件: ?GD GS DS T DS GS TH H V =V -≤V V V -V ≥V 7、 (1)截止区:Id=0;Vgs

微电子学与集成电路分析

微电子学与集成电路分析 1微电子学与集成电路解读 微电子学是电子学的分支学科,主要致力于电子产品的微型化,达到提升电子产品应用便利和应用空间的目的。微电子学还属于一门综合性较强学科类型,具体的微电子研究中,会用到相关物理学、量子力学和材料工艺等知识。微电子学研究中,切实将集成电路纳入到研究体系中。此外,微电子学还对集成电子器件和集成超导器件等展开研究和解读。微电子学的发展目标是低能耗、高性能和高集成度等特点。集成电路是通过相关电子元件的组合,形成一个具备相关功能的电路或系,并可以将集成电路视为微电子学之一。集成电路在实际的应用中具有体积小、成本低、能耗小等特点,满足诸多高新技术的基本需求。而且,随着集成电路的相关技术完善,集成电路逐渐成为人们生产生活中不可缺少的重要部分。 2微电子发展状态与趋势分析 2.1发展与现状 从晶体管的研发到微电子技术逐渐成熟经历漫长的演变史,由晶体管的研发→以组件为基础的混合元件(锗集成电路)→半导体场效应晶体管→MOS电路→微电子。这一发展过程中,电路涉及的内容逐渐增多,电路的设计和过程也更加复杂,电路制造成本也逐渐增高,单纯的人工设计逐渐不能满足电路的发展需求,并朝向信息化、高集成和高性能的发展方向。现阶段,国内对微电子的发展创造了良好的发展空间,目前国内微电电子发展特点如下:(1)微电子技术创新取得了具有突破性的进展,且逐渐形成具有较大规模的集成电路设计产业规模。对于集成电路的技术水平在0.8~1.5μm,部分尖端企业的技术水平可以达到0.13μm。(2)微电子产业结构不断优化,随着技术的革新产业结构逐渐生成完整的产业链,上下游关系处理完善。(3)产业规模不断扩大,更多企业参与到微电子学的研究和电路中,有效推动了微电子产业的发展,促使微电子技术得到了进一步的完善和发展。 2.2发展趋势 微电子技术的发展中,将微电子技术与其他技术联合应用,可以衍生出更多

对半导体技术、微电子技术、集成电路技术三者的浅略认识

对半导体技术、微电子技术、集成电路技术三者的浅略认识 一、半导体技术、微电子技术、集成电路技术三者的联系与区别 我们首先从三者的概念或定义上来分别了解一下这三种技术。 半导体技术就是以半导体为材料,制作成组件及集成电路的技术。在电子信息方面,绝大多数的电子组件都是以硅为基材做成的,因此电子产业又称为半导体产业。半导体技术最大的应用便是集成电路,它们被用来发挥各式各样的控制功能,犹如人体中的大脑与神经。 微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术,是建立在以集成电路为核心的各种半导体器件基础上的高新电子技术,为微电子学中的各项工艺技术的总和。 集成电路技术,在电子学中是一种把电路小型化的技术。采用一定的工艺,把一个电路中所需的各种电子元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。(以上三者概念均来源于网络)这般看来,三者概念上互相交叉,却也略有区别。依我这个初次接触这三个名词、对电子信息几乎一窍不通的大一新生来看,半导体技术是其他二者技术的基础,因为半导体是承载整个电子信息的基石,不管是微电子还是集成电路,便是以半导体为材料才可以建造、发展。而微电子技术,个人感觉比较广泛,甚至集成电路技术可以包含在微电子技术里。除此之外,诸如小型元件,如纳米级电子元件制造技术,都可以归为微电子技术。而集成电路技术概念上比较狭窄,单单只把电路小型化、集成化技术,上面列举的小型元件制造,便不能归为集成电路技术,但可以归为微电子技术。以上便是鄙人对三者概念上、应用上联系与区别的区区之见,如有错误之处还望谅解。 二、对集成电路技术的详细介绍 首先我们了解一下什么是集成电路。 集成电路是一种微型电子器件或部件。人们采用一定的工艺,把一个电路中所需的各种元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。当今半导体工业大多数应用的是基于硅的集成电路。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。 而简单来说,集成电路技术便是制造集成电路的技术方法。它涉及半导体器件物理、微电子学、电子学、无线电、光学以及信息学等学科领域的知识。 从产业分工角度,集成电路技术可以分为集成电路加工技术、集成电路测试封装技术以及集成电路设计技术等几方面。 1. 集成电路加工技术 集成电路加工技术主要是通过物理或化学手段在硅材料上生成半导体器件(比如场效应管)以及器件之间的物理互连。这些器件以及器件之间的互连构成的电路功能要符合系统设计要求。集成电路加工技术涉及的知识包括半导体器件物理、精密仪器、光学等领域,具体应用在工艺流程中,包括注入、掺杂、器件模型、工艺偏差模型、成品率分析以及工艺过程设计等。在近十几年的时间里,集成电路加工工艺水平一直按照摩尔(Moore)定律在快速发展。 2.集成电路测试、封装技术 集成电路测试包括完成在硅基上产生符合功能要求的电路后对裸片硅的功能和性能的

集成电路故障诊断

本文的主要工作是基于集成电路的电流信息和模式识别理论对电路进行静态 电流检测、动态电流检测、以及故障定位等方面的基础性研究。具体包括静态电 流的检测方法及仿真实验,动态电流的检测方法及仿真实验,基于近邻法和连接 的模式识别法的故障定位法,基于神经网络的故障诊断方法四个方面: 在静态电流检测方面:通过查阅和学习大量的国内外文献和资料,分析了静 态电流检测的基本原理,分析了COMS 电路的特点,并用PSPICE 对CMOS 或非 门和与门电路做了故障注入的仿真实验,给出了仿真试验结果,由于采用静态电 流测试产生了测试逃逸,故引入了动态电流测试方法增加故障覆盖率。 在动态电流检测方面:通过分析IDDT 的波形,用动态电流尖锋值的方法对 CMOS 电路作了故障注入和故障诊断。通过对CMOS 电路的桥接故障、参数改变、 短路故障等的检测,说明了采用动态电流对故障检测的可行性。 在故障定位方面:由于静态电流检测方法对CMOS 电路的桥接故障不能准确 定位,我们利用小波分析对故障电路的IDDT 电流信息进行特征提取,然后分别采 用基于近邻法和连接的模式识别法对电路进行了故障定位实验,实验结果证实了 两种算法在故障定位应用上的可行性。最后通过比较两种算法的仿真结果,说明 了用连接的模式识别方法的定位更加可靠。 在神经网络的故障诊断方面:通过采用小波变换,对电路正常模式和故障模式 的IDDT 采样信号进行故障特征提取,建立样本集;然后利用神经网络对各种状态 下的特征向量进行分类决策,实现电路的故障诊断。 论文的具体安排如下: 第一章介绍本课题的研究意义以及集成电路故障诊断的发展概述。 第二章集成电路故障诊断的基础理论介绍 第三章利用静态电流方法对CMOS 电路的故障进行仿真实验 第四章利用动态电流方法对CMOS 电路的故障进行仿真实验 第五章分别利用基于近邻法和连接的模式识别法进行故障定位仿真实验及 利用基于神经网络的故障诊断算法进行仿真实验 第六章给出全文工作的总结和今后的展望 本章主要介绍了集成电路故障诊断的基础理论和方法。首先我们介绍了传统 电路的检测方法,然后详细介绍了软故障及硬故障模型,并讨论了本文将用到的 近邻法,小波分解,神经网络等模式识别相关理论知识,最后针对后续故障诊断 实验中将使用的PSPICE 和MA TLAB 仿真工具进行了相关介绍。 静态电流(IDDQ)检测与电压检测不一样, 本章首先对IDDQ 的基本原理和检测方法进行了简单介绍,然后为了验证 IDDQ 检测方法的可行性,我们在已有研究成果的基础上,针对集成电路常见的桥 接故障、漏电流故障模型,进行了仿真实验。实验结果表明本文方法能充分利用静态电流中的故障信息对故障进行检测。但该方法的有效性受测试向量诊断能力 的影响,今后研究的重点应是如何为这种故障诊断算法提供有效的测试生成向量。 并且从本实验可以看出,IDDQ 的测试覆盖率有限,所以在故障检测中,需要采用 的动态电流检测法(IDDT)对IDDQ 法进行补充。

集成电路的现状与发展趋势

集成电路的现状与发展趋势 1、国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已曰益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18 微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。

微电子学与固体电子学

080903 微电子学与固体电子学

北京大学--信息科学技术学院-- 微电子学与固体电子学 中国科学院--半导体研究所-- 微电子学与固体电子学 中国科学院--电子学研究所-- 微电子学与固体电子学 北京交通大学--电子信息工程学院-- 微电子学与固体电子学 北京理工大学--信息科学技术学院-- 微电子学与固体电子学 北京邮电大学--电子工程学院-- 微电子学与固体电子学 南开大学--信息技术科学学院-- 微电子学与固体电子学 天津大学--电子信息工程学院-- 微电子学与固体电子学 北京工业大学--电子信息与控制工程学院-- 微电子学与固体电子学 北京工业大学--嵌入式系统重点实验室-- 微电子学与固体电子学 天津工业大学--信息与通信工程学院-- 微电子学与固体电子学 天津理工大学--电子信息与通信工程学院-- 微电子学与固体电子学 河北大学--电信学院-- 微电子学与固体电子学 燕山大学--车辆与能源学院-- 微电子学与固体电子学 大连理工大学--物理与光电工程学院-- 微电子学与固体电子学 大连理工大学--电子与信息工程学院-- 微电子学与固体电子学 辽宁大学--物理系-- 微电子学与固体电子学 沈阳工业大学--信息科学与工程学院-- 微电子学与固体电子学 吉林大学--电子科学与工程学院-- 微电子学与固体电子学 长春理工大学--理学院-- 微电子学与固

体电子学 哈尔滨工业大学--航天学院-- 微电子学与固体电子学 中国科学技术大学--理学院-- 微电子学与固体电子学 武汉大学--物理科学与技术学院-- 微电子学与固体电子学 复旦大学--信息科学与工程学院-- 微电子学与固体电子学 中国科学技术大学--合肥智能机械研究所-- 微电子学与固体电子学 黑龙江大学--电子工程学院-- 微电子学与固体电子学 复旦大学--微电子研究院-- 微电子学与固体电子学 兰州大学--物理科学与技术学院-- 微电子学与固体电子学 山东大学--威海分校-- 微电子学与固体电子学 山东师范大学--物理与电子科学学院-- 微电子学与固体电子学 上海交通大学--微电子学院-- 微电子学与固体电子学 上海交通大学--微纳米科学技术研究院-- 微电子学与固体电子学 华东师范大学--电子科学技术系-- 微电子学与固体电子学 上海大学--材料科学与工程学院-- 微电子学与固体电子学 同济大学--电子与信息工程学院-- 微电子学与固体电子学 厦门大学--物理系-- 微电子学与固体电子学 厦门大学--电子工程系-- 微电子学与固体电子学 福州大学--物理与信息工程学院-- 微电子学与固体电子学 河北工业大学--信息工程学院-- 微电子学与固体电子学 景德镇陶瓷学院--专业列表-- 微电子学与固体电子学 上海交通大学--空天科学技术研究院-- 微电子学与固体电子学 中南大学--物理科学与技术学院(物理学

2019年北大软件与微电子学院集成电路工程考研复试时间复试内容复试流程复试资料及经验

2019年北大软件与微电子学院集成电路工程考研复试时间复试内容 复试流程复试资料及经验 随着考研大军不断壮大,每年毕业的研究生也越来越多,竞争也越来越大。对于准备复试的同学来说,其实还有很多小问题并不了解,例如复试考什么?复试怎么考?复试考察的是什么?复试什么时间?复试如何准备等等。今天启道小编给大家整理了复试相关内容,让大家了解复试,减少一点对于复试的未知感以及恐惧感。准备复试的小伙伴们一定要认真阅读,对你的复试很有帮助啊! 专业介绍 集成电路是二十世纪的人类最重要科技发明之一,它的发明标志着人类进入信息时代。集成电路被广泛运用于国家经济建设、社会发展和国防安全的方方面面,起到了不可替代的核心作用。 集成电路工程是研究生层次招生专业,属于电子科学与技术、仪器科学与技术、电气工程、控制科学与工程、信息与通信工程等一级学科交叉领域。本专业是信息科学的重要组成部分,其主要理论和方法已广泛应用于信息科学的各个领域。 复试时间 复试时间:3月19、20日; 复试地点:软件与微电子学院(大兴校区)(地址:北京市大兴工业开发区金苑路24号)。 复试内容(科目) 复试分数线

复试流程 (1) 院系应及时公布复试细则(含复试时间、地点和复试成绩计算规则等信息)和复试名单。考生可登录院系网站查询,并按要求参加复试。 (2) 硕士研究生招生考试复试费标准为 100 元/人次,由院系于复试前收取。参加两次及以上专家组复试的复试费按次收取。 (3) 复试专家组秘书要在复试时填写《北京大学 2018 年硕士研究生招生复试情况记录表》。 (4) 复试可结合学科特点和培养要求,通过笔试、面试、实践操作等灵活多样的方式突出对考生专业素质、实践能力和创新精神的方面的考核。 如仅对考生进行面试,院系须设立一定数量的题库,事先确定评分标准,由考生随机抽取适量的试题进行回答。试题难度要适中,并应尽量避免问题的随意性和偶然性。综合面试

集成电路讨论

最新的集成电路 最先进的集成电路是微处理器或多核处理器的"核心(cores)",可以控制电脑到手机到数字微波炉的一切。存储器和ASIC是其他集成电路家族的例子,对于现代信息社会非常重要。虽然设计开发一个复杂集成电路的成本非常高,但是当分散到通常以百万计的产品上,每个IC的成本最小化。IC的性能很高,因为小尺寸带来短路径,使得低功率逻辑电路可以在快速开关速度应用。 这些年来,IC 持续向更小的外型尺寸发展,使得每个芯片可以封装更多的电路。这样增加了每单位面积容量,可以降低成本和增加功能-见摩尔定律,集成电路中的晶体管数量,每两年增加一倍。总之,随着外形尺寸缩小,几乎所有的指标改善了-单位成本和开关功率消耗下降,速度提高。但是,集成纳米级别设备的IC不是没有问题,主要是泄漏电流(leakage current)。因此,对于最终用户的速度和功率消耗增加非常明显,制造商面临使用更好几何学的尖锐挑战。这个过程和在未来几年所期望的进步,在半导体国际技术路线图(ITRS)中有很好的描述。 越来越多的电路以集成芯片的方式出现在设计师手里,使电子电路的开发趋向于小型化、高速化。越来越多的应用已经由复杂的模拟电路转化为简单的数字逻辑集成电路。 集成电路发明者的纠纷 诺伊斯和德州仪器公司(T exas Instruments)杰克基尔比(Jack Kilby)共同发明集成电路,即将电路所有元件嵌入单片半导体中。集成电路性能超群,批量生产成本低廉,若没有集成电路,便没有今天的电脑行业。基尔比于2000年获得诺贝尔奖,可惜诺伊斯已去世,不能共享这一殊荣。 就像阿塔纳索夫曾与莫奇利为谁发明了第一台数字电子计算机而对簿公堂一样,在究竟是谁最先发明了集成电路这件事上,诺伊斯所在的仙童公司也曾与柯尔比所在的德州仪器公司大打官司。其实,也许可以说诺伊斯和柯尔比都是集成电路之父,因为前者发明了基于硅的集成电路,后者发明的是基于锗的集成电路。在这场竞争中诺伊斯是笑到最后的人,因为今日的半导体工业已几乎是硅集成电路的天下了。 蓝色发光二极管 发光二极管是一种特殊的二极管。和普通的二极管一样,发光二极管由半导体芯片组成,这些半导体材料会预先透过注入或搀杂等工艺以产生p、n架构。与其它二极管一样,发光二极管中电流可以轻易地从p极(阳极)流向n极(负极),而相反方向则不能。两种不同的载流子:空穴和电子在不同的电极电压作用下从电极流向p、n架构。当空穴和电子相遇而 产生复合,电子会跌落到较低的能阶,同时以光子的模式释放出能量(光子也即是我们常称呼的光)。 它所发出的光的波长(颜色)是由组成p、n架构的半导体物料的禁带能量决定。由于硅和锗是间接带隙材料,在常温下,这些材料内电子与空穴的复合是非辐射跃迁,此类跃迁没有

学习模拟集成电路的九个阶段

学习模拟集成电路的九个阶段 模拟集成电路大师与大家分享经验: 一段你刚开始进入这行,对PMOS/NMOS/BJT什么的只不过有个大概的了解,各种器件的特性你也不太清楚,具体设计成什么样的电路你也没什么主意,你的电路图主要看国内杂志上的文章,或者按照教科书上现成的电路,你总觉得他们说得都有道理。你做的电路主要是小规模的模块,做点差分运放,或者带隙基准的仿真什么的你就计算着发文章,生怕到时候论文凑不够。总的来说,基本上看见运放还是发怵。你觉得spice是一个非常难以使用而且古怪的东西。 二段你开始知道什么叫电路设计, 天天捧着本教科书在草稿纸上狂算一气。你也经常开始提起一些技术参数,Vdsat、lamda、early voltage、GWB、ft之类的。总觉得有时候电路和手算得差不多,有时候又觉得差别挺大。你也开始关心电压,温度和工艺的变化。例如低电压、低功耗系统什么的。或者是超高速高精度的什么东东,时不时也来上两句。你设计电路时开始计划着要去tape out,虽然tape out看起来还是挺遥远的。这个阶段中,你觉得spice很强大,但经常会因为AC仿真结果不对而大伤脑筋。 三段你已经和PVT斗争了一段时间了,

但总的来说基本上还是没有几次成功的设计经验。你觉得要设计出真正能用的电路真的很难,你急着想建立自己的信心,可你不知道该怎么办。你开始阅读一些JSSC或者博士论文什么的,可你觉得他们说的是一回事,真正的芯片或者又不是那么回事。你觉得Vdsat什么的指标实在不够精确,仿真器的缺省设置也不够满足你的要求,于是你试着仿真器调整参数,或者试着换一换仿真器,但是可它们给出的结果仍然是有时准有时不准。你上论坛,希望得到高手的指导。可他们也是语焉不详,说得东西有时对有时不对。这个阶段中,你觉得spice 虽然很好,但是帮助手册写的太不清楚了。 四段你有过比较重大的流片失败经历了。 你知道要做好一个电路,需要精益求精,需要战战兢兢的仔细检查每一个细节。你发现在设计过程中有很多不曾设想过的问题,想要做好电路需要完整的把握每一个方面。于是你开始系统地重新学习在大学毕业时已经卖掉的课本。你把能能找到的相关资料都仔细的看了一边,希望能从中找到一些更有启发性的想法。你已经清楚地知道了你需要达到的电路指标和性能,你也知道了电路设计本质上是需要做很多合理的折中。可你搞不清这个“合理”是怎么确定的,不同指标之间的折中如何选择才好。你觉得要设计出一个适当的能够正常工作的电路真的太难了,你不相信在这个世界上有人可以做到他们宣称的那么好,因为聪明如你都觉得面对如此纷杂的选择束手无策,他们怎么可能做

(完整word版)微电子技术概论期末试题

《微电子技术概论》期末复习题 试卷结构: 填空题40分,40个空,每空1分, 选择题30分,15道题,每题2分, 问答题30分,5道题,每题6分 填空题 1.微电子学是以实现电路和系统的集成为目的的。 2.微电子学中实现的电路和系统又称为集成电路和集成系统,是微小化的。 3.集成电路封装的类型非常多样化。按管壳的材料可以分为金属封装、陶瓷封装和塑料封装。 4.材料按其导电性能的差异可以分为三类:导体、半导体和绝缘体。 5. 迁移率是载流子在电场作用下运动速度的快慢的量度。 6.PN 结的最基本性质之一就是其具有单向导电性。 7.根据不同的击穿机理,PN 结击穿主要分为雪崩击穿和隧道击穿这两种电击穿。 8.隧道击穿主要取决于空间电荷区中的最大电场。 9. PN结电容效应是PN结的一个基本特性。 10.PN结总的电容应该包括势垒电容和扩散电容之和。 11.在正常使用条件下,晶体管的发射结加正向小电压,称为正向偏置,集电结加反向大电压,称为反向偏置。 12.晶体管的直流特性曲线是指晶体管的输入和输出电流-电压关系曲线, 13.晶体管的直流特性曲线可以分为三个区域:放大区,饱和区,截止区。 14.晶体管在满足一定条件时,它可以工作在放大、饱和、截止三个区域中。 15.双极型晶体管可以作为放大晶体管,也可以作为开关来使用,在电路中得到了大量的应用。 16. 一般情况下开关管的工作电压为 5V ,放大管的工作电压为 20V 。 17. 在N 型半导体中电子是多子,空穴是少子; 18. 在P 型半导体中空穴是多子,电子是少子。 19. 所谓模拟信号,是指幅度随时间连续变化的信号。 20. 收音机、收录机、音响设备及电视机中接收、放大的音频信号、电视信号是模拟信号。 21. 所谓数字信号,指在时间上和幅度上离散取值的信号。 22. 计算机中运行的信号是脉冲信号,但这些脉冲信号均代表着确切的数字,因而又叫做数字信号。 23. 半导体集成电路是采用半导体工艺技术,在硅基片上制作包括电阻、电容、二极

第十七章_集成电路的种类

第十七章集成电路的种类 概述 集成电路是由晶体管器件连线构成的。在电子工具和机器中,集成电路可以完成各种不同的功能。本章将对通用的电路类型及其功能做出解释。 目的 完成本章后您将能够: 1.解释二进制数字的概念。 2.列出三种主要集成电路的功能。 3.比较模拟电路和数字逻辑电路的基本原理。 4.逻辑栅阵列和PAL电路的使用和产品优点。 5.解释两种主要存储电路类型。 6.列出四种非易失性存储器电路。 7.比较动态随机存储器(DRAM)和静态随机存储器(SRAM)存储电路的工作状 况和价格因素。 介绍 半导体工业的主要产品是集成电路。使用本书描述的工艺过程可以制造无数数量和类型的电路。集成电路(IC)的主要生产厂家比如National半导体和摩托罗拉,他们生产的电路种类的目录就象纽约的电话号码簿一样浩如烟海。而象IBM, 估计他们内部的电路分类列表要超过50000个单独的电路。 要熟悉如此之多的集成电路并不意味着一定会是一件可怕的工作。实际上,大多数电路按其特定的设计原理和功能可以被划分为三种基本类型:逻辑电路,存储电路和微处理器(逻辑和存储)(图17.1)。电路的多样性主要来自于所需的大量特殊用途参数的转变。 本章将就主要功能的电路种类及其设计做出解释。在最后一部分,我们将从当今工业的前景展望IC电路的未来。我们仅能想象电路到2010年会是什么样子,就象在1950年,没有人能预测兆位RAM或者微处理器。 电路基础 关于集成电路实际如何工作的问题不在本文讨论。但是所有的电路都是以二进制代码的数值处理作为基础的。二进制数是由两个数-----零和一来表示所有的数值。它实际上是一个明了位置和数字组成值的计数系统。数字可以由数的和来表示。例如: 1= 1 + 0

中科院微电子学与固体电子学考研必读的经验

距离考研真正结束已经有好几个月了,好久没来逛论坛了,记得那时迷茫的我在论坛中一个个找帖子看,只要看到“微固”就一定会点进来看,找资料,请教问题。现在,终于告别了我的考研岁月,有辛酸、有汗水、更有一份份的感动,这其中的滋味,只有走过这段路的人才能真正体会得到!我想说,走过这段路的战友,不管结果如何,你们是真正的英雄!当你选择这条路的时候,其实你应经成功的战胜了自己! 说实话,我是二战过来的,考的是中国科学院大学微电子学与固体电子学,可惜败在了专业课上(虽然说专业课并不是很公平,自己复习的不好也是一个重要原因),之后就是毕业找工作,刚毕业出来什么都不懂,关键是工作又不是自己喜欢的,所以工作了三个月后我决定继续二战中科院。八月份,又回到熟悉的学校,熟悉的图书馆,记得坐在图书馆的第一个晚上,环顾四周,曾经的战友都不在了,一幅幅陌生的面孔,晚上从图书馆出来我哭了,不知道是什么感觉,就是控制不住我的泪水。心里的委屈无法倾诉,熟悉的地方,物是人非,那种感觉真的很辛酸!可是我在心底暗暗发誓:今年,我一定要考上! 我知道微固专业是中科院的三大王牌专业之一,每年的录取线都是领跑全院(今年是358),为了梦想,我想豁出去得了,冲!然后就是漫长的复习,从头开始,记得招生简章没出来之前,专业课我选的是固体物理,因为第一年看了一年固体物理的知识,学起来会快很多,命运给了我很大的恩惠。总之,老天给了我一个很好的开始毕竟有失也有得之前的复习也不全一无是处,所以说我更要加倍努力啦!有时候,考研真的单纯只是为了追逐那份心中的梦想,不去想考上了会怎么样,工作怎么样,心里会发誓一定要实现自己的梦想!为了证明自己!我的同学,第一年浙大落榜,第二年继续,这是一种怎样的精神在支持着?考研人,真的勇士!八月份,学校里各种辅导班都在上课,我报的新祥旭的专业课,按照老师的指导一步步地去看书复习,只要好好总结,学习效果还是很明显的。一家之谈,可能每个人的感受不一样吧!当然了有些就是不报班的同学学得也很不错! 在这里,我想把我数学的学习心得和大家分享一下,今年数学考的不是很好,120,本应该考得很好的,今年数学也较容易,结果考砸了。数学我买了一本李永乐的复习全书,个人觉得比陈文灯的好!主要是陈的书很多内容讲的太繁琐,很多讲题方法是很不错,讲了很多技巧,但是考研很少考到,所以我觉得与大纲偏离的太多。而李的书看起来就很舒服,讲的都是常见题型,常见解题方法,很多题型出的也很好。复习全书一定要认真做!我总共做了三遍,而且做数学题时把它当字典查,所以到最后这本书翻得实在是很烂。如果你觉得里面的题目不够做,可以再买一本660题,里面的小题都是很经典的! 专业课我想是大家比较关心的,因为考研的总分很大一部分取决于它!今年专业课考了130+,个人觉得也还有很大的提升空间,专业课也很简单,考试才考了一半我就已经完卷了,到最后也没有检查,就等着交卷迎接考研结束,现在想想挺后悔的。我本科学的就是微电子,考试指定的那本教材也是学过的。但是本科时没有好好学,基本上都是考研时才学通了这本书。相信拿到这本书在手里,你也是很难过的,全部都是公式,推导过程!翻一遍过来,头都大了。我当时也是这种感觉,该怎么学啊?当时我问一些学长,他们告诉我,要想把这本书学好,里面的所有公式都要会推导出来!我当时都蒙了,公式记都记不住怎么推啊?好多公式都很冗长!不过困难总是要克服的呀,只能咬咬牙,从头开始看吧!下面我来说说怎么学好这本书。我们都知道微固专业的基础是物理学方面的知识,所以说这本书是基础。不过我的建议是,如果你物理学的知识之前没有接触过,刚开始肯定很多内容都看不懂,但是不要求你看懂,你只要先了解一下基本概念就可以了。在知道都是讲一些什么的时候再回过头来详细地看。但是物理的一些内容要牵扯到量子力学的内容,主要是前面晶格结构的内容,我觉得如果大家不太了解的话,最好把这些书中的相关章节拿出来翻翻,了解一下也好,这些都是一些基础的东西。我想说一遍两遍看不明白很正常!慢慢自己琢磨,不懂就去问老师问同学,总会弄懂的。你要知道既然你选择了微固专业,就要做好吃苦的准备,相信自己一定行!永远不要灰心,你可以沮丧!但不可以放弃! 其次我想说,光看书也是不够的,要找一些题目来做,很多东西要通过做题才能真正掌握。其实我也知道普通物理的题目真的是很少!书店一般都买不到,课本后的习题也没有答案。但是困难来了,你要自己想办法!我也经常在网上下一些视频拿出来看,巩固专业基础的一些东西。我有一个同学,当时也考微固,我把这个视频拷给他,结果他只听了一两遍就不听了,说听不懂,我那个郁闷的啊唉。其实我想说每听一遍感觉都不一样,都有很多收获!觉得普通物理学得差不多了,就做点题目检验一下,要是有模糊的地方可以把教材拿出来再翻一翻,这样结合着看效果也不错。书上的很多公式自己慢慢去推导,多推导几遍就熟悉了,其实有些内容考试不考。书看过三遍左右的时候就要做真题了,历年真题,每一题都要做精做透!结合一些资料题目来做,课本上课后习题有很多也很好。平时可以把书合

相关文档
相关文档 最新文档